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Wprowadzenie

Niech G bedzie lokalnie zwarta! grupa abelowa. Wraz z G mozemy zwiazaé (AJ, zbior
(mocno ciaglych) reprezentacji nieprzywiedlnych. Wszystkie reprezentacje nieprzywiedlne
grup abelowych sa jedno-wymiarowe, a zatem na G mozemy zdefiniowaé¢ mnozenie poprzez
(xm(g) = x(g)n(g) (x,n € G,g € G). Wraz z odpowiednig topologia (zwarto — otwarta),

G staje si¢ lokalnie zwarta grupa abelowa, zwana grupa dualna do G w sensie Pontryagina.
IAionstrukch te mozemy powtorzy¢ dla G — woéwcezas wrocimy do grupy wyjsciowej: mamy
G~G gdzie g € G odpowiada reprezentacji G danej poprzez G > x — x(g) € T.
Najbardziej znanymi przyktadami grup dualnych w sensie Pontryagina sa R ~ R oraz
T ~ 7Z. Naturalnym pytaniem jest, czy dualnosé¢ Pontryagina mozemy w jakis sposob
rozszerzy¢ do klasy grup lokalnie zwartych ktore niekoniecznie sa przemienne. Problem jaki
napotykamy probujac zdefiniowaé G jest nastepujacy: jesli G jest grupa lokalnie zwarta
ktora nie jest przemienna, to bedzie ona miata reprezentacje nieprzywiedlne dzialajace na
przestrzeniach Hilberta wyzszego wymiaru. Nie mamy w takiej sytuacji naturalnej metody
zdefiniowania dzialania grupowego na zbiorze reprezentacji nieprzywiedInych — iloczyn ten-
sorowy reprezentacji nieprzywiedlnych nie musi by¢ nieprzywiedlny.

Jednym z wnioskéw jakie mozna wyciagnaé z powyzszych rozwazan jest konkluzja, ze
aby uzyskaé¢ satysfakcjonujacg teorie zamknieta na dualnosé¢ i rozszerzajaca teorie grup
abelowych, nalezy wprowadzi¢ do niej réwniez obiekty innego typu, nie tylko grupy —
obiekty takie nazywane sa zwykle grupami kwantowymi. Proponowano rézne definicje
grup kwantowych: wspomnijmy tutaj algebry Kaca [36]. Przelomem okazaly sie badania
Woronowicza, ktory zdefiniowal zwarte grupy kwantowe (oraz dualne do nich dyskretne
grupy kwantowe) w jezyku C*-algebr, oraz skonstruowal nietrywialng (tzn. nie bedaca
klasyczna lub dualna do klasycznej) zwarta grupe kwantowa SU,(2) [99, 101, 70]. Wielkim
sukcesem definicji Woronowicza byl wynik pokazujacy istnienie i jedynos¢ catki Haara na
zwartych grupach kwantowych. Najbardziej popularna definicje lokalnie zwartych grup
kwantowych zaproponowali Kustermans oraz Vaes [57, 56|, i to z ich definicji bedziemy
korzysta¢ (alternatywna definicje zaproponowal rowniez Woronowicz [100]). W przeci-
wienstwie do definicji Woronowicza, tym razem punktem wyjscia jest jezyk algebr von Neu-
manna, natomiast istnienie catek Haara jest czescia definicji. Kazda lokalnie zwarta grupe
G mozemy traktowac jako lokalnie zwarta grupg kwantowa w sensie Kustermansa—Vaesa,
natomiast kwantowa grupa dualna G zwiazana jest z algebrami operatorow badanymi w
abstrakcyjnej analizie harmonicznej: grupowymi C*-algebrami C%(G), C*(G) oraz grupowa
algebra von Neumanna L(G).

