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Abstract
In this thesis, we investigate zigzags in triangulations of surfaces. We introduce the
concept of z-monodromy and show that there are precisely 7 types (M1)–(M7) of
z-monodromies of faces in triangulations. We provide examples for all these types.

A triangulation is z-knotted (i.e. it contains a single zigzag up to reversing) if
and only if the z-monodromy of each face is of one of the type (M1)–(M4). Using
this fact we show that each triangulation admits a z-knotted shredding. The proof
is constructive.

Another result related to z-monodromies which we prove states that the z-
monodromies (M1) and (M2) are exceptional. For each i ≥ 3 there is a triangulation
with the z-monodromy of type (Mi) for all faces. For (M1) and (M2) this fails: all
faces with the z-monodromy of one of these types form a forest in the dual graph.

We investigate z-oriented triangulations, i.e. triangulations with a direction cho-
sen on each zigzag. There are precisely two types of faces in such triangulations.
We show that each z-oriented triangulation admits a z-oriented shredding with all
faces of the first type. We will focus only on such triangulations. An important sub-
class is formed by so called z-homogeneous triangulations. We describe a one-to-one
correspondence between z-homogeneous triangulations and embeddings of Eulerian
digraphs in surfaces. We show that a z-oriented triangulation (with all faces of the
first type) provide a decomposition of the surface into connected components of the
following three types: open discs, open cylinders and open Möbius strips. The tri-
angulation is z-homogeneous if and only if all connected components are open discs.

Since z-knotted triangulations have a single z-orientation (up to reversing), we
can say on z-homogeneity of z-knotted triangulations without fixing a z-orientation.
We propose an algorithm of constructing of such a triangulation from an arbitrary
z-homogeneous triangulation. This construction is based on the z-monodromies of
pairs of edges.

Keywords: embedded graph, triangulation, zigzag, z-monodromy, z-knotted trian-
gulation, z-orientation, z-homogeneous triangulation.
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Streszczenie
W niniejszej rozprawie doktorskiej badam zygzaki w triangulacjach powierzchni.
Wprowadzam pojęcie z-monodromii i pokazuję, że istnieje dokładnie 7 typów z-
monodromii ścian w triangulacjach. Podaję przykłady dla każdego z tych typów.

Triangulacja jest z-zawiązana (tzn. zawiera dokładnie jeden zygzak z dokład-
nością do odwrotności) wtedy i tylko wtedy, gdy z-monodromia każdej ściany jest
jednego z typów (M1)–(M4). Wykorzystując ten fakt wykazuję, że każda triangulacja
ma z-zawiązane rozdrobnienie. Dowód tego twierdzenia jest konstruktywny.

Inny wynik związany z z-monodromiami który dowodzę, stwierdza, że z-monodro-
mie (M1) i (M2) są wyjątkowe. Dla każdego i ≥ 3 istnieje triangulacja z z-monodro-
miami typu (Mi) dla każdej ściany. Dla (M1) oraz (M2) nie jest to prawdą: wszystkie
ściany z z-monodromią jednego z tych dwóch typów tworzą las w dualnym grafie.

Badam z-zorientowane triangulacje, tzn. triangulacje z kierunkiem wybranym
na każdym z zygzaków. Istnieją dokładnie dwa typy ścian w takich triangulacjach.
Wykazuję, że każda z-zorientowana triangulacja ma z-zorientowane rozdrobnienie, w
którym wszystkie ściany są pierwszego typu. Będę się koncentrował tylko na takich
triangulacjach. Ważną podklasę stanowią tzw. z-jednorodne triangulacje. Opisuję
wzajemnie jednoznaczną odpowiedniość pomiędzy z-jednorodnymi triangulacjami i
zanurzeniami digrafów eulerowskich w powierzchnie. Pokazuję, że z-zorientowana
triangulacja (ze wszystkimi ścianami typu pierwszego) wyznacza rozkład powierzchni
na składowe spójności trzech typów: otwarte dyski, otwarte cylindry oraz otwarte
wstęgi Möbiusa. Triangulacja jest z-jednorodna wtedy i tylko wtedy, gdy wszystkie
składowe spójności są otwartymi dyskami.

Ponieważ z-zawiązane triangulacje posiadają dokładnie jedną z-orientację (z do-
kładnością do odwrotności), możemy mówić o z-jednorodności bez przywiązania do
z-orientacji. Proponuję algorytm konstruowania takiej triangulacji z dowolnej z-
jednorodnej triangulacji. Ta konstrukcja opiera się na z-monodromiach par krawędzi.

Słowa kluczowe: zanurzenie grafu, triangulacja, zygzak, z-monodromia, z-zawiązana
triangulacja, z-orientacja, z-jednorodna triangulacja.
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1 Introduction
In this thesis, we investigate zigzags in graphs embedded in surfaces, in particular,
zigzags in triangulations. Zigzags generalize the classical concept of Petrie polygons
in regular polyhedra. A Petrie polygon is a skew polygon formed by sides of a regular
polyhedron such that two consecutive sides, but no three, belong to a face [5, p. 24].
It was a useful tool to study regular polyhedra (see [5] for the details).

In a similar way, we can define sequences of edges in graphs embedded in surfaces.
They are called zigzags [7, 17] or closed left-right paths [11, 29]. In contrast to regular
polyhedra, zigzags of embedded graphs can be self-intersected in vertices and edges.
Various kinds of results concerning zigzags in planar graphs, i.e. graphs embedded
in a sphere, are presented in [7] and [11, Chapter 17]. The case when a graph is
embedded in an arbitrary surface is not well-studied.

Analogs of zigzags in objects of dimension greater than 3 are investigated in
[5, 7, 8, 32].

Zigzags are important for many reasons. Now, we provide some of them.
(1). Zigzags are used in computer graphics [13] and mathematical chemistry

[7, Chapter 2]. For example, zigzags were successfully exploited to enumerating all
combinatorial possibilities for fullerenes [3] (fullerenes are considered as spherical
embeddings of 3-regular graphs whose faces are 5- and 6-gons).

(2). Z-knotted embedded graphs, i.e. embedded graphs containing a single zigzag
(up to reversing), are closely connected to the Gauss code problem. Recall that
a Gauss code is a word (a sequence of symbols) where each symbol occurs pre-
cisely twice. A closed curve with simple self-intersections embedded in a closed
2-dimensional surface can be identified with the Gauss code whose symbols are the
intersection points. The problem is to characterize all Gauss codes that realize as
curves. In the spherical case the solution is well-known, see [10, 19, 20, 26, 27, 28]
and [11, Section 17.7]. For other surfaces the problem is partially solved [6, 18].
The z-knottedness of an embedded graph Γ is equivalent to an existence of a zigzag
which passes through each edge precisely twice, i.e. this zigzag is a Gauss code whose
symbols are edges of Γ. The medial graph M(Γ) is the graph (embedded in the same
surface) whose vertices are edges of Γ and two edges are adjacent in M(Γ) if they
have a common vertex and belong to the same face of Γ. The unique zigzag of Γ
corresponds to a closed walk in M(Γ) which is a curve representing a certain Gauss
code.

(3). The classical duality interchanges vertices and faces of graphs embedded in
surfaces and preserves edges (zigzag also are preserved). Using vertices, faces and
zigzags, Lins [17] described another two dualities and two trialities (some of them
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were previously found by Wilson [34]). For example, Petrie duality preserves vertices
and interchanges zigzags and faces. It was proved in [14] that there is no other “good”
notion of a duality/triality (for graphs embedded in surfaces) than the ones described
in [17]. In [12], zigzags together with Petrie duality were used to distinguishing all
14 types of locally finite, planar, 3-connected edge-transitive graphs.

(4). A cycle (in a graph embedded in a surface) is called a bicycle if edges of this
cycle form a cycle in the dual graph. All bicycles generate a vector space over Z2.
In a planar graph the dimension of this vector space is equal to n − 1, where n is
the number of zigzags (up to reversing); in particular, a planar graph is z-knotted if
and only if it does not contain non-trivial bicycles [29], see also [11, Theorem 17.3.5].
In addition, Shank [29] obtained the following characterization of z-knottedness: a
planar graph is z-knotted if and ony if its number of spanning trees is odd. For
non-planar case the dimension of the vector space formed by bicycles depends on the
number of zigzags and the Euler characteristic [6].

It was noted above that zigzags are detailed investigated in [7, 11]. A large portion
of results concerns zigzags in planar graphs. We investigate zigzags in triangulations
of surfaces (not necessarily orientable). These objects are dual to 3-regular graphs
considered in [7]. Since the duality preserves all zigzags, our research continues
[7]. We prefer triangulations instead of 3-regular graphs for some technical reasons.
Other our reason is that zigzags of triangulations are used in computer graphics.

The thesis is organised as follows.
In Section 2, we describe briefly all basic concepts: graphs embedded in surfaces,

triangulations, zigzags and z-orientations.
In Section 3, we consider the z-monodromy of a face (a map of the first return of a

zigzag to a face). We present a classification of z-monodromies and provide examples
showing that all possibilities from this classification are realized. By the classification,
there are precisely 7 types of z-monodromies (Theorem 2). Four of these types
occur in z-knotted triangulations. Conversely, a triangulation is z-knotted if the
z-monodromy of each face is of one of the four types (Theorem 3).

In Section 4, we show that every triangulation admits a z-knotted shredding
(Theorem 4). A large class of examples of z-knotted 3-regular planar graphs (equiv-
alently, z-knotted triangulations of a sphere) were obtained using computer [7]. The
main result of this section gives a purely mathematical construction of z-knotted tri-
angulations of an arbitrary surface. The concept of z-monodromy plays an important
role in this construction. As another application of the z-monodromy, we present
a shorter proof of the main result of [23] which describes all possibilities when the
connected sum of two z-knotted triangulations is z-knotted (Theorem 5).

In Section 5, we investigate z-oriented triangulations where directions of all
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zigzags are distinguished. In such a triangulation there are two types of edges:
type I (zigzags pass through an edge in two different directions) and type II (zigzags
pass through an edge in the same direction). It is not difficult to prove that there are
two types of faces: type I (precisely two edges are of type I and the remaining edge is
of type II) and type II (all edges are of type II). We restrict ourself to the case when
all faces are of type I for the reason that any z-oriented triangulation admits such
a shredding. We are especially interested in z-homogeneous triangulations (in each
zigzag after every edge of type II there are precisely two edges of type I). These trian-
gulations are closely connected to embeddings of Eulerian digraphs (see [2, 9, 21] for
embeddings in a sphere and [1, 4] for embeddings in an arbitrary surface). There is
a one-to-one correspondence between z-homogeneous triangulations and embeddings
of Eulerian digraphs (Theorem 6). We remove all edges of type II from a surface. In
the general case, after this operation the surface is decomposed in open discs, open
cylinders and open Möbius strips (Theorem 7). Our triangulation is z-homogeneous
if and only if the surface is decomposed in open discs only (Theorem 6).

The construction described above depends on a z-orientation. On the other
hand, z-knotted triangulations have precisely one z-orientation up to reversing (the
reversing of z-orientation does not change the types of edges and faces). For this
reason, we can say on z-homogeneity of z-knotted triangulations without fixing a
z-orientation. In Section 6, we describe an algorithm which produces a z-knotted
and z-homogeneous triangulation from an arbitrary z-homogeneous triangulation
(Theorem 8). Our construction will be based on a modification of the concept of
z-monodromy to a pair of edges. Such z-monodromies are more complicated than
the z-monodromies of faces: there are precisely 13 classes of z-monodromies.

In Section 7, we return to z-monodromies of faces. We mentioned that there
are 7 types of z-monodromies of faces (M1)–(M7). For every i = 3, . . . , 7 there is a
triangulation where the z-monodromy of each face is of type (Mi). The types (M1)
and (M2) are exceptional: in the dual graph all faces with one of these types of
z-monodromies form a forest (Theorem 9). Consequently, for i = 1, 2 there exist no
triangulation where the z-monodromies of all faces are of type (Mi).

In conclusion, the main contributions of the thesis are the following:

• the concept of z-monodromy;

• every triangulation admits a z-knotted shredding;

• z-homogeneous triangulations related to embeddings of Eulerian digraphs;

• an algorithm of constructing of z-knotted and z-homogeneous triangulations
on an arbitrary surface.
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2 Basic concepts and constructions

2.1 Surfaces and connected sums

A closed surface (or simply a surface) is a connected compact Hausdorff topological
space which is locally homeomorphic to an open 2-dimensional disc. Each surface
can be constructed in the following way. We take a fundamental polygon, i.e. a
polygon with even number of oriented sides. Next, we split the set of sides into pairs
and identify sides from the same pair according to their orientations.

Example 1. Examples of elementary surfaces obtained from fundamental squares
are presented below.

Sphere Torus

Real projective
plane

Klein bottle

Figure 1

Following [22], we introduce the concept of graphs embedded into surfaces. Let us
take a finite family of pairwise disjoint polygons such that all of them together have
an even number of sides. Each side can be identified with a pair of its endpoints. We
order each of these pairs of endpoints in an arbitrary way and choose any partition
of the family of all sides into pairs. We identify each two edges from the same pair
according to their orientations and obtain a certain topological space S. If S is
connected, then it is a surface. In this case, the set of (non-oriented) sides and the
set of their endpoints can be considered as the set of edges and the set of vertices of a
connected multigraph Γ contained in S. This construction is known as an embedding
of Γ in S. The family of polygons is called the set of faces of Γ. The interior of each
face is homeomorphic to an open 2-dimensional disc. In the case when each face is
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homeomorphic to a closed 2-dimensional disc, we say that the embedding is a closed
2-cell embedding. If S is obtained from family of triangles and Γ is a simple graph,
then Γ is said to be a triangulation of S. Any surface admits a triangulation (see
[22]).

Let Γ be a graph embedded in a surface S. The dual graph Γ∗ is a graph whose
vertices are faces of Γ and whose edges are formed by pairs of distinct faces whose
intersection contains an edge from Γ. Such pairs of faces will be called adjacent. The
graph Γ∗ is embeddable in S in the following way: we take a point in the interior
of each face, two such points are connected by a simple curve if and only if the
corresponding faces are adjacent. The duality provides a one-to-one correspondence
between the faces of Γ and the vertices of Γ∗ and a one-to-one correspondence between
the vertices of Γ and the faces of Γ∗. Note that Γ∗∗ = Γ. In particular, triangulations
are dual to cubic graphs and vice versa. A special class of embedded cubic graphs is
formed by fullerenes, i.e. embeddings of 3-regular simple graphs in a sphere whose
faces are pentagons and hexagons, see [7]. Thus, fullerenes are dual to triangulations
of a sphere whose vertex degrees are 5 or 6.

Example 2. The basic examples of graphs embedded in a sphere are graphs of
Platonic solids, see Fig. 2. We see that a tetrahedron, a octahedron and a icosahedron
are triangulations. A tetrahedron, a cube and a dodecahedron are cubic graphs and
a dodecahedron is a fullerene. A cube and a icosahedron are dual to a octahedron
and a dodecahedron, respectively. A tetrahedron is self-dual.

Figure 2

Consider the topological space obtained from a square by gluing two opposite
sides together, see Fig. 3. This topological space is called a Möbius strip. This is an
example of a surface with boundary, i.e. a Hausdorff topological space whose each
point has a neighbourhood homeomorphic to some open subset of a closed half-plane.

11



Figure 3

A closed surface is said to be non-orientable if it contains a subset homeomorphic to
a Möbius strip; otherwise, we call it an orientable surface (see, for example, [15]).

Now, we describe a method of constructing new surfaces from a pair of surfaces.
Let S and S ′ be surfaces. We remove open discs D,D′ from each of them (re-
spectively). We take any homeomorphism g : ∂D → ∂D′ and identify boundaries
according to it. As a result, we get a new surface denoted by S#S ′ and called the
connected sum of surfaces S and S ′ (for another homeomorphism g′ : ∂D → ∂D′ we
obtain a homeomorphic surface). A sphere S is an identity element of the connected
sum operation, i.e. S#S ' S for any surface S.

Example 3. Consider a torus T. The connected sum of two tori is called a double
torus and denoted by T2 (see Fig. 4).

Figure 4

Similarly, the surface obtained by consecutive connected sums of n tori is called an
n-torus and denoted by Tn (where T1 = T). This is orientable surface for any n.
Consider examples of surfaces that are non-orientable. Let P be a real projective
plane. Then the connected sum P#P is a Klein bottle K. As above, we can glue
2n copies of P and obtain the surface denoted by Kn (where K1 = K) which is also
homeomorphic to the connected sum of n copies of K. The connected sum K#P is
homeomorphic to the connected sum T#P, see [15].

The following theorem gives a classification of closed surfaces (see, for example,
[15] for more details).

Theorem 1. Every closed surface is homeomorphic to one of the following:

12



(1) a sphere,

(2) the connected sum of tori,

(3) the connected sum of real projective planes.

Let Γ and Γ′ be triangulations of surfaces S and S ′ (respectively) and D and
D′ be faces of these triangulations. Let g : ∂D → ∂D′ be a homeomorphism which
transfers each vertex to a vertex. Such homeomorphisms will be called special. The
gluing by this homeomorphism gives a triangulation of S#S ′ called the connected
sum of triangulations Γ and Γ′ which will be denoted by Γ#gΓ

′. In contrast to the
connected sum of surfaces, the result depends on a choice of homeomorphism.

Example 4. The n-bipyramid BPn is a triangulation of a sphere consisting of an
n-cycle (called the base of the n-bipyramid) whose vertices are denoted by 1, . . . , n,
and the remaining two vertices a, b connected by edges with all vertices of the base.
The bipyramid BP3 is the connected sum of two tetrahedra for every special home-
omorphism, see Fig. 5.

a

b

1
3 2

Figure 5

On the other hand, the connected sum of two n-bipyramids is one of three different
triangulations of a sphere (see Fig. 6 for the case n = 3). Note that the last two
triangulations in Fig. 6 are embeddings of the same graph, but in different ways.

Figure 6

13



2.2 Zigzags

Let Γ be a graph embedded in a surface S. We will always require that the following
assertions are fulfilled:

(1) every edge is contained in precisely two distinct faces,
(2) the intersection of two distinct faces is an edge or a vertex or the empty set.

Remark 1. The both conditions are fulfilled when Γ is a triangulation. The fulfill-
ment of the first condition is obvious. If the second condition fails for a triangulation,
then the corresponding embedded graph has a double-edge which contradicts the fact
that the triangulation is a simple graph embedding.

Recall that two distinct faces are adjacent if their intersection is an edge. If two
distinct edges have a common vertex and there is a face containing them, the edges
are called adjacent. A zigzag in Γ is a sequence of edges Z = {ei}i∈N where for every
i ∈ N the following two conditions hold:

(Z1) ei, ei+1 are adjacent,
(Z2) the faces containing ei, ei+1 and ei+1, ei+2 are adjacent.

See Fig. 7.

Figure 7

Note that the edges ei, ei+2 are disjoint. Furthermore, ei, ei+1 uniquely determine
ei+2. So, the zigzag Z is completely determined by the pair ei, ei+1 for every i ∈ N,
i.e. there is a unique zigzag containing the subsequence ei, ei+1. This means that
each such ordered pair defines one of zigzags in Γ. Since Γ has a finite number of
edges and faces, there is a natural number n > 0 such that

en+1 = e1 and en+2 = e2.

14



Then we have
ei+n = ei for all i ∈ N.

The smallest such number n is the length of Z. Thus our zigzag Z can be considered
as the cyclic sequence e1, e2, . . . , en.

Example 5. Figure 8 shows zigzags in Platonic solids (marked with a bold line).

Figure 8

The zigzag Z = {e1, e2, . . . , en} can be written as the cyclic sequence of faces
F1, F2, . . . , Fn, where Fi is the face containing ei, ei+1 or as the cyclic sequence
of vertices v1, v2, . . . , vn, where vi is the common vertex of ei and ei+1 (for every
i ∈ {1, 2, . . . , n} and en+1 = e1). Thus, each zigzag from Γ can be considered as a
zigzag in Γ∗ and vice versa.

If all edges in the cyclic form of Z are distinct, then Z is said to be edge-simple.
Similarly, if all vertices in the cyclic form of Z are distinct, then Z is vertex-simple.
If Z is vertex-simple, then it is also edge-simple, but the converse is not true. For
example, all zigzags in each of Platonic solids are vertex-simple, see Example 5.
Triangulations with zigzags which are edge-simple but not vertex-simple will be given
in Example 6.

Let X = {e1, . . . , en} be a sequence of edges. We denote the reversed sequence
{en, . . . , e1} by X−1. In the case when X is a zigzag, the reversed sequence X−1 also
is a zigzag.

Proposition 1. Z 6= Z−1 for every zigzag Z.

Proof. Suppose that Z contains a sequence e, e′. Then Z−1 contains e′, e. If Z = Z−1,
then this zigzag contains the sequence e, e′, . . . , e′, e. Therefore, Z is either the se-
quence

. . . , e, e′, e1, e2, . . . , em, em, . . . , e2, e1, e
′, e, . . .
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or the sequence

. . . , e, e′, e1, e2, . . . , em−1, em, em−1, . . . , e2, e1, e
′, e, . . .

Each of these cases is impossible by the definition of zigzag.
Example 6. We describe zigzags in bipyramids.

(a). Suppose that n = 2k + 1. Then the bipyramid BPn has a single zigzag (up
to reversing). If k is odd, then the zigzag is

a1, 12, 2b, b3, . . . , a(n− 2), (n− 2)(n− 1), (n− 1)b, bn, n1,

1a, a2, 23, 3b, . . . , a(n− 1), (n− 1)n, nb,

b1, 12, 2a, a3, . . . , b(n− 2), (n− 2)(n− 1), (n− 1)a, an, n1,

1b, b2, 23, 3a, . . . , b(n− 1), (n− 1)n, na.

If k is even, then this zigzag is

a1, 12, 2b, b3, . . . , b(n− 2), (n− 2)(n− 1), (n− 1)a, an, n1,

1b, b2, 23, 3a, . . . , a(n− 1), (n− 1)n, nb,

b1, 12, 2a, a3, . . . , a(n− 2), (n− 2)(n− 1), (n− 1)b, bn, n1,

1a, a2, 23, 3b, . . . , b(n− 1), (n− 1)n, na.

It is easy to calculate that the length of each of these zigzags is twice the number of
edges of the bipyramid.

(b). For n = 2k, where k is odd, there are precisely two zigzags (up to reversing):

a1, 12, 2b, b3, 34, . . . , a(n− 1), (n− 1)n, nb,

b1, 12, 2a, a3, 34, . . . , b(n− 1), (n− 1)n, na

and
a2, 23, 3b, b4, 45, . . . , an, n1, 1b,

b2, 23, 3a, a4, 45, . . . , bn, n1, 1a.

(c). If n = 2k and k is even, then the bipyramid contains precisely four zigzags
(up to reversing):

a1, 12, 2b, . . . , b(n− 1), (n− 1)n, na;

b1, 12, 2a, . . . , a(n− 1), (n− 1)n, nb;

a2, 23, 3b, . . . , bn, n1, 1a;

b2, 23, 3a, . . . , an, n1, 1b.

In the case (c) all zigzags are edge-simple. For the remaining cases this fails. Note
that all zigzags of 4-bipyramid (the octahedron) are vertex-simple, but (2k)-bipyra-
mids for k = 4, 6, 8, . . . are not vertex-simple.
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2.3 Z-oriented triangulations

The concept of z-orientation for embedded graphs is described in [7]. We restrict
ourself to the case of triangulations.

Let Γ be a triangulation of a surface S. By Proposition 1, the triangulation
Γ contains even number of zigzags, lets say 2k (or k zigzags up to reversing). A
z-orientation of Γ is a collection τ of k zigzags which does not contain any pair
of mutually reversed zigzags. In other words, Z ∈ τ or Z−1 ∈ τ for each zigzag
Z. There are 2k z-orientations for Γ. If τ = {Z1, . . . , Zk}, then the z-orientation
τ−1 = {Z−11 , . . . , Z−1k } is reversed to τ . A pair (Γ, τ) consisting of the triangulation
and one of its z-orientations is called a z-oriented triangulation.

Our triangulation will be called z-knotted if k = 1, i.e. it has a single zigzag up to
reversing. Such triangulations have precisely two mutually reversed z-orientations.

Proposition 2. If τ is a z-orientation of Γ, then for every edge e one of the following
possibilities is realized:

(1) there is a zigzag Z ∈ τ such that e occurs in Z twice and the remaining zigzags
from τ do not contain e;

(2) there are two distinct zigzags Z,Z ′ ∈ τ such that e occurs in each of them only
once and the remaining zigzags from τ do not contain e.

Proof. There are two distinct faces containing e. Suppose that the remaining edges
of the first face are e1, e2 and of the second face are e′1, e′2. Without loss of generality,
we may assume that zigzags of Γ passes through e in the four following ways

. . . , e1, e, e
′
2, . . . , . . . , e′1, e, e2, . . . ,

. . . , e′2, e, e1, . . . , . . . , e2, e, e
′
1, . . .

and we see that zigzags in the same column are reversed (see Fig. 9).

e

e2e1

e′2e′1

Figure 9
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Thus, zigzags from τ contain only one sequence from each of the above columns.
Denote these zigzags by Z and Z ′ for the first and the second column respectively.
The first case from the proposition is satisfied for Z = Z ′. Otherwise, we get the
second case.

Corollary 1. If τ is a z-orientation of Γ, then the set of edges is double covered
by the zigzags of τ , i.e. every edge is contained in two distinct zigzgas from τ or it
occurs in one zigzag of τ twice. In particular, Γ is z-knotted if and only if it contains
a zigzag passing through every edge twice.

Corollary 2. For any z-orientation τ , the sum of lengths of all zigzags from τ is
equal to the twice number of edges in Γ.

Now, we fix a certain z-orientation τ . We say that e is an edge of type I or an edge
of type II if zigzags from τ passes through e twice in different directions or twice in
the same direction, respectively. We will consider edges of type II together with the
direction induced by τ . The subgraph of Γ consisting of all edges of type II and their
vertices will be denoted by ΓII and considered as a directed graph embedded in S. A
vertex of Γ is of type I if all edges incident to this vertex are of type I. Otherwise,
the vertex is of type II. Thus, the vertex set of ΓII is formed by all vertices of type II.

Lemma 1. For each vertex of type II the number of edges of type II which enter to
this vertex is equal to the number of edges of type II which leave it.

Proof. Let v be any vertex of type II. For each zigzag from τ passing through v, the
number of times that the zigzag enters to v is equal to the number of times that this
zigzag leaves v.

Proposition 3. For each face one of the following possibilities is realized:

(1) the face contains two edges of type I and the third edge is of type II, see Fig.
10 (a);

(2) all edges of the face are of type II and form a directed cycle, see Fig. 10 (b).

(a) (b)

Figure 10
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The face is of type I in the first case and of type II in the second case.

Proof. Consider a face whose edges are e1, e2, e3. We can assume that the zigzag
containing the sequence e1, e2 belongs to τ . Let Z,Z ′ be the zigzags containing the
sequences e2, e3 and e3, e1 (respectively). We get four cases depending on whether Z
or Z ′ belong to τ . It is easy to check that each of them corresponds to (1) or (2).

Observe that the reversing of a z-orientation (each zigzag from the z-orientation
is replaced by the reversed) does not change types of edges and, consequently, types
of vertices and faces. However, the directions of edges of type II are reversed.

Example 7. We return to the n-bipyramids from Example 6.
(a). Odd-gonal bipyramids are z-knotted and have two mutually reversed z-

orientations. For both these z-orientations the edges ai and bi, i ∈ {1, . . . , n}, are
of type I. The edges of the base are of type II and ΓII is a directed cycle. So, the
vertices 1, . . . , n are of type II and a, b are of type I. All faces are of type I.

(b). Consider the case n = 2k, where k is odd. If the z-orientation consists of
two zigzags presented in Example 6 (b), this is a situation similar to the previous
case: ΓII is the base, a and b are of type I and all faces are of type I. However, if we
replace one of these zigzags by its reversion, then all faces, edges and vertices will be
of type II.

(c). Let n = 2k and k be even. Denote the zigzags presented in Example 6 (c)
by Z1, Z2, Z3, Z4 (keeping the order from the example). If the z-orientation consists
of these zigzags, then types of faces, edges and vertices are as in (a) and in the first
case from (b). For the z-orientation

{Z1, Z2, Z
−1
3 , Z−14 }

all faces are of type II, but in the z-orientation

{Z1, Z2, Z3, Z
−1
4 }

the both types of faces occur.
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3 Z-monodromy
Let Γ be a triangulation of a surface. Now, we investigate the concept of z-monodromy
for faces of Γ. In this section, the triangulation Γ is considered without any z-
orientation. All results described in this section come from [25]. The z-monodromy
is a crucial tool used to prove the main result of the next section which concerns
the existence of a z-knotted shredding for any triangulation. We return to the face
z-monodromy in Section 7. In Section 6, we will consider z-monodromies for pairs
of edges.

3.1 Definition and basic properties

Let F be a face of Γ whose vertices are a, b, c and let Ω(F ) be the set of all oriented
edges of F :

Ω(F ) = {ab, bc, ca, ac, cb, ba}.

We write xy for the edge from x ∈ {a, b, c} to y ∈ {a, b, c}. If e is the edge xy, then
the edge yx is denoted by −e.

Define the permutation DF on the set Ω(F ) as the following composition of two
commuting 3-cycles

DF = (ab, bc, ca)(ac, cb, ba).

In other words, if x, y, z are three mutually distinct vertices of F , then DF (xy) = yz.
If DF (e) = e′, then we have the equality DF (−e′) = −e.

Now, we introduce the notion of z-monodromy of the face F . Let e ∈ Ω(F ) and
take e0 ∈ Ω(F ) such that DF (e0) = e. Since each of zigzags is completely determined
by any pair of consecutive edges, there is precisely one zigzag Z containing e0, e. We
defineMF (e) as the first element of Ω(F ) contained in Z after the sequence e0, e (see
Fig. 11).

e0 e

MF (e)

Z

Figure 11
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Denote by Z(F ) the set of all zigzags containing the sequence e,DF (e), where
e ∈ Ω(F ).

Lemma 2. Let Z be a zigzag. The following assertions are fulfilled:

(1) Z ∈ Z(F ) if and only if Z contains at least one edge of F .

(2) If Z ∈ Z(F ), then Z−1 ∈ Z(F ).

(3) |Z(F )| is equal to 2 or 4 or 6.

Proof. (1). Assume that an edge of F consists of vertices x, y ∈ {a, b, c} and Z passes
through this edge from x to y. Then either Z contains the sequence xy,DF (xy) or
Z contains the sequence e, xy, where DF (e) = xy. In both cases Z ∈ Z(F ).

(2). Let Z belongs to Z(F ). Then Z contains the sequence e, e′, where e ∈ Ω(F ),
e′ = DF (e) and Z−1 contains the sequence −e′,−e. Since DF (−e′) = −e, the zigzag
Z−1 belongs to Z(F ).

(3). The set Ω(F ) consists of 6 elements, but for some distinct e, e′ ∈ Ω(F ) the
zigzags containing the sequences e,DF (e) and e′, DF (e′) can be coincident. In such
case the reversed zigzags also are coincident.

The triangulation Γ is locally z-knotted for F if |Z(F )| = 2. Thus, by Lemma 2,
the triangulation Γ is locally z-knotted for F if and only if there is a single zigzag,
up to reversing, containing edges of F . The following lemma can be proved in the
similar way as Proposition 2.

Lemma 3. If Γ is locally z-knotted for F , then every zigzag from Z(F ) passes through
each edge of F twice. Conversely, if there is a zigzag passing through each edge of F
twice, then Γ is locally z-knotted for F .

3.2 Classification of z-monodromies

Now, we present the classification of z-monodromies of faces in triangulations.

Theorem 2. For the z-monodromy MF one of the following possibilities is realized:

(M1) MF is the identity,

(M2) MF = DF ,

(M3) MF = (−e1, e2, e3)(−e3,−e2, e1),

(M4) MF = (e1,−e2)(e2,−e1), where e3 and −e3 are fixed points,
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(M5) MF = (DF )−1,

(M6) MF = (−e1, e3, e2)(−e2,−e3, e1),

(M7) MF = (e1, e2)(−e2,−e1), where e3 and −e3 are fixed points

where (e1, e2, e3) is one of the cycles in DF . The triangulation Γ is locally z-knotted
for F if and only if one of the cases (M1)–(M4) is realized.

Later we give an example for every possibility presented in Theorem 2. Before
we prove this theorem, we need the following two lemmas.

Lemma 4. The following assertions are fulfilled:

(1) The equality MF (e) = e′ implies that MF (−e′) = −e.

(2) MF is bijective.

(3) MF (e) 6= −e for every e ∈ Ω(F ).

(4) The length of every cycle in the permutation MF is not greater than 3.

Proof. (1). Let e ∈ Ω(F ) and e0 ∈ Ω(F ) be such that DF (e0) = e. Let Z be the
zigzag containing the sequence e0, e. Thus

e′ = MF (e) and e′0 = DFMF (e)

are the next two elements of Ω(F ) in Z. Note that DF (−e′0) = −e′. The reversed
zigzag Z−1 contains the sequence −e′0,−e′ and −e is the first element of Ω(F ) con-
tained in Z−1 after −e′. Therefore, MF (−e′) = −e.

(2). It is sufficient to show that MF is injective. If MF (e) = MF (e′) = e′′, then,
by (1), we have −e = MF (−e′′) = −e′. This means that e = e′.

(3). Let e and e0 be as in the proof of (1). Suppose that MF (e) = −e. Then the
zigzag containing the sequence e0, e contains also the sequence −e,DF (−e). Since
DF (−e) = −e0, this zigzag contains the sequence −e,−e0 reversed to e0, e, which is
impossible.

(4). Suppose that the permutationMF contains a cycle of the length greater than
3. Let e1, e2, e3 ∈ Ω(F ) be consecutive elements in this cycle. Then

MF (e1) = e2, MF (e2) = e3, MF (e3) 6= e1

and the statement (3) implies MF (e3) 6= −e3. Therefore, MF (e3) is equal to −e1
or −e2. By (1), the equality MF (e3) = −e2 implies that MF (e2) = −e3. This is
impossible, so MF (e3) = −e1. Then MF (e1) = −e3. The latter means that e2 = −e3
which contradicts MF (e2) = e3 by (3).
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Lemma 5. The triangulation Γ is locally z-knotted for F if and only if DFMF is
the composition of two distinct commuting 3-cycles.