Niezwykle interesujagcym fenomenem ktory pojawia sie w teorii grup kwantowych jest
niesladowos¢ catek Haara; jesli oznaczymy catke Haara na SU,(2) (0 < ¢ < 1) symbolem
h, to mozemy znalez¢ takie a,b € C(SU,(2)) dla ktorych h(ab) # h(ba). Niesladowos¢
calek Haara jest zrodlem wielu interesujacych probleméw i zjawisk ktore sa w sercu tej

'W tym wprowadzeniu zakladamy, ze przestrzenie lokalnie zwarte sg Hausdorffa.



rozprawy. Korzystajac z teorii Tomity—Takesakiego mozemy skonstruowaé grupy automor-
fizmow modularnych (67)ier, (07 )icr zwiazane z lewa ¢ oraz prawa 1 calka Haara. Poza
tym, istnieje rowniez trzecia grupa automorfizméw — grupa skalowania (73)eg. Odwzorowa-
nia te dzialaja na algebrze von Neumanna L°°(G), zwanej algebra funkcji ograniczonych na
lokalnie zwartej grupie kwantowej G. Tych grup automorfizméw nie widzimy (sa trywialne)
w przypadku grup klasycznych. Grupy automorfizméw modularnych obecne sa jednak juz
w przypadku niektorych grup kwantowych dualnych do klasycznych. Jesli G jest klasyczna
grupa lokalnie zwarta to catka Haara @ na G jest Sladowa (réwnowaznie: automorfizmy
modularne (0} )icr sg trywialne) wtedy i tylko wtedy gdy G jest unimodularna. Widzimy
wiec na tym przykladzie, ze istnieje zwigzek miedzy unimodularnoscia grupy kwantowej,
a Sladowoscia catek Haara na kwantowej grupie dualnej. W ogoélnym przypadku zwigzek
ten jest nieco bardziej skomplikowany — miedzy innymi relacje tego typu bada¢ bedziemy
w Rozdziale 3.

W Rozdziale 1 wprowadzamy notacje ktorej bedziemy uzywaé¢ w pracy. W kolejnym
rozdziale przypominamy podstawowe wyniki dotyczace teorii wag na C*-algebrach i alge-
brach von Neumanna, w tym wyniki pochodzace z teorii Tomity—Takesakiego. Nastepnie
wprowadzamy niezbedne pojecia i rezultaty teorii Woronowicza oraz Kustermansa—Vaesa.
Przedstawiamy réwniez kilka przyktadow lokalnie zwartych grup kwantowych.

Rozdzial 3 poswiecony jest teorii grup kwantowych typu I. Zaczynamy od wprowadzenia
kluczowego rezultatu Desmedta z [31] moéwiacego o istnieniu miary Plancherela oraz sto-
warzyszonych z nig obiektéw. W szczegélnosci, daje nam on unitarny operator Q: L*(G)
— fIi(G) HS(H,) du(m) ktory przenosi algebre von Neumanna L‘x’(@) na catke prosta
fli(G) B(H;) ® 15-du(m) oraz pozwala wyrazi¢ lewa catke Haara @ na G przy pomocy
mierzalnego pola $cisle dodatnich samosprzezonych operatoréw (Dy)rcnr(c) (analogiczny
wynik mamy réowniez dla prawej catki 12 — dla niej pojawia sie pole (Er)rcn(c)). Po przy-
pomnieniu twierdzenia Desmedta, rozwijamy wyniki uzyskane przez Caspersa w [17, 18|.
Miedzy innymi, uzyskujemy wyrazenia na pewne operatory zwigzane kanonicznie z G, G
wyrazone na poziomie calek prostych (twierdzenia 3.24, 3.25):

;\zt — Q*L (/ E72rzt ® (E;Zzt)'r dﬂ(ﬂ))QL,
Irr(G)

D
Vi=09;( o D% @ (D2 dp(r)) Qu, (0.1)
Irr

ot = st Q5 ( / DX'E*" @ 1g-du(m)) QL
Irr(G)

dla t € R, gdzie V7, Vg to operatory modularne zwiazane z caltkami @, ©, v to stala

skalowania, a § to element modularny G (zobacz Rozdzial 2.2). W dalszej czesci tego
rozdzialu badamy implikacje miedzy warunkami takimi jak unimodularnosé czy sladowosé¢



calek Haara. Wykorzystujemy réwniez wezesniej udowodnione rownania (takie jak te zgro-
madzone w (0.1)) aby dla grup kwantowych typu I wyrazi¢ te wlasnosci w terminach
operatorow D, E, (1 € Irr(G)). W ostatniej czesci tego rozdziatu opisujemy dwa przyklady
grup kwantowych typu I: dyskretng grupe kwantows SU,(2) oraz kwantowa grupe az + b.
Wyniki zgromadzone w tym rozdziale pochodza z pracy [49].