Proof. Let e, e0 ∈ Ω(F ) satisfy DF (e0) = e. We take the zigzag Z containing the
sequence e0, e. If Z contains the sequence e′0, e′, where e′, e′0 ∈ Ω(F ) and DF (e′0) = e′,
then we denote by [e′,MF (e′)] the part of Z between e′ and MF (e′). The zigzag Z is
the cyclic sequence

[e,MF (e)], [DFMF (e),MFDFMF (e)], . . . , [(DFMF )m−1(e),MF (DFMF )m−1(e)],

where m is the smallest non-zero number such that (DFMF )m(e) = e. Since

e,DFMF (e), . . . , (DFMF )m−1(e)

are mutually distinct, the same holds for

MF (e),MFDFMF (e), . . . ,MF (DFMF )m−1(e).

Consider the following two sets:

X = {e,DFMF (e), . . . , (DFMF )m−1(e)},

Y = {−MF (e),−MFDFMF (e), . . . ,−MF (DFMF )m−1(e)}.

If e′ is an element of X ∩ Y and DF (e′′) = e′, then DF (−e′) = −e′′ and Z is a cyclic
sequence of type

. . . , [∗, e′′], [e′, ∗], . . . , [∗,−e′], [−e′′, ∗], . . .

Thus, Z is self-reversed, which is impossible, and X ∩ Y = ∅. This implies that
m ≤ 3 because otherwise X and Y both contain more that three elements and have
a non-empty intersection. The zigzag

Z = [e1,MF (e1)], . . . , [em,MF (em)], where ei = (DFMF )i−1(e),

corresponds to them-cycle C = (e1, . . . , em) in the permutationDFMF . The reversed
zigzag

Z−1 = [−MF (em),−em], . . . , [−MF (e1),−e1]

corresponds to the m-cycle

C ′ = (−MF (em), . . . ,−MF (e1))

If m = 1, then e1 and −MF (e1) are fixed points of DFMF .
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Now, consider the case for m = 3. Then DFMF is the composition of the com-
muting 3-cycles C and C ′. Moreover Ω(F ) = X ∪ Y and every element of Ω(F ) is
contained in X or Y . Therefore, Z(F ) = {Z,Z−1}.

For m < 3 there are elements of Ω(F ) which are not contained in X ∪ Y . Such
elements define zigzags distinct from Z and Z−1. In this case DFMF does not contain
3-cycles.

Proof of Theorem 2. We use Lemma 4 to show that MF is one of the permutations
(M1)–(M7). Assume that MF is not identity.

Consider the case whenMF contains a 3-cycle C. The statement (3) from Lemma
4 guarantees that this cycle does not contain pairs of type e,−e. So, there exist
e1, e2, e3 ∈ Ω(F ) such that (e1, e2, e3) is a cycle in DF and

C = (e1, e2, e3) or C = (−e1, e2, e3) or C = (e1, e3, e2) or C = (−e1, e3, e2).

Using (1) from Lemma 4 we establish that

MF = (e1, e2, e3)(−e3,−e2,−e1) or MF = (−e1, e2, e3)(−e3,−e2, e1)

or
MF = (e1, e3, e2)(−e2,−e3,−e1) or MF = (−e1, e3, e2)(−e2,−e3, e1).

Therefore, we get permutations (M2), (M3), (M5) and (M6), respectively.
If MF does not contain a 3-cycle, then it contains a transposition T . By the

statement (3) from Lemma 4, the transposition T is not of type (e,−e). Then there
exist e1, e2, e3 ∈ Ω(F ) such that (e1, e2, e3) is one of the cycles in DF and

T = (e1, e2) or T = (e1,−e2).

So, by (1) from Lemma 4,

MF = (e1, e2)(−e2,−e1) or MF = (e1,−e2)(e2,−e1).

Then the statement (3) from Lemma 4 implies that e3 and −e3 are fixed points of
MF . Thus, we get (M7) or (M4), respectively.

A direct verification with the use of Lemma 5 shows that DFMF is the composi-
tion of two distinct commuting 3-cycles if and only if MF is one of (M1)–(M4).

Remark 2. There is a one-to-one correspondence between cycles of the permutation
DFMF and zigzags belonging to Z(F ) (see the proof of Lemma 5). It is easy to verify
that if MF is (M5), then |Z(F )| = 6 and if MF is (M6) or (M7), then |Z(F )| = 4.
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3.3 A characterization of z-knotted triangulations

As a consequence of Theorem 2, we obtain the following characterization of z-knotted
triangulations.

Theorem 3. Γ is z-knotted if and only if for every face F the z-monodromy MF is
one of (M1)–(M4).

Proof. If Γ is z-knotted, then it is locally z-knotted for each face F and, by Theorem
2, every z-monodromy MF is one of (M1)–(M4).

Conversely, suppose that for every face F of Γ the z-monodromy MF is one of
(M1)–(M4). By Theorem 2, the triangulation Γ is locally z-knotted for all faces. If
Z(F ) = {Z,Z−1}, then Z passes through each edge of F . Therefore, if F ′ is a face
adjacent to F , then they have a common edge and Z also belongs to Z(F ′) by (1)
from Lemma 2. We have Z(F ′) = {Z,Z−1} because Γ is locally z-knotted for F ′.
The same holds for all faces of Γ by connectedness.

3.4 Examples of z-monodromies

We give an example for each of types of z-monodromy from Theorem 2. For simplic-
ity, all zigzags are written as sequences of vertices. The first four examples describe
the z-monodromies (M3)–(M5) and (M7). Each of these z-monodromies is realized in
a bipyramid. Since for any two faces in a bipyramid there is an automorphism trans-
ferring one of them to the other, the z-monodromies of all faces in each bipyramid
are of the same type.

Example 8 (the z-monodromy of type (M3)). Suppose that n = 2k + 1 and k is
odd. If k = 1, then one of the zigzags is

a, 1, 2, b, 3, 1, a, 2, 3, b, 1, 2, a, 3, 1, b, 2, 3.

For k ≥ 3 this zigzag is

a, 1, 2, b, 3, 4, . . . , a, n− 2, n− 1, b, n, 1, a, 2, 3, b, . . . , a, n− 1, n,

b, 1, 2, a, 3, 4, . . . , b, n− 2, n− 1, a, n, 1, b, 2, 3, a, . . . , b, n− 1, n.

The zigzag passes through every edge twice, thus the bipyramid is z-knotted. The
face F appears in the zigzag as follows

. . . , a, 1, 2, . . . , 1, a, 2, . . . , 1, 2, a, . . .
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and it determines MF for three elements of Ω(F )

12→ 1a, a2→ 12, 2a→ a1.

By (1) from Lemma 4, we have

a1→ 21, 21→ 2a, 1a→ a2.

Let e1 = 12, e2 = 2a, e3 = a1. Then (e1, e2, e3) is one of the 3-cycles in DF and

MF = (−e1, e2, e3)(−e3,−e2, e1)

is of type (M3).

Example 9 (the z-monodromy of type (M4)). Suppose that n = 2k + 1 and k is
even. If k = 2, then one of the zigzags is

a, 1, 2, b, 3, 4, a, 5, 1, b, 2, 3, a, 4, 5, b, 1, 2, a, 3, 4, b, 5, 1, a, 2, 3, b, 4, 5

and for k ≥ 4 the zigzag is

a, 1, 2, b, 3, 4, a, . . . , b, n− 2, n− 1, a, n, 1, b, 2, 3, a, . . . , a, n− 1, n,

b, 1, 2, a, 3, 4, b, . . . , a, n− 2, n− 1, b, n, 1, a, 2, 3, b, . . . , b, n− 1, n.

As in the previous example, this zigzag passes through every edge twice and the
bipyramid is z-knotted. Let e1 = 2a, e2 = a1, e3 = 12. Then (e1, e2, e3) is one of the
3-cycles in DF and the face F appears in the zigzag as follows

. . . , a, 1, 2, . . . , 1, 2, a, . . . , 1, a, 2, . . . ,

which implies that MF leaves fixed e3 and transfers e1 to −e2 and −e1 to e2. By the
statement (1) from Lemma 4, we establish that

MF = (e1,−e2)(e2,−e1)

is of type (M4).

Example 10 (the z-monodromy of type (M5)). Suppose that n = 2k and k is even.
In the case when k = 2, we get the octahedron whose zigzags are vertex-simple.
Assume that k ≥ 4. The set Z(F ) contains precisely 8 zigzags:

• a, 1, 2, b, 3, 4, . . . , b, n− 1, n
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• b, 1, 2, a, 3, 4, . . . , a, n− 1, n

• 1, a, 2, 3, b, . . . , a, n− 2, n− 1, b, n

• 1, b, 2, 3, a, . . . , b, n− 2, n− 1, a, n

and their reverses. These zigzags are not vertex-simple, but they are edge-simple. It
means that MF (e) = (DF )−1 for any face F in the bipyramid and for any e ∈ Ω(F ).
Therefore, the z-monodromy of every face is of type (M5).

Example 11 (the z-monodromy of type (M7)). Suppose that n = 2k and k is an
odd number greater than 1. The set Z(F ) consists of the following two zigzags

a, 1, 2, b, 3, 4, . . . , a, n− 1, n, b, 1, 2, a, 3, 4, . . . , b, n− 1, n

and
1, a, 2, 3, . . . , b, n− 2, n− 1, a, n, 1, b, 2, 3, . . . , a, n− 2, n− 1, b, n

and their reverses. We take e1 = 2a, e2 = a1, e3 = 12 and then (e1, e2, e3) is one of
the 3-cycles in DF . The face F appears in the zigzags as follows

. . . , a, 1, 2, . . . , 1, 2, a, . . . and . . . , 1, a, 2, . . .

which implies that MF leaves fixed e3 and transfers e1 to e2 and −e1 to −e2. By (1)
from Lemma 4

MF = (e1, e2)(−e2,−e1)
is of type (M7) and z-monodromies of all faces in the bipyramid are of this type.

The next three examples are connected sums of bipyramids with z-monodromies
(M1), (M2) and (M6). Let BPn be as previous and, similarly, let BPn′ be bipyramid
with the base whose vertices are 1′, . . . , n′ and two remaining vertices denoted by
a′, b′. Let F1 and F2 be the faces of the bipyramids containing the vertices a, 1, 2 and
a′, 1′, 2′, respectively, and g : ∂F1 → ∂F2 be a special homeomorphism.

Example 12 (the z-monodromy of type (M2)). Suppose that n = 2k + 1 and
n′ = 2k′ + 1, where k and k′ are odd. Denote by Γ the connected sum BPn#gBPn′ ,
where g : ∂F1 → ∂F2 satisfies

g(a) = a′, g(1) = 1′, g(2) = 2′.

The zigzag of BPn considered in Example 8 can be presented as the cyclic sequence
A,B,C, where

A = {1, 2, b, . . . , 1, a}, B = {a, 2, . . . , b, 1, 2}, C = {2, a, . . . , 1, b, 2, . . . , a, 1}
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are parts of the zigzag between two edges of the face F1. Note that any two consec-
utive parts have the same vertex (for example, the parts A and B are joined in the
vertex a). Similarly, one of the two zigzags of BPn′ is the cyclic sequence A′, B′, C ′,
where

A′ = {1′, 2′, . . . , 1′, a′}, B′ = {a′, 2′, . . . , 1′, 2′}, C ′ = {2′, a′, . . . , a′, 1′}.

Consider the cyclic sequence

A,C ′−1, B,A′, C−1, B′,

where for any two consecutive parts X, Y the last edge from X is identified with the
first edge from Y . A direct verification shows that this is a zigzag in Γ. This zigzag
passes through each edge of Γ twice (since it is obtained from a zigzag of BPn passing
through all edges of BPn twice and a zigzag of BPn′ satisfying the same condition).
Therefore, Γ is z-knotted. Let F be the face of Γ containing the vertices b, 1, 2 and
let e1 = 12, e2 = 2b, e3 = b1. Since this face appears in the zigzag as follows

. . . , 1, 2, b, . . . , b, 1, 2, . . . , 2, b, 1, . . . ,

the z-monodromy MF contains the 3-cycle (e1, e2, e3). By the statement (1) from
Lemma 4,

MF = (e1, e2, e3)(−e3,−e2,−e1) = DF

is of type (M2).

Example 13 (the z-monodromy of type (M1)). Suppose that n = 2k and n′ = 2k′,
where k and k′ are odd numbers greater than 1. Denote by Γ the connected sum
BPn#gBPn′ , where g : ∂F1 → ∂F2 satisfies

g(a) = 2′, g(1) = a′, g(2) = 1′.

By Example 11, the set Z(F1) is formed by the zigzags

a, 1, 2, b, 3, 4, . . . , a, n− 1, n, b, 1, 2, a, 3, 4, . . . , b, n− 1, n

and
1, a, 2, 3, . . . , b, n− 2, n− 1, a, n, 1, b, 2, 3, . . . , a, n− 2, n− 1, b, n

and their reverses. The first zigzag is the cyclic sequence A,B, where

A = {1, 2, . . . , 1, 2} and B = {2, a, 3, . . . , n, a, 1}
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are parts of the zigzag between two edges of the face F1 (A is joined with B in the
vertex 2 and B is joined with A in the vertex 1). The second zigzag passes once
through the edges a1 and a2, and it does not contain the edge 12. We rewrite this
zigzag as

C = {a, 2, 3, . . . , 2, 3, a, . . . , n, 1, a}.

Similarly, Z(F2) consists of four zigzags: one of them is A′, B′, the second is C ′,
where

A′ = {1′, 2′, . . . , 1′, 2′}, B′ = {2′, a′, . . . , a′, 1′}, C ′ = {a′, 2′, . . . , 1′, a′},

and the remaining two zigzags are their reverses. Then

A,C ′−1, C−1, A′, B,B′

(as in the previous example, for any two consecutive parts X, Y the last edge from X
is identified with the first edge from Y ) is a zigzag in Γ. This zigzag passes through
all edges of Γ twice (indeed, the sequence A,B,C contains every edge of BPn twice
and A′, B′, C ′ contains every edge of BPn′ twice). Therefore, Γ is z-knotted. Let F
be the face of Γ containing the vertices a, 2, 3. This face appears in the zigzag as
follows

. . . , a, 3, 2, . . . , 3, 2, a, . . . , 2, a, 3, . . .

which implies that MF is identity.

Example 14 (the z-monodromy of type (M6)). As in Example 12, we suppose that
n = 2k + 1 and n′ = 2k′ + 1, where k and k′ are odd. Consider the connected sum
BPn#gBPn′ , where g : ∂F1 → ∂F2 satisfies

g(a) = 1′, g(1) = 2′, g(2) = a′.

Recall that the single zigzags (up to reversing) in BPn and BPn′ are the cyclic
sequences A,B,C and A′, B′, C ′ (respectively), where

A = {1, 2, b, . . . , 1, a}, B = {a, 2, . . . , b, 1, 2}, C = {2, a, . . . , 1, b, 2, . . . , a, 1},

A′ = {1′, 2′, . . . , 1′, a′}, B′ = {a′, 2′, . . . , 1′, 2′, }, C ′ = {2′, a′, . . . , a′, 1′}.

The cyclic sequences
A,B′−1 and B,C ′, C, A′

define zigzags in BPn#gBPn′ (the corresponding edges in consecutive parts are iden-
tified). Let F be the face of the connected sum which contains the vertices b, 1, 2
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and let e1 = b1, e2 = 12, e3 = 2b. Then (e1, e2, e3) is one of the 3-cycles in DF . The
face F appears in the zigzags as follows

. . . , 1, 2, b, . . . and . . . , b, 1, 2, . . . , 1, b, 2, . . .

which determines MF on three elements of Ω(F )

e3 → e2, e2 → −e1, −e3 → e1.

The statement (1) from Lemma 4 implies that

−e2 → −e3, e1 → −e2, −e1 → e3.

Therefore,
MF = (−e1, e3, e2)(−e2,−e3, e1)

is of type (M6).
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4 Zigzags in connected sums of triangulations

4.1 Z-knotted shreddings

As before, we suppose that Γ is a triangulation of a surface S. Assume that F1, . . . , Fk
are mutually distinct faces of Γ. Let Γ1, . . . ,Γk be triangulations of a sphere S.
We take a face F ′i in Γi and a special homeomorphism gi : ∂Fi → ∂F ′i for every
i ∈ {1, . . . , k}. Then the connected sum

(((Γ#g1Γ1)#g2Γ2) . . . )#gkΓk (1)

is a triangulation of S. In other words, the connected sum (1) is obtained from Γ by
replacing every Fi by a triangulation of a 2-dimensional disc. Every triangulation of
S obtained from Γ in such a way is called a shredding of Γ.

The main result of this section is the following theorem.

Theorem 4 ([25]). Every triangulation Γ of any connected closed 2-dimensional
surface admits a z-knotted shredding. Suppose that Γ contains precisely 2m zigzags,
i.e. m zigzags up to reversing, and m > 1. Then there are z-knotted triangulations
Γ1, . . . ,Γk of a sphere S such that k ≤ m−1 and the connected sum (1) is z-knotted.

4.2 Proof of Theorem 4

The crucial tools used to prove Theorem 4 are our classification of z-monodromies
(Theorem 2) and the gluing lemma (Lemma 6).

Let F and F ′ be faces in triangulations Γ and Γ′ (respectively). Let g : ∂F → ∂F ′

be a special homeomorphism. It induces a bijection between Ω(F ) and Ω(F ′) which
transfers each oriented edge xy to the oriented edge g(x)g(y). We will denote this
bijection also by g. Observe that the bijection g : Ω(F ) → Ω(F ′) has the following
two properties:

• g(−e) = −g(e) for every e ∈ Ω(F ),

• gDFg
−1 = DF ′ .

A face D in a triangulation is said to be essential if every zigzag of this triangula-
tion contains an edge from this face (in other words, every zigzag belongs to Z(D)).
For example, all faces of z-knotted triangulations and all faces of a tetrahedron are
essential.

Lemma 6 (Gluing lemma). The following assertions are fulfilled:
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(1) Suppose that F and F ′ are essential faces. Then the connected sum Γ#gΓ
′ is

z-knotted if and only if gMFg
−1MF ′ is the composition of two distinct commut-

ing 3-cycles.

(2) Suppose that Γ′ is z-knotted and gMFg
−1MF ′ is the composition of two distinct

commuting 3-cycles. Then Γ#gΓ
′ contains a zigzag Z such that Z(D)={Z,Z−1}

for every face D in Γ#gΓ
′ corresponding to a face of Γ′ distinct from F ′.

Proof. There exists a zigzag of Γ containing the sequence (DF )−1(e), e andMF (e) for
every e ∈ Ω(F ), see the definition of z-monodromy. We write [e,MF (e)] for the part
of this zigzag between e and MF (e) (as in the proof of Lemma 5) and denote by X
the set of all such parts for e ∈ Ω(F ). Note that for X = [e,MF (e)] contained in X
its reversed path X−1 = [e′,MF (e′)] (where e′ = −MF (e)) also belongs to X and X
contains 6 elements. In the similar way, we introduce X ′ as the set of all [e,MF ′(e)]
for F ′ in Γ′, where e ∈ Ω(F ′).

Consider the following cyclic sequence for e ∈ Ω(F ′)

[e,MF ′(e)], [g
−1MF ′(e),MFg

−1MF ′(e)], [gMFg
−1MF ′(e),MF ′(gMFg

−1MF ′)(e)],

...

[g−1MF ′(gMFg
−1MF ′)

m−1(e),MFg
−1MF ′(gMFg

−1MF ′)
m−1(e)],

where m is the smallest positive number such that

(gMFg
−1MF ′)

m(e) = e.

So, this is a cyclic sequence

X ′1, X1, . . . , X
′
m, Xm,

where Xi ∈ X and X ′i ∈ X ′ for all i ∈ {1, . . . ,m}. For any two consecutive parts
A,B ∈ X ∪ X ′ from the above sequence we identify the last edge from A with the
first edge from B. As the result, we get a zigzag in the connected sum Γ#gΓ

′ and
denote it by Z(e). Zigzags are not self-reversed (by Proposition 1), thus

Xi 6= X−1j and X ′i 6= X ′−1j

for any pair i, j ∈ {1, . . . ,m} and, as consequence, m ≤ 3.
The zigzag Z(e) is related to a cycle of length m in the permutation gMFg

−1MF ′ .
The reversed zigzag Z(e)−1 is the cyclic sequence

X−1m , X ′−1m , . . . , X−11 , X ′−11
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corresponding to another cycle of length m in this permutation. Observe that
Z(e)−1 = Z(e′) for a certain e′ ∈ Ω(F ′). As in the proof of Lemma 5, we estab-
lish that the following conditions are equivalent:

(A) the permutation gMFg
−1MF ′ is the composition of two distinct commuting

3-cycles,

(B) for any e, e′ ∈ Ω(F ′) the zigzag Z(e′) coincides with Z(e) or Z(e)−1.

It remains to prove the statements (1) and (2).
(1). If the faces F and F ′ are essential, then every zigzag of Γ or Γ′ contains an

edge from F or F ′, respectively. Therefore, each of zigzags in Γ#gΓ
′ is of type Z(e),

where e ∈ Ω(F ′). In such case, the condition (B) is equivalent to the z-knottedness
of Γ#gΓ

′.
(2). Assume that Γ′ is z-knotted and the condition (A) is fulfilled. Then (B)

is also fulfilled and we establish that the zigzag Z = Z(e) (where e ∈ Ω(F ′)) is as
required.

Let Z ′, Z ′−1 be a single pair of zigzags in Γ′. As in the proof of Lemma 5, we
have

Z ′ = X ′1, X
′
2, X

′
3 and Z ′−1 = X ′−13 , X ′−12 , X ′−11 ,

where X ′1, X ′2, X ′3, X
′−1
1 , X ′−12 , X ′−13 are all mutually distinct elements of X ′. By the

condition (B) every X ′ ∈ X ′ is contained in Z or Z−1.
Corollary 1 guarantees that Z ′ and Z ′−1 passes through each of edges of Γ′ twice.

Thus the zigzags Z and Z−1 also passes through each of edges of Γ′ twice and there
is no other zigzags in Γ#gΓ

′ containing edges from Γ′. Therefore, Z(D) = {Z,Z−1}
for every face D 6= F ′ of Γ′ considered as a face of the connected sum Γ#gΓ

′.

From this moment, we will suppose that Γ is a triangulation which is not locally
z-knotted for a certain face F .

Lemma 7. There is a z-knotted triangulation Γ′ of a sphere S and a face F ′ in this
triangulation such that gMFg

−1MF ′ is the composition of two distinct commuting
3-cycles for a certain special homeomorphism g : ∂F → ∂F ′.

Proof. It follows from Theorem 2 that the z-monodromy MF is one of (M5)–(M7).
Consider the case when MF is (M5) or (M6). So, it is the composition of two

distinct commuting 3-cycles. We take a z-knotted triangulation Γ′ of a sphere con-
taining a face F ′ such that MF ′ is identity (for example, the triangulation from
Example 13). Then, the permutation

gMFg
−1MF ′ = gMFg

−1
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is the composition of two distinct commuting 3-cycles for every special homeomor-
phism g : ∂F → ∂F ′.

Now, let MF be of type (M7), i.e.

MF = (e1, e2)(−e1,−e2),

where (e1, e2, e3) is one of the cycles in DF and e3,−e3 are fixed points. Suppose that
Γ′ is the bipyramid BP2k+1, where k is odd. For every face F ′ of Γ′ its z-monodromy
is

MF ′ = (−e′1, e′2, e′3)(−e′3,−e′2, e′1),

where (e′1, e
′
2, e
′
3) is one of the cycles in the permutation DF ′ (see Example 8). It is

easy to verify that gMFg
−1MF ′ is the composition of two distinct commuting 3-cycles

for a special homeomorphism g : ∂F → ∂F ′ such that g(ei) = e′i for every i.

Let F ′ be a face in a z-knotted triangulation Γ′ of a sphere and g : ∂F → ∂F ′ be
a special homeomorphism such that gMFg

−1MF ′ is the composition of two distinct
commuting 3-cycles (as in Lemma 7). By the statement (2) from Lemma 6, the
connected sum Γ#gΓ

′ contains a zigzag Z such that Z(D) = {Z,Z−1} for every face
D in Γ#gΓ

′ corresponding to a face of Γ′ distinct from F ′. In other words, Γ#gΓ
′ is

locally z-knotted for all faces of Γ′ distinct from F ′.

Lemma 8. Suppose that D is a face of Γ distinct from F . If Γ is locally z-knotted
for D, then Γ#gΓ

′ also is locally z-knotted for D.

Proof. There is a unique pair of zigzags in Γ containing edges of D. Denote these
zigzags by ZD and (ZD)−1. Each of them passes through every edge of D twice (by
Lemma 3).

If ZD and (ZD)−1 do not contain any edge from F , then they are also zigzags in
Γ#gΓ

′ and the connected sum is locally z-knotted for D.
If there are edges of F contained in ZD or (ZD)−1, then these zigzags belong to

Z(F ). As in the proof of Lemma 6, we introduce the set X consisting of all parts of
the zigzags from Z(F ) between e ∈ Ω(F ) and MF (e). We remind that every X ∈ X
is contained in Z or Z−1. The zigzags ZD and (ZD)−1 belong to Z(F ), so they are
cyclic sequences formed by at most three elements of X . Each of these zigzags passes
through every edge of D twice and the same holds for Z and Z−1. Lemma 3 implies
that Γ#gΓ

′ is locally z-knotted for D.

Now, we complete the proof of Theorem 4. It was noted before Lemma 8 that

(1) Γ#gΓ
′ is locally z-knotted for all faces of Γ′ distinct from F ′.
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By Lemma 8, we have that

(2) if Γ is locally z-knotted for a face D 6= F , then Γ#gΓ
′ is locally z-knotted for

D.

It follows from (1) that if the connected sum Γ#gΓ
′ is not locally z-knotted for a

face T , then T is a face of Γ. We apply the above arguments to the face T in Γ#gΓ
′.

By (2), we can construct recursively a shredding of Γ that is locally z-knotted for
each face. This shredding is z-knotted by Theorem 3.

Assume that Γ contains precisely 2m zigzags, i.e. m zigzags up to reversing. If Γ
is not locally z-knotted for a face F , then Z(F ) includes 4 or 6 zigzags (see Remark
2). We replace these zigzags with one zigzag using the corresponding connected sum
and come to a triangulation with m − 1 or m − 2 zigzags up to reversing. So, to
produce a z-knotted shredding of Γ we need at most m − 1 times. This completes
the proof of Theorem 4.

4.3 Application to connected sums of z-knotted triangula-
tions

According to Theorem 2, there are precisely four types of faces in z-knotted trian-
gulations and their z-monodromies are (M1)–(M4). These four types were described
without z-monodromies in [23]. The main result of [23] presents all cases when the
connected sum of two z-knotted triangulations is z-knotted. The proof given in [23]
is a long case-by-case analysis. Following [25] we obtain this result as a consequence
of the statement (1) from Lemma 6.

Theorem 5 ([23, 25]). Let Γ and Γ′ be z-knotted triangulations. Then the following
assertions are fulfilled:

(1) If F is a face in Γ such that MF = DF (type (M2)), then for every face F ′ in
Γ′ and every special homeomorphism g : ∂F → ∂F ′ the connected sum Γ#gΓ

′

is z-knotted.

(2) Suppose that F is a face in Γ and MF is identity (type (M1)). If F ′ is a face in
Γ′ such that the connected sum Γ#gΓ

′ is z-knotted for a certain special home-
omorphism g : ∂F → ∂F ′, then MF ′ is DF ′ or (M3). In these cases, the con-
nected sum Γ#gΓ

′ is z-knotted for every special homeomorphism g : ∂F → ∂F ′.

(3) If F is a face in Γ, F ′ is a face in Γ′ and MF ,MF ′ are (M3) or (M4), then
there is a special homeomorphism g : ∂F → ∂F ′ such that the connected sum
Γ#gΓ

′ is z-knotted.
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Proof. Remind that any special homeomorphism g : ∂F → ∂F ′ gives a bijection
Ω(F ) to Ω(F ′), which is also denoted by g.

(1). It is clear that gDFg
−1 = DF ′ . So, MF = DF implies

gMFg
−1MF ′ = DF ′MF ′

for each special homeomorphism g : ∂F → ∂F ′. Using z-knottedness of Γ′ and
Lemma 5, we conclude that DF ′MF ′ is the composition of two distinct commuting
3-cycles. Thus, the connected sum Γ#gΓ

′ is z-knotted by the statement (1) from
Lemma 6.

(2). Consider the case when MF is identity, i.e. MF is of type (M1). Then

gMFg
−1MF ′ = MF ′

for every special homeomorphism g : ∂F → ∂F ′. The above is the composition of
two distinct commuting 3-cycles precisely when MF ′ is DF ′ or of type (M3). The
statement (1) from Lemma 6 gives the claim.

(3). Let MF and MF ′ be of type (M3), i.e.

MF = (−e1, e2, e3)(−e3,−e2, e1) and MF ′ = (−e′1, e′2, e′3)(−e′3,−e′2, e′1),

where (e1, e2, e3) and (e′1, e
′
2, e
′
3) are 3-cycles in DF and DF ′ , respectively. We take

a special homeomorphism g : ∂F → ∂F ′ sending e1, e2, e3 to e′1, e′2, e′3, respectively.
Then gMFg

−1 = MF ′ and

gMFg
−1MF ′ = (MF ′)

2 = (MF ′)
−1

is the composition of two distinct commuting 3-cycles.
Assume that F and F ′ are of type (M4), i.e.

MF = (e1,−e2)(e2,−e1) and MF ′ = (e′1,−e′2)(e′2,−e′1),

where (e1, e2, e3) and (e′1, e
′
2, e
′
3) are 3-cycles in DF and DF ′ , respectively. Using a

special homeomorphism g : ∂F → ∂F ′, which transfers e1, e2, e3 to e′3, e′1, e′2 (respec-
tively), we obtain

gMFg
−1 = (e′1,−e′3)(e′3,−e′1).

Then
gMFg

−1MF ′ = (−e′1, e′2, e′3)(e′1,−e′2,−e′3)

is the composition of two distinct commuting 3-cycles.
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Let F be of type (M4) and F ′ be of type (M3), i.e.

MF = (e1,−e2)(e2,−e1) and MF ′ = (−e′1, e′2, e′3)(−e′3,−e′2, e′1),

where (e1, e2, e3) and (e′1, e
′
2, e
′
3) are 3-cycles in DF and DF ′ , respectively. We take

a special homeomorphism g : ∂F → ∂F ′ transferring e1, e2, e3 to e′2, e′3, e′1 (respec-
tively). Then, we obtain

gMFg
−1 = (e′2,−e′3)(e′3,−e′2)

and
gMFg

−1MF ′ = (e′1, e
′
2,−e′2)(−e′1,−e′3, e′3)

is the composition of two distinct commuting 3-cycles.
The connected sum Γ#gΓ

′ is z-knotted by the statement (1) from Lemma 6 in
all of the above three cases.
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5 Z-oriented triangulations
In this section we work with z-oriented triangulations. In Subsection 2.3 we proved
that there are two types of edges and faces in such triangulations. We recall that
the choose of a z-orientation determines the directions on edges of type II and the
subgraph ΓII formed by these edges is considered as a digraph. At the beginning,
we show that the general case of z-oriented triangulations can be reduced to the case
where all faces are of type I. All results of this section come from [31].

5.1 Reduction to the case when all faces of type I

Proposition 4. Any z-oriented triangulation (Γ, τ) admits a z-oriented shredding
(Γ′, τ ′) where all faces are of type I and ΓII = Γ′II .

Proof. Suppose that F is a face of type II in (Γ, τ). Assume e1, e2, e3 are edges of F
and they are oriented as in Fig. 12. Let σ be the permutation (1, 2, 3).

e3 e2

e1

e3 e2

e1

e′3e′2
e′1

Figure 12

Zigzags from τ pass through F three times, thus the face F splits them into three
segments of type

eσ−1(i), ei, Xij, ej, eσ(j),

where i, j ∈ {1, 2, 3}, and the sequence Xij is a maximal component of a zigzag
consisting of edges occurring between ei and ej. Let X be the set of all such sequences
Xij obtained for the face F and the z-orientation τ . Observe that for each pair ei, ej,
there exists a unique sequence Xij such that ei is directly before Xij and ej is directly
after Xij in one of zigzags. Now, we triangulate the face F by attaching a vertex in
its interior and three edges joining this vertex with the vertices of F , see Fig. 12.
Let this new triangulation be denoted by Γ′ and let e′i be the one of the new edges
which does not has a common vertex with ei. Note that for any i ∈ {1, 2, 3} there
exists a zigzag in Γ′ containing a subsequence of the following form

ei, e
′
σ−1(i), e

′
i, eσ−1(i), Xσ−1(i)j
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for certain j ∈ {1, 2, 3} and Xσ−1(i)j ∈ X . Since the edges of F are not included
in Xσ−1(i)j, the edge ej occurring in the zigzag directly after this subsequence is the
same as the edge after Xσ−1(i)j in (Γ, τ). Thus, zigzags of Γ′ crossing any of the
three new faces pass through the edges coming from Γ in the same way as zigzags
from τ . So, there exists a z-orientation of Γ′ which does not change types of edges
from Γ. The three new faces of Γ′, obtained by partition of F , are of type I for this
z-orientation. Step by step, we replace all faces of type II from (Γ, τ) by faces of type
I and get a z-oriented shredding of Γ with all faces of type I and unchanged types of
edges coming from (Γ, τ).

5.2 Homogeneous zigzags in triangulations with faces of type
I

Let Γ be a triangulation of a surface S. Suppose that there is a z-orientation τ of Γ
such that all faces are of type I.

If m is the number of faces, then there are precisely m edges of type I and m/2
edges of type II, i.e. the number of edges of type I is twice the number of edges
of type II. We say that a zigzag of (Γ, τ) is homogeneous if it is a cyclic sequence
{ei, e′i, e′′i }ni=1, where each ei is an edge of type II and all e′i, e′′i are edges of type I.
If Z is a homogeneous zigzag, then Z−1 also is homogeneous. We say that (Γ, τ) is
z-homogeneous if all its zigzags are homogeneous.

Example 15. Let us return to Example 7 and suppose that Γ = BPn. If n is odd,
then Γ is a z-knotted bipyramid and it is z-homogeneous for both z-orientations. If
n is even, then Γ is z-homogeneous for the z-orientation consisting of the two zigzags
from Example 6 (b) or the four zigzags from Example 6 (c). The vertices a and b are
of type I and the remaining are of type II. The subgraph ΓII is the base of BPn and
it is the directed cycle. Conversely, if a triangulation is z-homogeneous for a certain
z-orientation and there are precisely two vertices of type I, then this triangulation is
a bipyramid. This fact is a direct consequence of Theorem 6 which will be presented
later.

Example 16. Let Γ′ be a triangulation with a z-orientation such that all faces are of
type II. We consider Γ′′ which is the shredding of Γ′ constructed by adding a vertex
in the interior of each face and three edges joining this vertex with the vertices of
the face (as in the proof of Proposition 4). We obtain a z-orientation τ ′′ of Γ′′ such
that all its faces are of type I and each zigzag . . . , e1, e2, e3, . . . in Γ′ is extended to
a zigzag

. . . , e1, e
′
1, e
′′
1, e2, e

′
2, e
′′
2, e3, . . .
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in Γ′′. Observe that both these zigzags pass through edges of Γ′ in different directions.
All ei are of type II and all e′i and e′′i are of type I. Thus, Γ′′ is z-homogeneous for
this z-orientation.

An Eulerian digraph is a connected digraph such that there exists a closed trail
containing all directed edges of the digraph (see, for example, [33, p. 105]).

Theorem 6. The following three conditions are equivalent:

(1) (Γ, τ) is z-homogeneous.

(2) ΓII is a closed 2-cell embedding of a simple Eulerian digraph such that the edges
of every face form a directed cycle.

(3) Each connected component of S\ΓII is homeomorphic to an open 2-dimensional
disc.

The implication (2) ⇒ (3) is clear. In the next two subsections we will prove the
implications (1) ⇒ (2) and (3) ⇒ (1).

5.3 Proof of the implication (1) ⇒ (2) in Theorem 6

As in the previous subsection, (Γ, τ) is a z-oriented triangulation where all faces are
of type I.

The construction from Proposition 4 and Example 16 can be generalized as fol-
lows. Let Γ′ be a closed 2-cell embedding of a connected finite simple graph in S.
Thus, all faces of Γ′ are homeomorphic to a closed 2-dimensional disc. For each face
F , we take a point vF from the interior of F and we add vF to the vertex set of Γ′.
Then we join each vF with each vertex of F by an edge. This new triangulation of
S is denoted by T(Γ′).

Note that if a certain face F of Γ′ is not homeomorphic to a closed 2-dimensional
disc, then vF and one of vertices of F are connected by a double edge in T(Γ′). It
does not meet our definition of triangulation, so we need to assume that Γ′ is a closed
2-cell embedding.

Proposition 5. The following assertions are fulfilled:

(I) If (Γ, τ) is z-homogeneous, then ΓII is a closed 2-cell embedding of a simple
Eulerian digraph such that the edges of every face form a directed cycle and
Γ = T(ΓII).
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(II) Conversely, if Γ′ is a closed 2-cell embedding of a simple Eulerian digraph and
the edges of every face form a directed cycle, then there is a unique z-orientation
of T(Γ′) such that it is z-homogeneous triangulation and Γ′ is the subgraph of
T(Γ′) formed by all vertices and edges of type II.

Proof. (I). Assume v is a vertex of Γ. Consider all faces that contain v and take the
edge from each of these faces that does not contain v. We denote a cycle formed by
these edges by C(v).

Suppose that (Γ, τ) is z-homogeneous. Consider any edge e1 of type II and denote
by v1 and v2 the vertices of this edge so that e1 is directed from v1 to v2. We choose
one of the two faces which contain e1 and we denote by v the third vertex of this
face (this vertex does not belong to e1). Let e′1 and e′′1 be the edges containing v and
which are immediately after e1 in a certain zigzag Z from τ (see Fig. 13). The third
edge of the face containing e′1 and e′′1 will be denoted by e2. The edge e2 consists of
v2 and another vertex, say v3. The edges e′1 and e′′1 are of type I by homogeneity of
the zigzag Z, so e2 is of type II. Since Z goes through e′1 from v2 to v and e′1 is an
edge of type I, the zigzag going through e′1 in the opposite direction belongs to τ .
Thus, the edge e2 is directed from v2 to v3. The edge e3 occurring in Z immediately
after e′1 and e′′1 is of type II and it is directed from v3 to a certain vertex v4. So,
the edges e1, e2, e3 are consecutive in the cycle C(v) and each ei is directed from vi
to vi+1. Consider the zigzag from τ which contains the sequence e2, e′′1. This zigzag
passes through the next edge from v to v4. Let e4 be the edge which occurs in the
zigzag after it. By the assumption, e4 is of type II. This is an edge of C(v) which
leaves the vertex v4. Recursively, we establish that C(v) is a directed cycle formed
by edges of type II and v is a vertex of type I.

Now, we take the other face which contains e1. Let v′ be the vertex from this
face other than v1 and v2. We repeat the above arguments and we establish that v′
is of type I and C(v′) is a directed cycle whose all edges are of type II.

v

v4
v3

v2

v1

e1

e2 e3

e4
e′1

e′′1

s

Figure 13

For every vertex v of type I there can be taken a face which contains v and the edge
of this face which not containing v. Since the remaining two edges of the face are of
type I, this edge is of type II. Using the above arguments, we establish that:
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(1) there exist vertices of type I and the cycle C(v) is a directed cycle formed by
edges of type II for every vertex v of type I;

(2) for every edge of type II there are precisely two vertices v and v′ of type I such
that this edge is contained in C(v) and C(v′).

In a similar way, for every edge e of type I we can take a face whose one of edges is
e. Since this face contains an edge of type II, the vertices of e are of different types.

Since for any two vertices of type II in Γ we can find a path formed by edges
of type II, the digraph ΓII is connected. Otherwise, i.e. when a path between two
vertices of type II goes through a vertex v of type I, the edge which enters to v and
the edge which leaves v contain vertices of the same cycle C(v). Thus, the edges
incident to v in that part of the path can be replaced with edges from C(v). It
guarantees that ΓII is a 2-cell embedding of a simple digraph such that each face is
uniquely determined by a certain vertex v of type I and the boundary of this face
is the directed cycle C(v). So, this 2-cell embedding is closed. The digraph ΓII is
Eulerian by Lemma 1 and it is clear that Γ = T(ΓII).

We make the following observation, which will be used in the proof of the second
part of the theorem. By (1) and (2) each zigzag of Γ which contains an edge of
type II is homogeneous. The number of edges of type I is twice the number of edges
of type II, so there is no zigzag passing through edges of type I only (since every
edge is passed twice by a unique zigzag from τ or it is passed once by precisely two
distinct zigzags from τ). Thus, if (1) and (2) are fulfilled, then all zigzags of Γ are
homogeneous.

(II). Assume that Γ′ is a closed 2-cell embedding of a simple Eulerian digraph
such that edges of every face form a directed cycle.

Consider any face F of Γ′ and let all edges of F form the directed cycle e1, . . . , en.
For every i ∈ {1, . . . , n}, we define j(i) = i + 2 (modn) and denote by e′i and e′′i
the edges containing the vertex vF in T(Γ′) such that each of these two edges has
a common vertex with the edges ei and ej(i) (respectively). We take the zigzag of
T(Γ′) containing the sequence ei, e′i, e′′i , ej(i). This zigzag goes through ei and ej(i) in
the directions of these edges. This is also true for every edge of Γ′ occurring in this
zigzag. Such a zigzag can be found for any pair consisting of a face of Γ′ and one
of edges of this face. The family of all such zigzags forms a z-orientation of T(Γ′).
All edges of Γ′ are of type II and every vF is a vertex of type I for this z-orientation.
This implies that T(Γ′) satisfies the conditions (1) and (2) which gives the claim.

The second part of Proposition 5 will be used to prove the implication (3) ⇒ (1)
in Theorem 6.
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5.4 Structure of triangulations with faces of type I

Z-homogeneous triangulations form a subclass of z-oriented triangulations whose all
faces are of type I. The main result of this subsection (Theorem 7) provides a topo-
logical description of such triangulations. One of its consequences is the implication
(3) ⇒ (1) in Theorem 6.

Recall that (Γ, τ) is a z-oriented triangulation of a surface S with all faces are
of type I. The subgraph of Γ consisting of all vertices and all edges of type II will
be denoted by ΓII , as before. In the previous subsection we proved that if (Γ, τ) is
z-homogeneous, then connected components of S \ ΓII are homeomorphic to open 2-
dimensional discs. The following theorem describes connected components of S \ ΓII
when Γ is not necessarily z-homogeneous.

Theorem 7. The following assertions are fullfiled:

(1) Every connected components of S \ΓII is homeomorphic to an open 2-dimensio-
nal disc or an open Möbius strip or an open cylinder.

(2) A connected component of S \ΓII contains a vertex of type I if and only if it is
an open 2-dimensional disc; such a vertex of type I is unique.

Proof. Let F1 be a face and let e0 and e1 be two distinct edges of type I belonging to
F1. Denote by F2 the face which is distinct from F1 and contains e1 (there is precisely
one such face). We write e2 for the other edge of type I from F2. By continuing this
procedure, we get a sequence of edges {ei}i∈N∪{0} and a sequence of faces {Fi}i∈N
such that ei−1 is the common edge of Fi−1 and Fi for every i ∈ N. The faces in each
pair Fi−1, Fi can be adjacent in one of the two ways, as in Fig. 14. In the first case
(Fig. 14 (a)), their edges of type II have a common vertex and in the second case
(Fig. 14 (b)), the edges of type II are disjoint.

ei−2
ei−1

ei

Fi−1 Fi

(a)

Fi

ei−2
ei−1

ei
Fi−1

(b)

Figure 14
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We take the smallest natural number n such that en = e0 (the number of edges of Γ is
finite, so we can find such a number). Then, the sequence of edges and the sequence
of faces can be considered as cyclic sequences {ei}ni=1 and {Fi}ni=1, respectively. The
union of all faces from {Fi}ni=1 is said to be a component of (Γ, τ) and denoted by F ,
i.e.

F =
n⋃
i=1

Fi.

The boundary of F consists of edges of type II from faces Fi, but not necessarily all
of them are contained in the boundary.

We write eIIi for the edge of type II from Fi. Let T1, T2, . . . , Tn be n disjoint
closed triangles. For any i = 1, 2, . . . , n there is a homeomorphism hi : Fi → Ti
which transfers every vertex and every edge of Fi to a vertex and an edge of Ti
(respectively). Now, for any i, we identify the edges hi(ei) and hi+1(ei) such that
for every vertex v of ei the vertices hi(v) and hi+1(v) are identified. In this way, we
obtain a 2-dimensional surface T with boundary. The boundary of T is the union of
the images of all edges of type II, i.e.

∂T =
n⋃
i=1

hi(e
II
i ).

On the other hand, it is possible for distinct i, j that the edges eIIi , eIIj have a common
vertex, so F is not necessarily a surface. The interior of surface T is homeomorphic
to one of the connected components of S \ ΓII , thus, F can be obtained from T by
gluing of some parts of the boundary.

Assume that we identified hi(ei) and hi+1(ei) for i = 1, 2, . . . , n − 1, but h1(e0)
and hn(en) from T1 and Tn (respectively) are not identified yet. Our space is home-
omorphic to a closed 2-dimensional disc. Its boundary contains h1(e0), hn(en) and if
we glue them, then we get T . Therefore, we have two possibilities:

• A union of h1(e0) and hn(en) is connected and if we glue them, then we obtain
T homeomorphic to a closed 2-dimensional disc (Fig. 15 (1)).

• The edges h1(e0) and hn(en) are disjoint and if we glue them, then we obtain
T homeomorphic to a closed Möbius strip (Fig. 15 (2)) or a closed cylinder
(Fig. 15 (3)).
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h1(e0) hn(en)

...
(1)

h1(e0) . . . hn(en)

(2)

h1(e0) . . . hn(en)

(3)

Figure 15

Denote by vi the vertex of Ti which corresponds to the vertex of Fi not contained in
the edge eIIi . In the first case, all hi(vi) are the same vertex in T and this vertex is
the common vertex of the images of edges of type I. So, this vertex corresponds to
the vertex of type I from F , see Fig. 15 (1). In the remaining two cases, all vertices
hi(vi) belong to the boundary of T and correspond to certain vertices of ΓII , see Fig.
15 (2) and Fig. 15 (3). The proof is completed.

Remark 3. If a connected component of S \ ΓII is homeomorphic to an open 2-di-
mensional disc, then the corresponding component of (Γ, τ) is homeomorphic to a
closed 2-dimensional disc. Indeed, if some parts of the boundary of this component
are identified, then the vertex of type I contained in the component and a certain
vertex at the boundary are connected by a double edge. This is impossible, since Γ
is a simple graph.

Proof of (3)⇒ (1) in Theorem 6. Suppose that all connected components of S\ΓII
are discs. By Remark 3, ΓII is a closed 2-cell embedding and Lemma 1 guarantees
that it is an embedding of simple Eulerian digraph. The statement (2) from Theorem
7 shows that each disc contains a unique vertex of type I. Repeating arguments from
the proof of this theorem we establish that the boundary of each disc is an oriented
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cycle. Since Γ = T(ΓII), the required statement follows from the second part of
Proposition 5.

5.5 Examples

We present three examples of z-oriented triangulations with all faces of type I and
consider the corresponding connected components of S \ ΓII . These examples show
that each type of components (an open disc, an open Möbius strip and an open
cylinder) mentioned in Theorem 7 is realized.

Example 17. Let Γ be a z-oriented triangulation of a torus T presented in Fig. 16
(there is a z-orientation such that types of edges are as below). Thus, all faces are of
type I. The subgraph ΓII consists of two connected components which are 6-cycles.
There are two connected components of T \ ΓII and each of them is homeomorphic
to an open cylinder.

3
45

0
1 2

0

12

3

4 5

Figure 16

Example 18. Let n ∈ N. Consider a triangulation Γ of a real projective plane P
obtained by gluing of boundaries of a Möbius strip and a closed 2-dimensional disc,
see Fig. 17. We take a z-orientation of Γ such that types of edges are as in Fig. 17.
Thus, all faces are of type I and the subgraph ΓII is a directed 2n-cycle. Then P has
two connected components: one of them is homeomorphic to an open 2-dimensional
disc and the remaining is homeomorphic to an open Möbius strip.
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Example 19. Let Γ be a triangulation of a sphere presented in Fig. 18. This
triangulation is obtained by the gluing of the two discs whose boundaries are cycles
e1, e2, . . . , e6. Let τ be a z-orientation such that types of all edges are as below. Thus
all faces are of type I. Then S \ ΓII consists of four connected components. Three of
these connected components are homeomorphic to an open 2-dimensional disc and
the remaining to an open cylinder. The components of (Γ, τ) corresponding to the
open discs are closed 2-dimensional discs. The component of (Γ, τ) corresponding to
the open cylinder is homeomorphic to a closed cylinder with two points from one of
the connected components of its boundary identified.

e4

e5

e6

e1

e2

e3

e4

e5

e6

e1

e2

e3

Figure 18
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6 Z-knotted and z-homogeneous triangulations
In the previous two sections we investigated z-knotted triangulations and z-homoge-
neous triangulations of surfaces. By Theorem 4, for any triangulation there is a
z-knotted shredding. There is a one-to-one correspondence between z-homogeneous
triangulations and embeddings of Eulerian digraphs (Theorem 6). In the present
section, following [30], we describe an algorithm which transforms any z-homogeneous
triangulation into a z-homogeneous and z-knotted triangulation and does not change
the surface type.

6.1 Main result

We describe a special type of the connected sum of triangulated surfaces different
from the sum used in Section 4.

Let Γ be a triangulation of a surface S. Suppose that τ is a z-orientation of Γ
such that (Γ, τ) is z-homogeneous.

Let P be a path in ΓII formed by oriented edges e1 = v1v2 and e2 = v2v3, where
v1, v2, v3 are certain vertices of ΓII (see Fig. 19). Such pairs are said to be special.
For i = 1, 2, the both faces whose one of edges is ei will be denoted by F+

i and F−i .
For each δ ∈ {+,−}, we suppose that the faces F δ

1 , F
δ
2 are on the same side of the

path P . We split up both edges ei in two oriented edges e+i and e−i whose directions
are induced by the direction of ei and such that eδi is an edge of the face F δ

i . Also, we
split up the vertex v2 in two vertices v+2 and v−2 such that eδ1 = v1v

δ
2 and eδ2 = vδ2v3.

As a result, we get a new graph NP (Γ) embedded in S. The set of faces of NP (Γ) is
the set of faces of Γ extended by a new 4-gonal face FP , see Fig. 19.

F+
1 F+

2

F−1 F−2

e1 e2v1 v2 v3

F+
1 F+

2

F−1 F−2

e+1 e+2

e−1 e−2

v1

v+2

v−2

v3
FP

Figure 19
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We take another z-homogeneous triangulation (Γ′, τ ′) of a surface S ′. Denote by Γ′II
the subgraph of Γ′ whose the set of edges and the set of vertices consist of all edges
of type II and all vertices of type II, respectively. Let P ′ be a special pair in Γ′II . We
construct the graph NP ′(Γ

′) for this special pair. Moreover, we assume the following:

(∗) for at least one of the pairs P, P ′, the endpoints of this pair are not connected
by an edge in Γ or Γ′, respectively.

In other words, there is no cycle of length 3 containing edges of at least one of the
pairs P, P ′.

The orientations of edges of FP and FP ′ are determined by the z-orientations τ
and τ ′, respectively. The sets of all such oriented edges of FP and FP ′ will be denoted
by ω(FP ) and ω(FP ′) (respectively). The notion of special homeomorphism defined
in Section 2 can be generalized on homeomorphisms of 4-gonal faces preserving the
orientations of edges, i.e. a homeomorphism g : ∂FP → ∂FP ′ is said to be special
if it transfers the vertices of FP to the vertices of FP ′ and the edges from ω(FP ) to
the edges from ω(FP ′). We glue NP (Γ) and NP ′(Γ

′) by the special homeomorphism
g and obtain a triangulation of S#S ′ which will be denoted by Γ#gΓ

′. Since we
assume (∗), the triangulation Γ#gΓ

′ does not contain multiple edges. The special
homeomorphism g preserves the orientations of edges, so, there exists a z-orientation
of Γ#gΓ

′ such that the type of every edge is the same as in (Γ, τ) or (Γ′, τ ′). Thus,
Γ#gΓ

′ is z-homogeneous for this z-orientation.
Let P1, . . . , Pn be special pairs in (Γ, τ) and let P ′1, . . . , P ′n be special pairs in

z-homogeneous triangulations (Γ1, τ1), . . . , (Γn, τn) of a sphere S. We take special
homeomorphisms gi : ∂FPi → ∂FP ′i for i ∈ {1, . . . , n}. We apply the above operation
of connected sum several times and obtain a triangulation of S

(((Γ#g1Γ1)#g2Γ2) . . . )#gnΓn (2)

which is z-homogeneous for a certain z-orientation.

Theorem 8 ([30]). For any z-homogeneous triangulation (Γ, τ) with |τ | > 1 there
exist z-homogeneous triangulations (Γ1, τ1), . . . , (Γn, τn) of a sphere S such that
n ≤ |τ | − 1 and the z-homogeneous connected sum (2) is z-knotted for some spe-
cial pairs Pi in Γ, P ′i in Γi and special homeomorphisms gi : ∂FPi → ∂FP ′i with
i∈{1, . . . , n}.

6.2 Z-monodromy of special pairs

The z-monodromy of faces was investigated in Section 3. Now, we consider a similar
concept for special pairs in z-homogeneous triangulations.
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Let (Γ, τ) be a z-homogeneous triangulation and let P be a special pair in ΓII .
Consider the set of all oriented edges of 4-gonal face FP in NP (Γ):

Ω(FP ) = {e+1 , e+2 , e−1 , e−2 ,−e+1 ,−e+2 ,−e−1 ,−e−2 }.

The edges eδi and−eδi comes from the same non-oriented edge, but they are considered
with opposite orientations. Denote by DFP the permutation on Ω(FP ) transferring
ab to bc for any three consecutive vertices a, b, c belonging to FP . Thus, DFP is the
composition of two distinct commuting 4-cycles

DFP = (e+1 , e
+
2 ,−e−2 ,−e−1 )(e−1 , e

−
2 ,−e+2 ,−e+1 ).

Each of these cycles gives one of the orientations on the boundary of FP .
For any pair e0, e ∈ Ω(FP ) such that DFP (e0) = e there exists the zigzag contain-

ing the sequence e0, e. Let the first element of Ω(FP ) contained in this zigzag after e
be denoted by MFP (e). The proof that MFP : Ω(FP )→ Ω(FP ) is bijective is similar
to the proofs of the statements (1) and (2) from Lemma 4. The restriction of MFP

to the set
ω(FP ) = {e+1 , e+2 , e−1 , e−2 }

is said to be the z-monodromy of P and denoted by MP .
We show that MP is a permutation on ω(FP ). For each eδi ∈ ω(FP ) we take the

following part of a zigzag in NP (Γ)

[eδi , DF δi
(eδi ), . . . ,MP (eδi )].

It corresponds to a part of a zigzag from Γ contained in τ which is

[ei, DF δi
(ei), . . . , ej],

where j ∈ {1, 2}. Thus, MP (eδi ) = eγj , where γ ∈ {+,−}, and MP (eδi ) ∈ ω(FP ).
Therefore, MP can be identified with a certain permutation from the symmetric
group S4.

For simplicity of notation, from this moment we write 1, 2 instead of e+1 , e
+
2 and

3, 4 instead of e−1 , e
−
2 (respectively). The symmetric group S4 consists of 24 permu-

tations, so there are 24 possibilities for MP . Their realization will be investigated
later. We split all these possibilities into the following 13 classes:

(K0) id,

(K1) (1234),
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(K2) (13)(24),

(K3) (1432),

(K4) (14)(23),

(K5) (12)(34),

(K6) (24), (13),

(K7) (34), (12),

(K8) (23), (14),

(K9) (1324), (1423),

(K10) (1243), (1342),

(K11) (234), (123), (124), (134),

(K12) (243), (132), (142), (143).

We explain why permutations from S4 were decomposed as above. Define the fol-
lowing two commuting involutions:

s = (13)(24), t = (12)(34).

Two permutations p1, p2 are elements of the same class Ki if one of the following two
possibilities is realized:

p2 = sp1s or p2 = up−11 u,

where u ∈ {t, st}, see Tab. 1 in Appendix (Subsection 6.5). The permutation s
corresponds to the interchanging of + and − for the edges eδi . The changing of the
z-orientation τ to τ−1 replaces a permutation p corresponding to the z-monodromy
by tp−1t.

6.3 Examples

In this subsection we present examples which show that the z-monodromy from each
of the classes mentioned in the previous subsection is realized.
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Example 20. Let Γ be the bipyramid BPn with the z-orientation such that BPn is
z-homogeneous, see Example 15. Denote by P a special pair in BPn. In contrast to
our previous notation, we denote the consecutive vertices of the base by v1, . . . , vn
to avoid notational conflicts with elements of ω(FP ). Note that any special pair of
BPn can be transferred to any another special pair by an automorphism, so, for
all special pairs in BPn the z-monodromies belong to the same class. Thus, we can
assume that the directed edges of P are v1v2 and v2v3. In z-monodromies, these edges
will be represented by 1 and 2, respectively, if they are contained in the faces with
the vertex a in NP (BPn). If these edges are contained in the faces with the vertex b
in NP (BPn), then we write for them 3 and 4 in z-monodromies (respectively).

The case when n = 2k + 1 and k is odd. The zigzag passes through edges of P
as follows

. . . , av1, v1v2, v2b, . . . , av2, v2v3, v3b, . . . , bv1, v1v2, v2a, . . . , bv2, v2v3, v3a, . . .

and the corresponding union of parts of zigzags in NP (BPn) is

. . . , 1, 3, . . . , 2, 4, . . . , 3, 1, . . . , 4, 2, . . .

and the z-monodromy is
MP = (1432)

from the class K3.
The case when n = 2k + 1 and k is even. The zigzag passing through the edges

of P in BPn is

. . . , av1, v1v2, v2b, . . . , bv2, v2v3, v3a, . . . , bv1, v1v2, v2a, . . . , av2, v2v3, v3b, . . .

and the corresponding union of parts of zigzags in NP (BPn) is

. . . , 1, 3, . . . , 4, 2, . . . , 3, 1, . . . , 2, 4, . . .

which means that the z-monodromy is

MP = (1234)

from the class K1.
The case when n = 2k and k is odd. The edges of P occur in zigzags of BPn as

follows:
. . . , av1, v1v2, v2b, . . . , bv1, v1v2, v2a, . . .
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and
. . . , av2, v2v3, v3b, . . . , bv2, v2v3, v3a, . . . ;

the corresponding unions of parts of zigzags in NP (BPn) are

. . . , 1, 3, . . . , 3, 1, . . . and . . . , 2, 4, . . . , 4, 2, . . .

which implies that MP is the identity (class K0).
The case when n = 2k and k is even. The four zigzags of BPn pass through the

edges of P as follows
. . . , av1, v1v2, v2b, . . . ,

. . . , bv1, v1v2, v2a, . . . ,

. . . , av2, v2v3, v3b, . . . ,

. . . , bv2, v2v3, v3a, . . .

and the corresponding parts of zigzags in NP (BPn) are

. . . , 1, 3, . . . , . . . , 3, 1, . . . , . . . , 2, 4, . . . , . . . , 4, 2, . . .

and the z-monodromy
MP = (13)(24)

is from the class K2.

We give a construction of an infinite series of z-homogeneous triangulations of
S that are not bipyramids. Let Γ′ be a graph embedded in S which consists of two
vertices a, b and four paths P1, P2, P3, P4. We assume that at most one of these paths
is an edge and any two of these paths intersect precisely in a and b, see Fig. 20.
Thus, Γ′ is a connected finite simple graph and S is decomposed into four discs whose
boundaries are P1 ∪ P2, P2 ∪ P3, P3 ∪ P4 and P1 ∪ P4. These discs are faces of our
embedding. We apply the operation described at the beginning of Subsection 5.3 to
the embedding of Γ′ in S and obtain a triangulation T(Γ′) of S. If pi is the number
of edges in the path Pi, then the triangulation T(Γ′) will be denoted by Γp1,p2,p3,p4 .
For example, see Fig. 20 for Γ2,3,3,3. Note that any cyclic permutation of p1, p2, p3, p4
does not change the triangulation. We appoint an orientation on each edge of all Pi
such that the boundary of every disc is formed by a path from a to b and a path
from b to a. By Proposition 5 the triangulation Γp1,p2,p3,p4 is z-homogeneous for a
certain z-orientation such that the subgraph Γ′ consists of all edges of type II and
their vertices.
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Example 21. Consider the z-homogeneous triangulation Γ2,3,4,5 (with the corre-
sponding z-orientation) containing the paths

P1 = {a, v0, b},

P2 = {b, v1, v2, a},
P3 = {a, v3, v4, v5, b},

P4 = {b, v6, v7, v8, v9, a}.
Let vij be the vertex in the interior of a disc whose boundary is Pi ∪ Pj (for
i, j ∈ {1, 2, 3, 4} and i < j). The z-orientation of Γ2,3,4,5 contains precisely two zigzags
presented below as cyclic sequences of vertices:

v14, a, v0, v12, b, v1, v23, v2, a, v12, v0, b, v14, v6, v7, v34, v8, v9

and
v14, v0, b, v12, v1, v2, v23, a, v3, v34, v4, v5, v23, b, v1, v12, v2, a, v23, v3, v4,

v34, v5, b, v23, v1, v2, v12, a, v0, v14, b, v6, v34, v7, v8, v14, v9, a, v34, v3, v4,

v23, v5, b, v34, v6, v7, v14, v8, v9, v34, a, v3, v23, v4, v5, v34, b, v6, v14, v7, v8, v34, v9, a.

(1). If P is the special pair v0b, bv1, then the zigzags which pass through the edges
of P are

. . . , v12b, bv1, v1v23, . . . , v12v0, v0b, bv14, . . .
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and
. . . , v14v0, v0b, bv12, . . . , v23b, bv1, v1v12, . . .

We denote by 1, 2 the edges from NP (Γ2,3,4,5) which correspond to v0b, bv1 (respec-
tively) and belong to the faces containing v12. We write 3, 4 for the edges from
NP (Γ2,3,4,5) corresponding to v0b, bv1 which belong to the faces whose vertices are v14
and v23, respectively. The above zigzags gives the following unions of parts of zigzags
in NP (Γ2,3,4,5)

. . . , 2, 4, . . . , 1, 3, . . . and . . . , 3, 1, . . . , 4, 2, . . .

Thus, the z-monodromy is
MP = (14)(23)

and it belongs to the class K4.
(2). If P is the special pair av0, v0b, then the zigzags

. . . , v14a, av0, v0v12, . . . , v12v0, v0b, bv14, . . .

and
. . . , v14v0, v0b, bv12, . . . , v12a, av0, v0v14, . . .

pass through the edges of P . We denote by 1, 2 the edges from NP (Γ2,3,4,5) corre-
sponding to av0, v0b (respectively) which are in the faces containing v12. We write
3, 4 for the edges related to av0, v0b which are in the faces containing v14, respectively.
The above zigzags gives the following unions of parts of zigzags in NP (Γ2,3,4,5)

. . . , 3, 1, . . . , 2, 4, . . . and . . . , 4, 2, . . . , 1, 3, . . .

Thus, the z-monodromy is
MP = (12)(34)

and it belongs to the class K5.
(3). If P is the special pair v3v4, v4v5, then the zigzag

..., v34v4, v4v5, v5v23,..., v23v3, v3v4, v4v34,..., v34v3, v3v4, v4v23,..., v23v4, v4v5, v5v34,...

passes through the edges of P . We denote by 1, 2 the edges from NP (Γ2,3,4,5) which
correspond to v3v4, v4v5 (respectively) and belong to the faces containing v23. We
write 3, 4 for the edges from NP (Γ2,3,4,5) associated to v3v4, v4v5 which belong to the
faces whose vertex is v34, respectively. The corresponding union of parts of zigzags
in NP (Γ2,3,4,5) is

. . . , 4, 2, . . . , 1, 3, . . . , 3, 1, . . . , 2, 4, . . .
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and the z-monodromy
MP = (12)

belongs to the class K7.
(4). If P is the special pair av3, v3v4, then the zigzag

. . . , v23a, av3, v3v34, . . . , v23v3, v3v4, v4v34, . . . , v34v3, v3v4, v4v23, . . . , v34a, av3, v3v23, . . .

passes through the edges of P . In NP (Γ2,3,4,5), we denote by 1, 2 the edges corre-
sponding to av3, v3v4 (respectively) which are in the faces containing v23. We write
3, 4 for the edges from NP (Γ2,3,4,5) corresponding to av3, v3v4 which are in the faces
containing v34, respectively. The associated union of parts of zigzags in NP (Γ2,3,4,5)
is

. . . , 1, 3, . . . , 2, 4, . . . , 4, 2, . . . , 3, 1, . . .

and the z-monodromy
MP = (23)

is from the class K8.
(5). If P is the special pair bv6, v6v7, then the zigzags

. . . , v14v6, v6v7, v7v34 . . .

and
. . . , v14b, bv6, v6v34, . . . , v34v6, v6v7, v7v14, . . . , v34b, bv6, v6v14, . . .

pass through the edges of P . We denote by 1, 2 the edges from NP (Γ2,3,4,5) which
correspond to bv6, v6v7 (respectively) and belong to the faces containing v14. We
write 3, 4 for the edges from NP (Γ2,3,4,5) related to bv6, v6v7 which belong to the faces
whose vertex is v34, respectively. The corresponding unions of parts of zigzags in
NP (Γ2,3,4,5) are

. . . , 2, 4, . . . and . . . , 1, 3, . . . , 4, 2, . . . , 3, 1, . . .

which implies that the z-monodromy

MP = (234)

is from the class K11.
(6). If P is the special pair bv1, v1v2, then the zigzags

. . . , v12b, bv1, v1v23, . . .
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and
. . . , v12v1, v1v2, v2v23, . . . , v23b, bv1, v1v12, . . . , v23v1, v1v2, v2v12, . . .

pass through the edges of P . In NP (Γ2,3,4,5), we denote by 1, 2 the edges correspond-
ing to bv1, v1v2 (respectively) which are in the faces containing v12. We write 3, 4 for
the edges from NP (Γ2,3,4,5) corresponding to bv1, v1v2 which are in the faces contain-
ing v23, respectively. The above zigzags gives the following unions of parts of zigzags
in NP (Γ2,3,4,5)

. . . , 1, 3, . . . and . . . , 2, 4, . . . , 3, 1, . . . , 4, 2, . . .

and this implies that the z-monodromy

MP = (143)

belongs to the class K12.

Example 22. Consider the z-homogeneous triangulation Γ2,4,3,4 (with the corre-
sponding z-orientation) with the following four paths

P1 = {a, v0, b},

P2 = {b, v1, v2, v3, a},

P3 = {a, v4, v5, b},

P4 = {b, v6, v7, v8, a}.

As previous, we denote by vij the vertex in the interior of a disc whose boundary is
Pi ∪ Pj (for i, j ∈ {1, 2, 3, 4} and i < j). The z-orientation of Γ2,4,3,4 consists of the
following three zigzags:

v14, a, v0, v12, b, v1, v23, v2, v3, v12, a, v0, v14, b, v6, v34, v7, v8

and
v14, v0, b, v12, v1, v2, v23, v3, a, v12, v0, b, v14, v6, v7, v34, v8, a

and
v23, b, v1, v12, v2, v3, v23, a, v4, v34, v5, b, v23, v1, v2, v12, v3, a, v23, v4, v5,

v34, b, v6, v14, v7, v8, v34, a, v4, v23, v5, b, v34, v6, v7, v14, v8, a, v34, v4, v5.

(1). If P is the special pair v0b, bv1, then the zigzags

. . . , v12b, bv1, v1v23, . . .
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and
. . . , v14v0, v0b, bv12, . . . , v12v0, v0b, bv14, . . .

and
. . . , v23b, bv1, v1v12, . . .

pass through the edges of P . We denote by 1, 2 the edges from NP (Γ2,4,3,4) which
correspond to v0b, bv1 (respectively) and belong to the faces containing v12. We write
3, 4 for the edges from NP (Γ2,4,3,4) corresponding to v0b, bv1 which are in the faces
containing v14 and v23, respectively. The associated unions of parts of zigzags in
NP (Γ2,4,3,4) are

. . . , 2, 4, . . . , . . . , 3, 1, . . . , 1, 3, . . . , . . . , 4, 2, . . .

and the z-monodromy
MP = (24)

is from the class K6.
(2). If P is the special pair bv1, v1v2 then the zigzags

. . . , v12b, bv1, v1v23, . . .

and
. . . , v12v1, v1v2, v2v23, . . .

and
. . . , v23b, bv1, v1v12, . . . , v23v1, v1v2, v2v12, . . .

pass through the edges of P . In NP (Γ2,4,3,4), we denote by 1, 2 the edges correspond-
ing to bv1, v1v2 (respectively) which are in the faces containing v12. We write 3, 4 for
the edges related to bv1, v1v2 which are in the faces containing v23, respectively. The
corresponding unions of parts of zigzags in NP (Γ2,4,3,4) are

. . . , 1, 3, . . . , . . . , 2, 4, . . . , . . . , 3, 1, . . . , 4, 2, . . .

which implies that the z-monodromy

MP = (1423)

belongs to the class K9.
(3). If P is the special pair v1v2, v2v3 then the zigzags

. . . , v23v2, v2v3, v3v12, . . .
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and
. . . , v12v1, v1v2, v2v23, . . .

and
. . . , v12v2, v2v3, v3v23, . . . , v23v1, v1v2, v2v12, . . .

pass through the edges of P . We denote by 1, 2 the edges from NP (Γ2,4,3,4) associated
to v1v2, v2v3 (respectively) which belong to the faces containing v12. We write 3, 4
for the edges from NP (Γ2,4,3,4) related to v1v2, v2v3 which are in the faces containing
v23, respectively. The related unions of parts of zigzags in NP (Γ2,4,3,4) are

. . . , 4, 2, . . . , . . . , 1, 3, . . . , . . . , 2, 4, . . . , 3, 1, . . .

and the z-monodromy
MP = (1243)

is from the class K10.

6.4 Proof of Theorem 8

Let Γ and Γ′ be triangulations and suppose that there are z-orientations such that Γ
and Γ′ are z-homogeneous. Let P and P ′ be special pairs in Γ and Γ′ (respectively).
As in the previous subsection, the faces in NP (Γ) and NP ′(Γ

′) obtained from P and
P ′ are denoted by FP and FP ′ , respectively.

Lemma 9. The number of zigzags from the z-orientation of Γ passing through
the edges of P is equal to the number of cycles in the permutation sMP where
s = (13)(24).

Proof. Let e ∈ ω(FP ) = {1, 2, 3, 4} and let [e,MP (e)] be the part of a zigzag in
NP (Γ) such that e is its the first element, MP (e) is its the last element and any other
element from ω(FP ) is not contained in this path. Consider the cyclic sequence

[e,MP (e)], [sMP (e),MP sMP (e)], . . . , [(sMP )m−1(e),MP (sMP )m−1(e)], (3)

where m is the smallest positive number such that (sMP )m(e) = e. Since the edges
e′, se′ ∈ ω(FP ) correspond to the same edge of Γ, by identifying the last edge of
every part of (3) with the first edge of the next part we get a zigzag in Γ. Thus, for
every cycle in sMP there is a zigzag which pass through the edges of P . Note that
other cycle of sMP defines a different zigzag. On the other hand, by the definition
of z-monodromy, each zigzag of Γ passing through the edges of P induces a cycle
in sMP . Therefore, there is a one-to-one correspondence between zigzags passing
through the edges of P and cycles in the permutation sMP .
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Lemma 10. If k is the number of zigzags from the z-orientation passing through the
edges of P , then the following assertions are fulfilled:

• k = 1 if the z-monodromy of P is from the class Ki with i ∈ {1, 3, 7, 8};

• k = 2 if the z-monodromy of P is from the class Ki with i ∈ {0, 4, 5, 11, 12};

• k = 3 if the z-monodromy of P is from the class Ki with i ∈ {6, 9, 10};

• k = 4 if the z-monodromy of P is from the class K2.

Proof. All permutations from the class Ki contain the same number of cycles since
q is conjugate to p or p−1 for any two different permutation p, q ∈ Ki. We apply
Lemma 9 to an element from every of the 13 classes (recall that each fixed point is
a 1-cycle):

(K0) s(id) = s = (13)(24),

(K1) s(1234) = (1432),

(K2) s(13)(24) = s2 = id,

(K3) s(1432) = (1234),

(K4) s(14)(23) = (12)(34),

(K5) s(12)(34) = (14)(23),

(K6) s(24) = (13),

(K7) s(34) = (1324),

(K8) s(23) = (1342),

(K9) s(1324) = (34),

(K10) s(1243) = (14),

(K11) s(234) = (132),

(K12) s(243) = (134).
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We say that a special pair P is essential if each zigzag belonging to the z-orien-
tation passes through the edges of P .

Example 23. We give examples of essential pairs:

(1) Any special pair in the bipyramid BPn is essential (see Example 20) and the
z-monodromies of such pairs are from the class Ki for i ∈ {0, 1, 2, 3}.

(2) The following special pairs in the triangulation Γ2,3,4,5 (see Example 21) are
essential: v0b, bv1 (the class K4), av0, v0b (the class K5), bv6, v6v7 (the class
K11), bv1, v1v2 (the class K12).

(3) The following special pairs in the triangulation Γ2,4,3,4 (see Example 22) are
essential: v0b, bv1 (the class K6), bv1, v1v2 (the class K9), v1v2, v2v3 (the class
K10).

Lemma 11. Let g : ∂FP → ∂FP ′ be a special homeomorphism. The number of
zigzags (up to reversing) in Γ#gΓ

′ passing through the edges of

g(ω(FP )) = ω(FP ′)

is equal to the number of cycles in g−1MP ′gMP .

Proof. The proof is similar to the proofs of Lemma 5 and Lemma 9. We consider
the following cyclic sequence

[e,MP (e)], [gMP (e),MP ′gMP (e)], [g−1MP ′gMP (e),MP (g−1MP ′gMP )(e)],

. . .

[gMP (g−1MP ′gMP )m−1(e),MP ′gMP (g−1MP ′gMP )m−1(e)],

where m is the smallest positive number such that (g−1MP ′gMP )m(e) = e. By
identifying the last edge of any part with the first edge of the next part we get a
zigzag in Γ#gΓ

′. Thus, there is a one-to-one correspondence between zigzags passing
through edges g(ω(FP )) = ω(FP ′) and cycles in the permutation g−1MP ′gMP .

We prove Theorem 8. Suppose that Γ is not z-knotted, i.e. the z-orientation of
Γ consists of more than one zigzag. Then Γ contains a face F such that there are
at least two zigzags in the z-orientation which pass through the edges of F . One of
these zigzags pass through the edge of type II from F . We denote this edge by e.
There are two possibilities:
• e occurs in two distinct zigzags;
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• e occurs twice in one zigzag Z.
It is obvious that in the first case there is a special pair P whose edges are contained
in more than one zigzag from the z-orientation. We show that the same is true in
the second case. A zigzag from the z-orientation and distinct from Z passes through
the edges of type I belonging to F . So, the next edge e′ in this zigzag belongs to a
face adjacent to F and it is easy to see that e′ has a common vertex with e. Since
this zigzag is homogeneous, e′ is of type II. Thus, the edges e and e′ form a special
pair.

Since there are at least two zigzags from the z-orientation passing through the
edges of P , thenMP belongs toKi where i ∈ {0, 2, 4, 5, 6, 9, 10, 11, 12}. Recall that Γ′

is a z-homogeneous triangulation containing a special pair P ′. From this moment, we
suppose that Γ′ is a triangulation of S and P ′ is an essential pair. Using Lemma 11 we
establish that if g : ∂FP → ∂FP ′ is a special homeomorphism such that g−1MP ′gMP

is a 4-cycle, then the number of zigzags in Γ#gΓ
′ is less than the number of zigzags

in Γ. Now, we show that there are suitable Γ′ and P ′ in all nine possibilities of MP .
As previous, let ω(F ) = {1, 2, 3, 4}. Suppose that ω(F ′) = {1′, 2′, 3′, 4′}. In

the proof we will exploit the z-monodromies of essential pairs in triangulations of a
sphere from Example 23. Each gluing will be made using the special homeomorphism
g : ∂FP → ∂FP ′ transferring every k ∈ ω(FP ) to k′.

If there is more than one permutation in the class Ki, then for any two distinct
p, q ∈ Ki the permutation p can be obtained from q by the renumerations of the
edges in the 4-gonal face FP and the change of the z-orientation by the opposite.
Thus, it is sufficient to find suitable Γ′ and P ′ only for one permutation from such
Ki.

(K0). If MP = id, then we define MP ′ as the permutation from K9 or K10, see
Example 23 (3). The permutations from K9 and K10 are 4-cycles, so the composition

g−1MP ′gMP = g−1MP ′g

also is a 4-cycle.
(K2). If MP = (13)(24), then we take MP ′ = (1′2′3′4′) ∈ K1, see Example 23 (1).

The composition
g−1MP ′gMP = (1234)(13)(24) = (1432)

is a 4-cycle.
(K4). If MP = (14)(23), then we take MP ′ = (2′4′) ∈ K6, see Example 23 (3).

The composition
g−1MP ′gMP = (24)(14)(23) = (1234)

is a 4-cycle.
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(K5). If MP = (12)(34), then we take MP ′ = (2′4′) ∈ K6, see Example 23 (3).
The composition

g−1MP ′gMP = (24)(12)(34) = (1432)

is a 4-cycle.
(K6). If MP belongs to K6, then we define MP ′ as the permutation from K4 or

K5 (see Example 23 (2)) and come to the cases (K4) and (K5).
(K9). If MP belongs to K9, then we define MP ′ as the permutation from K0 (see

Example 23 (1)) and come to the case (K0).
(K10). If MP belongs to K10, then we define MP ′ as the permutation from K0

(see Example 23 (1)) and come to the case (K0).
(K11). If MP = (234), then we take MP ′ = (1′2′3′4′) ∈ K1, see Example 23 (1).

The composition
g−1MP ′gMP = (1234)(234) = (1243)

is a 4-cycle.
(K12). If MP = (143), then we take MP ′ = (2′4′) ∈ K6, see Example 23 (3). The

composition
g−1MP ′gMP = (24)(143) = (1243)

is a 4-cycle.
Therefore, any z-homogeneous triangulation Γ of the surface S can be modified

to other z-homogeneous triangulation of S containing less number of zigzags than Γ.
Step by step, we come to a z-homogeneous and z-knotted triangulation of S. Since
each single gluing reduce the number of zigzags in a z-orientation by at least one, we
need at most |τ | − 1 steps.

6.5 Appendix

Table 1 contains all calculations for elements of S4 used in Subsection 6.2.
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MP M−1
P sMP tM−1

P stM−1
P sMP s tM−1

P t stM−1
P st

id id (13)(24) (12)(34) (14)(23) id id id
(34) (34) (1324) (12) (1423) (12) (34) (12)
(23) (23) (1342) (1243) (14) (14) (14) (23)
(234) (243) (132) (123) (142) (124) (134) (123)
(243) (234) (134) (124) (143) (142) (143) (132)
(24) (24) (13) (1234) (1432) (24) (13) (13)
(12) (12) (1423) (34) (1324) (34) (12) (34)

(12)(34) (12)(34) (14)(23) id (13)(24) (12)(34) (12)(34) (12)(34)
(123) (132) (142) (143) (124) (134) (124) (234)
(1234) (1432) (1432) (13) (24) (1234) (1234) (1234)
(1243) (1342) (14) (14) (1243) (1342) (1243) (1342)
(124) (142) (143) (134) (243) (234) (123) (134)
(132) (123) (234) (243) (134) (143) (142) (243)
(1342) (1243) (23) (23) (1342) (1243) (1342) (1243)
(13) (13) (24) (1432) (1234) (13) (24) (24)
(134) (143) (243) (132) (234) (123) (234) (124)

(13)(24) (13)(24) id (14)(23) (12)(34) (13)(24) (13)(24) (13)(24)
(1324) (1423) (34) (1324) (34) (1423) (1423) (1324)
(1432) (1234) (1234) (24) (13) (1432) (1432) (1432)
(142) (124) (123) (234) (132) (243) (132) (143)
(143) (134) (124) (142) (123) (132) (243) (142)
(14) (14) (1243) (1342) (23) (23) (23) (14)
(1423) (1324) (12) (1423) (12) (1324) (1324) (1423)
(14)(23) (14)(23) (12)(34) (13)(24) id (14)(23) (14)(23) (14)(23)

Table 1
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7 Triangulations with a z-monodromy of the same
type for all faces

In this section, we return to z-monodromies of faces. We want to examine the
existence of triangulations with the same type of z-monodromy for all faces.

For the z-monodromies (M3), (M4), (M5) and (M7) the situation is clear: the
required triangulations are bipyramids, see Subsection 3.4. More precisely, the z-
monodromy of every face in the bipyramid BPn is of type

• (M3) if n = 2k + 1 and k is odd,

• (M4) if n = 2k + 1 and k is even,

• (M7) if n = 2k and k is odd,

• (M5) if n = 2k and k is even.

An example of a triangulation where all faces have the z-monodromy of type (M6)
was constructed in [31] in connection with studying z-oriented triangulations with
all faces of type I (Subsection 7.1).

For (M1) and (M2) this problem was investigated in [24] and the answer is nega-
tive: for these z-monodromies such triangulations does not exist. This follows from
the more general result which states that for i = 1, 2 faces with the z-monodromy
of type (Mi) form a forest (Subsections 7.2 – 7.4). However, there is a z-knotted
triangulation (the connected sum of bipyramids) where the z-monodromy of each
face is of type (M1) or (M2).

7.1 A triangulation where all faces have the z-monodromy of
type (M6)

Our construction will be based on the following technical facts.

Proposition 6. Let Γ be a triangulation and let F be a face of Γ. If MF is (M6),
then F is of type I for any z-orientation of Γ.

Proof. Let e1, e2, e3 be consecutive oriented edges of the face F . If the z-monodromy
of F is (M6), i.e.

MF = (−e1, e3, e2)(−e2,−e3, e1)
then there are precisely two zigzags (up to reversing) containing F

. . . , e1, e2, . . . ,−e1,−e3, . . . and . . . , e2, e3, . . .
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The non-oriented edge corresponding to the oriented edges e1 and −e1 is passed in
two different directions by the same zigzag. Thus, this edge is of type I for any
orientation of the zigzag and F is of type I for any z-orientation.

Lemma 12. Suppose that τ is a z-orientation of a triangulation Γ. Let F be a face
in (Γ, τ) such that there are precisely two zigzags from τ which contain edges from
F . Then the following assertions are fulfilled:

(1) There is a unique edge e belonging to F which occurs in one of these zigzags
twice,

(2) The type of e does not depend on the choice of z-orientation,

(3) If e is of type I, then MF is (M6). If e is of type II, then MF is (M7).

Proof. (1). Each face occurs precisely thrice (as a pair of its adjacent edges) in
zigzags from τ . Since there are precisely two zigzags from τ passing through F , one
of these zigzags passes through it once and the second twice.

(2). A zigzag can pass through the edge e twice either in two different directions
(type I) or in the same direction (type II). The reversing of zigzag does not change
the type of e, so the type of this edge is the same for any z-orientation of Γ.

(3). The z-monodromy of F is (M6) or (M7) by Remark 2. If the z-monodromy
is (M6), then Proposition 6 gives the claim. Consider the case when MF is of type
(M7). Let e1, e2, e3 be consecutive edges of F such that

MF = (e1, e2)(−e1,−e2).

Thus, the face F occurs twice in the zigzag

. . . , e2, e3, . . . , e3, e1, . . .

and the edge e3 is of type II for any z-orientation.

Using Lemma 12 we construct a class of toric triangulations, where the z-mono-
dromy is of type (M6) for all faces.

Example 24. Let n,m be odd numbers not less than 3. Denote by Γ0 a n×m grid
with the opposite sides identified. Then Γ0 is naturally embedded in a torus. Let
Γ = T(Γ0), see Fig. 21 for the case n = m = 3.
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Figure 21

Every zigzag of Γ gives a band formed by n or m squares from the grid, see Fig. 22
for a band consisting of 5 squares.

Figure 22

Note that the edges common for two consecutive squares from the grid are passed
twice and they are of type I for any z-orientation (these edges are marked by the
bold line in Fig. 22). Thus, each edge of the subgraph Γ0 is of type I and all faces of
Γ are of type I (for any z-orientation). The remaining edges from the interior of the
band are passed by the zigzag once, so each edge incident to a vertex in the interior
of a square occurs once in two different zigzags. Therefore, any face of Γ is passed
by precisely two zigzags up to reversing. By Lemma 12, z-monodromies of all faces
of Γ are of type (M6).

7.2 The z-monodromies (M1) and (M2)

Let Γ be a triangulation of a surface S. Recall that the dual graph Γ∗ is a graph
whose vertices are faces of Γ and whose edges are formed by pairs of distinct faces
intersecting in an edge.

Let Gi be the subgraph of Γ∗ such that the set of vertices of Gi consists of all faces
of Γ whose z-monodromies are of type (Mi) and two vertices of Gi are adjacent if they
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are adjacent in Γ∗. Theorem 9 describe the subgraphs G1 and G2, i.e. the subgraphs
determined by all faces with z-monodromy of type (M1) and (M2), respectively. This
result does not require z-knottedness and it concerns to an arbitrary triangulation.

Theorem 9 ([24]). The graphs G1 and G2 are forests.

A direct consequence of the theorem is that triangulations with z-monodromy of
type (Mi) for all faces do not exist for i = 1, 2.

Let Γ and Γ′ be z-knotted triangulations containing faces F and F ′ (respectively)
such that their z-monodromies are not identity, i.e. the z-monodromies of F and F ′
are not of type (M1). By Theorem 5, there is a special homeomorphism g : ∂F → ∂F ′

such that the connected sum Γ#gΓ
′ is z-knotted. It follows from Theorem 9 that

each triangulation contains a face whose z-monodromy is not of type (M1). Thus,
we get the following corollary.

Corollary 3. For any z-knotted triangulations Γ and Γ′ there are faces F and F ′
in Γ and Γ′ (respectively) and a special homeomorphism g : ∂F → ∂F ′ such that the
connected sum Γ#gΓ

′ is a z-knotted triangulation.

7.3 Proof: the graph G1 is a forest

The face shadow of a zigzag Z = {e1, . . . , en} is a cyclic sequence of faces F1, . . . , Fn,
where Fi is the face containing the edges ei and ei+1.

Lemma 13. Let F be a face belonging to the face shadow F1, . . . , Fn of a certain
zigzag. Then there are at most three distinct indices i such that Fi = F . If our
triangulation is locally z-knotted for F , then there are precisely three such i.

Proof. For every edge e ∈ Ω(F ) we denote by Z(e) the zigzag containing the sequence
e,DF (e). Observe that Z(e′) = Z(e)−1 if e′ = −DF (e). Also, it can be happened
that Z(e) = Z(e′) for some distinct e, e′ ∈ Ω(F ). This means that Z(F ) contains at
most three pairs of zigzags Z,Z−1. Therefore, if F1, . . . , Fn is the shadow of a zigzag
from Z(F ) and Fi = F for four distinct indices i, then this zigzag is self-reversed
which is impossible. In the case when the triangulation is locally z-knotted in F ,
for any two e, e′ ∈ Ω(F ) we have Z(e) = Z(e′) or Z(e) = Z(e′)−1 which implies the
second statement.

Lemma 14. Let F and F ′ be adjacent faces whose z-monodromies both are of type
(M1). Then there is a unique (up to reversing) zigzag whose face shadow contains F
and F ′. This face shadow is a cyclic sequence of type

. . . , F, F ′, . . . , F ′, . . . , F ′, F, . . . , F, . . .
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(see Fig. 23). The reversed sequence

. . . , F ′, F, . . . , F, . . . , F, F ′, . . . , F ′, . . .

is the face shadow of the reversed zigzag.

F ′F

F ′F

FF ′

Figure 23

Proof. Let x, y, z and t, y, z be the vertices of F and F ′ (respectively) and let

e1 = yz, e2 = zx, e3 = xy, e′2 = zt, e′3 = ty,

see Fig. 24. The intersection of Ω(F ) and Ω(F ′) is {e1,−e1}.

F

F ′

x

y z

t

e1

e2e3

e′2e′3

Figure 24

The z-monodromies MF and MF ′ both are of type (M1), so Γ is locally z-knotted
for F and F ′. Since the faces F, F ′ are adjacent, we have

Z(F ) = Z(F ′) = {Z,Z−1}.

Suppose that Z is the zigzag containing the sequence e3, e1, e′2.
Let e be the first edge from Ω(F )∪Ω(F ′) occurring in Z after this sequence. If e

is an element from Ω(F ), then it coincides withMF (e1) = e1. This is impossible since
we can come to e1 by a zigzag only through an element of Ω(F ) or Ω(F ′) different
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from e1. Thus, e is an element from Ω(F ′) and e = MF ′(e
′
2) = e′2. The next edge of

Z is DF ′(e
′
2) = e′3 and Z is a cyclic sequence

. . . , e3, e1, e
′
2, X, e

′
2, e
′
3, . . . ,

where X is a sequence of edges which does not contain elements from Ω(F )∪Ω(F ′).
Similarly, we establish that e′3 is the first edge from Ω(F ) ∪ Ω(F ′) occurring in Z
after the sequence e′2, e′3. The next two edges of Z are DF ′(e

′
3) = e1 and DF (e1) = e2.

Therefore, Z is a cyclic sequence

. . . , e3, e1, e
′
2︸ ︷︷ ︸

F,F ′

, X, e′2, e
′
3︸ ︷︷ ︸

F ′

, Y, e′3, e1, e2︸ ︷︷ ︸
F ′,F

, . . . ,

where Y is a sequence of edges which does not contains elements of Ω(F ) ∪ Ω(F ′).
Since the next two edges from Ω(F )∪Ω(F ′) contained in the zigzag Z areMF (e2) = e2
and DF (e2) = e3, the second part of Lemma 13 gives the claim.

Now, we can show that G1 is a forest. Suppose that n ≥ 4 and F1, F2, . . . , Fn = F1

is a simple cycle in G1. Since for each i = 1, . . . , n − 1 the triangulation is locally
z-knotted for Fi and faces Fi, Fi+1 are adjacent, we have Z(Fi) = Z(Fi+1). Thus,

Z(F1) = · · · = Z(Fn−1) = {Z,Z−1}.

By Lemma 14, the faces F1 and F2 occur in the face shadow of Z or Z−1 as follows

. . . , F2, F1, . . . , F1, . . . , F1, F2, . . . , F2, . . . ;

without loss of generality we assume that this is the face shadow of Z. The faces F2

and F3 are adjacent and there are four possibilities for F3 to occur in Z, see Fig. 25.

F1F2

F1F2

F2F1

Figure 25
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By Lemma 14, one of the following possibilities is realized for F3:

. . . , F3, F2, F1, . . . , F1, . . . , F1, F2, . . . , F2, F3, . . . , F3, . . .

or
. . . , F2, F1, . . . , F1, . . . , F1, F2, F3, . . . , F3, . . . , F3, F2, . . .

(see Fig. 26 (a) and Fig. 26 (b), respectively).

F1F2

F1F2

F2F1

F3

F3

F3

(a)

F1F3

F1F2

F2F1

F2

F3

F3

(b)

Figure 26

The faces F3 and F4 are adjacent and (by Lemma 14) there are three occurrences
of F4 in the face shadow of Z after the three occurrences of F1. Recursively, we
establish that the same holds for each Fi where 3 ≤ i ≤ n, i.e.

. . . , F2, F1, . . . , F1, . . . , F1, F2, . . . , Fi, . . . , Fi, . . . , Fi, . . . .

If Fi = Fn = F1, then the above contradicts the fact that the face shadow of Z
contains precisely three occurrences of F1. Therefore, G1 does not contain cycles.

7.4 Proof: the graph G2 is a forest

Lemma 15. Let F and F ′ be adjacent faces whose z-monodromies are of type (M2).
Then there is a unique (up to reversing) zigzag whose face shadow contains F and
F ′. This face shadow is a cyclic sequence of type

. . . , F, F ′, . . . , F, . . . , F ′, F, . . . , F ′, . . .

(see Fig. 27). The reversed sequence

. . . , F ′, F, . . . , F,′ . . . , F, F ′, . . . , F, . . .

is the face shadow of the reversed zigzag.
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FF ′

F ′F

FF ′

Figure 27

Proof. Suppose that F and F ′ are as in the proof of Lemma 14 (see Fig. 24). Since
MF = DF and MF ′ = DF ′ , the triangulation is locally z-knotted for F and F ′. As
in the proof of Lemma 14, we establish that

Z(F ) = Z(F ′) = {Z,Z−1}

and assume that Z contains the sequence e3, e1, e′2.
Let e be the first edge from Ω(F ) ∪ Ω(F ′) occurring in Z after this sequence. If

e is an element from Ω(F ′), then

e = MF ′(e
′
2) = DF ′(e

′
2) = e′3

and the next edge in the zigzag is DF ′(e
′
3) = e1. Hence MF (e1) = e1. This is

impossible, since
MF (e1) = DF (e1) = e2.

Thus, e belongs to Ω(F ) and we have e = MF (e1) = e2. The next edge in the zigzag
Z is DF (e2) = e3 and Z is a cyclic sequence

. . . , e3, e1, e
′
2, X, e2, e3, . . . ,

where X is a sequence of edges which does not contain elements of Ω(F ) ∪ Ω(F ′).
Let e′ be the first edge from Ω(F )∪Ω(F ′) occurring in Z after the sequence e2, e3.

If e′ ∈ Ω(F ), then
e′ = MF (e3) = DF (e3) = e1.

This is impossible, since we can come to e1 by a zigzag only through an element of
Ω(F ) or Ω(F ′) different from e1. Thus, e′ ∈ Ω(F ′) and

e′ = MF ′(e
′
2) = DF ′(e

′
2) = e′3.
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The next two edges in Z are DF ′(e
′
3) = e1 and DF (e1) = e2. Therefore, Z is a cyclic

sequence
. . . , e3, e1, e

′
2︸ ︷︷ ︸

F,F ′

, X, e2, e3︸ ︷︷ ︸
F

, Y, e′3, e1, e2︸ ︷︷ ︸
F ′,F

, . . . ,

where Y is a sequence of edges which does not contains elements of Ω(F ) ∪ Ω(F ′).
Since the next two edges from Ω(F )∪Ω(F ′) contained in the zigzag Z areMF ′(e1) = e′2
and DF ′(e

′
2) = e′3, the second part of Lemma 13 gives the claim.

Now, we establish that G2 is a forest (in this case we use more complicated
arguments then for G1). Suppose that n ≥ 4 and F1, F2, . . . , Fn = F1 is a simple
cycle in G2. As in the previous subsection, the triangulation is locally z-knotted for
each Fi and

Z(F1) = · · · = Z(Fn−1) = {Z,Z−1}.
By Lemma 15, the faces F1 and F2 occur in the face shadow of Z or Z−1 as follows

. . . , F1, F2, . . . , F1, . . . , F2, F1, . . . , F2, . . . ;

without loss of generality we suppose that this is the face shadow of Z.
(1). Let . . . , F1, F2, . . . , Fn be consecutive faces in the face shadow of Z. The

faces F2, F3 are adjacent and, by Lemma 15, the face shadow of Z is

. . . , F1, F2, F3, . . . , F1, . . . , F2, F1, . . . , F3, F2, . . . , F3, . . . ,

see Fig. 28 (a). For n > 4 we apply Lemma 15 to the adjacent faces Fi−1, Fi, where
4 ≤ i ≤ n− 1. Recursively, we establish that Fn−1 occurs in the face shadow of Z as
follows

. . . , F1, . . . , Fn−1, F1, . . . , F1, . . . , Fn−1, . . . , Fn−1, . . . ,

see Fig. 28 (b).

F1F3

F2F1

F1F2

F3

F2

F3

(a)

F1

Fn−1

F1

F1

Fn−1
Fn−1

(b)

Figure 28
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On the other hand, Fn−1 is adjacent to Fn = F1 and Lemma 15 guarantees that the
face shadow of Z is as follows

. . . , F1, . . . , Fn−1, F1, . . . , Fn−1, . . . , F1, Fn−1, . . . ;

we get a contradiction.
(2). Suppose that F1, F2, . . . , Fn are not consecutive faces in the face shadow of

Z. Let k be the greatest number such that F1, . . . , Fk are consecutive faces in the
face shadow of Z. Since the sequence F1, F2 is contained in the face shadow, we have
k ≥ 2. If k = 2, then (by Lemma 15) the face shadow of Z is a cyclic sequence

. . . , F1, F2, . . . , F1, . . . , F3, F2, F1, . . . , F3, . . . , F2, F3, . . . ,

see Fig. 29. Then F1, F2, F3 are consecutive faces in the face shadow of the reversed
zigzag Z−1, which is impossible. Thus, k ≥ 3.

F1F2

F2F1

F1F2
F3

F3

F3

Figure 29

We apply Lemma 15 to the faces Fk−1, Fk and to the faces Fk, Fk+1. The face Fk+1

does not occur in the face shadow of Z immediately after F1, . . . , Fk, so the face
shadow of Z is as follows

..., F1, F2,..., Fk−1, Fk,..., F1,..., F2, F1,..., Fk+1, Fk, Fk−1,..., Fk+1,..., Fk, Fk+1,...,

see Fig. 30.

F1
Fk−1

F2F1

F1F2

Fk
Fk−1

Fk+1

Fk
Fk+1

Fk
Fk+1

Figure 30
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Finally, for each i such that k < i ≤ n the face Fi occurs in the face shadow of Z in
the following way

. . . , F1, F2, . . . , F1, . . . , F2, F1, . . . , Fi, . . . , Fi, . . . , Fi, . . . ;

if Fi = Fn = F1, then it means that F1 occurs in the face shadow of Z more than
three times. This is impossible.

We come to a contradiction in both these cases. Therefore, G2 does not contain
cycles.

7.5 Two examples

In this subsection, we present two examples of graphs G1 and G2 in connected sums
of bipyramids. The first example is simple. The second is interesting for the following
reason: there is a z-knotted triangulation where the z-monodromy of each face is of
type (M1) or (M2).

Before we give these examples, let us observe the following fact. Let Γ be locally
z-knotted for a face F . Then the z-monodromy MF is one of the types (M1)–(M4).
If MF is of type (M3) or (M4), then each zigzag from Z(F ) passes through one of
edges twice in the same direction and it passes twice through the remaining two
edges in different directions, see Fig. 31 (a). Thus, the face F is of type I.

(a) (b)

Figure 31

IfMF is of type (M1) or (M2), then each zigzag from Z(F ) passes through each edge
of F twice in the same direction, i.e. this zigzag passes twice through three elements
from Ω(F ) forming a cycle in DF , see Fig. 31 (b). Thus, the face F is of type II.

As in the previous sections, let the consecutive vertices of the base of BPn be
denoted by 1, . . . , n and the two remaining vertices by a and b. Similarly, let BP ′n
be the n-gonal bipyramid whose consecutive vertices of the base are 1′, . . . , n′ and
let a′, b′ be the remaining two vertices.
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Example 25. Consider the z-knotted bipyramids PB3 and PB′3. Their zigzags are
the cyclic sequences of edges

12, 2b, b3, 31, 1a︸ ︷︷ ︸
A

, a2, 23, 3b, b1, 12︸ ︷︷ ︸
B

, 2a, a3, 31, 1b, b2, 23, 3a, a1︸ ︷︷ ︸
C

and

1′2′, 2′b′, b′3′, 3′1′, 1′a′︸ ︷︷ ︸
A′

, a′2′, 2′3′, 3′b′, b′1′, 1′2′︸ ︷︷ ︸
B′

, 2′a′, a′3′, 3′1′, 1′b′, b′2′, 2′3′, 3′a′, a′1′︸ ︷︷ ︸
C′

,

respectively. Denote by D and D′ the faces of BP3 and BP ′3 whose vertices are a, 1, 2
and a′, 1′, 2′ (respectively). We glue these bipyramids using a special homeomorphism
g : ∂D → ∂D′ such that

g(a) = a′, g(1) = 1′, g(2) = 2′

and we obtain the connected sum BP3#gBP
′
3 (see Fig. 32 and Example 12).

Figure 32

The connected sum is z-knotted and it has the unique zigzag (up to reversing)

Z = {A,C ′−1, B,A′, C−1, B′},

where C−1 and C ′−1 are the sequences reversed to C and C ′ (respectively) and for
any two consecutive parts X, Y in Z the last edge from X is identified with the first
edge from Y . Let F and F ′ be the faces of BP3#gBP

′
3 which contain b, 1, 2 and

b′, 1, 2, respectively. Example 12 shows that the z-monodromies of these faces are of
type (M2). Each of the remaining eight faces contains one of the edges 23, 31, 23′, 3′1.
The zigzag Z passes through each of these edges twice in different directions Thus,
the faces containing one of these edges are of type I and their z-monodromies are of
type (M3) or (M4). The subgraph G2 in BP3#gBP

′
3 is a linear graph P2. The same

is true for the connected sum of (2k+1)-gonal and (2k′+1)-gonal bipyramids, where
k and k′ are odd (see the details in Example 12).
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Example 26. Consider 6-gonal bipyramids BP6 and BP ′6, Each of them contains
precisely two zigzags (up to reversing). The cyclic sequences

12, 2b, b3, 34, 4a, a5, 56, 6b, b1, 12︸ ︷︷ ︸
A

, 2a, a3, 34, 4b, b5, 56, 6a, a1︸ ︷︷ ︸
B

and
a2, 23, 3b, b4, 45, 5a, a6, 61, 1b, b2, 23, 3a, a4, 45, 5b, b6, 61, 1a︸ ︷︷ ︸

C

are zigzags in BP6. Similarly, the cyclic sequences

1′2′, 2′b′, b′3′, 3′4′, 4′a′, a′5′, 5′6′, 6′b′, b′1′, 1′2′︸ ︷︷ ︸
A′

, 2′a′, a′3′, 3′4′, 4′b′, b′5′, 5′6′, 6′a′, a′1′︸ ︷︷ ︸
B′

and

a′2′, 2′3′, 3′b′, b′4′, 4′5′, 5′a′, a′6′, 6′1′, 1′b′, b′2′, 2′3′, 3′a′, a′4′, 4′5′, 5′b′, b′6′, 6′1′, 1′a′︸ ︷︷ ︸
C′

are zigzags in BP ′6. Denote by D and D′ the faces of BP6 and BP ′6 which contain
the vertices a, 1, 2 and a′, 1′, 2′, respectively. Let g : ∂D → ∂D′ be the special
homeomorphism such that

g(a) = 2′, g(1) = a′, g(2) = 1′,

see Example 13. The connected sum BP6#gBP
′
6 is z-knotted and the unique zigzag

(up to reversing) is
Z = {A,C ′−1, C−1, A′, B,B′};

as in Example 25, for any two consecutive parts X, Y in Z the last edge from X is
identified with the first edge from Y . We need the following observations about the
edges of BP6:

• Each of the edges 12, 34, 56 occurs twice in the sequence A,B and each of the
edges 23, 45, 61 occurs twice in the sequence C.

• An edge e which contains a or b occurs in the sequence A,B if and only if −e
occurs in C.

The same statements are true for the edges of BP ′6. Thus, Z passes through every
edge of BP6#gBP

′
6 twice in the same direction. Then each face of the connected
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sum BP6#gBP
′
6 is of type II and its z-monodromy is of type (M1) or (M2). It is

easy to check that the z-monodromies of the faces

a23, a34, a61, a13′, b45, b56, 15′6′, 126′, b′3′4′, b′4′5′

and the faces

a45, a56, 13′4′, 14′5′, b61, b12, b23, b34, ab′3′, ab′2, b′26′, b′5′6′

are of types (M1) and (M2), respectively. Therefore, the graph G1 is a linear forest
consisting of five P2 and the graph G2 is a linear forest consisting of two P2 and two
P4.
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