W Rozdziale 4 przedstawiamy wynik uzyskany wraz z Piotrem Soltanem w [51]: mowi
on o tym, ze dysk kwantowy (opisywany przez algebre Toeplitza) nie ma struktury zwartej
grupy kwantowej. Dowdd, ktory przedstawimy korzysta z teorii grup kwantowych typu I i
wynikow uzyskanych w Rozdziale 3.

Kolejny rozdzial zawiera rezultaty uzyskane wraz z Mateuszem Wasilewskim w [52].
Problemem ktory badaliSmy jest pytanie, czy algebra von Neumanna CKO; generowana

przez charaktery jest maksymalnie przemienna w L°(0}), algebrze funkcji ograniczonych
na kwantowej grupie ortogonalnej O}, w przypadku gdy grupa ta nie jest typu Kaca
(tzn. catka Haara nie jest §ladowa). Uzyskalismy odpowiedZ przeczaca. Nasze techniki poz-
wolily réwniez udowodnié¢ interesujace wyniki dotyczace algebry von Neumanna L*(U})
funkcji ograniczonych na kwantowej grupie unitarnej U/: (pod pewnymi

warunkami) pokazaliSmy, Ze relatywny komutant ¢/, N L>°(U}) nie jest zawarty w ‘KU;.
Rezultaty te uzyskaliSmy korzystajac z pojecia qugsi—rozszczepialnoéci wlozenia 6z C
L*(G). W rozdziale tym przedstawimy roéwniez konstrukcje zwartej grupy kwantowej
H, powstajacej jako iloczyn bikrzyzowy H = SU,(2) > Q. Ma ona ciekawe wlasnosci:
niektore automorfizmy skalowania H sa wewnetrzne, a algebra von Neumanna L (H) jest
injektywnym faktorem typu Il...

W Rozdziale 6 przedstawiamy wyniki faczace wlasnosci aproksymacyjne grupy kwan-
towej (zwykle dyskretnej) G oraz algebry von Neumanna L*(G). Skupiamy sie na sred-
niowalnosci dla grupy kwantowej G oraz w*-w pelni dodatniej wlasnosci aproksymacyjnej
(w*-CPAP) dla L*>°(G). Zwiazki takie znane sa w literaturze w sytuacji gdy G ma Sladowe

~

calki Haara (czyli G jest typu Kaca), jednak dla ogolnych kwantowych grup dyskret-
nych réwnowaznos$¢ miedzy $redniowalnoscia G a w*-CPAP algebry von Neumanna L*(G)
jest problemem otwartym. UzyskaliSmy wynik czeSciowy: réwnowaznos$é ta zachodzi jesli

zmodyfikujemy w*-CPAP tak aby brata pod uwage rowniez algebre (°(G).

Rozdziatem 7 jest dodatek - zawiera on podstawowe informacje dotyczace teorii catek
prostych oraz lematy z teorii operatoréw i grup kwantowych.



Introduction

Let G be a locally compact? abelian group. With GG we can associate CAJ, the set of (strongly
continuous) irreducible representations. Since irreducible representations of abelian groups
are one-dimensional, we can introduce on G a multiplication via (xn)(9) = x(g)n(g) (x,n €
@,g € (). Once equipped with the appropriate (compact — open) topology, G becomes
a locally compact abelian group, known as the dual of GG in the sense of Pontryagin. We
can perform this construction also for G — we will end up with the original group: we have

G ~ G, where g € G corresponds to the representation of G given by G > x — x(g) € T.
The most known examples of groups dual in the sense of Pontryagin are R~Rand T~ Z.

It is a natural question to ask, whether the Pontryagin duality can be extended in some
way to the larger class of all locally compact (not necesarilly abelian) groups. A problem
that arises when one tries to define G is as follows: if G is a locally compact group which
is not abelian, then it has irreducible representations acting on Hilbert spaces of higher
dimension. In this situation we do not have a natural way of defining multiplication on
the set of irreducible representations — tensor product of irreducible representations does
not need to be irreducible.

One of the conclusions that we may draw from these considerations is the constatation,
that in order to obtain a satisfactory theory closed under duality and extending the theory
of abelian groups, one has to include also objects which are not groups — such objects are
usually called quantum groups. Various definitions of quantum groups were proposed: let
us mention the theory Kac algebras [36]. The work of Woronowicz turned out to be a
breakthrough. He defined compact quantum groups (and dual discrete quantum groups)
in the language of C*-algebras, and constructed a non-trivial (i.e. not classical or dual to
classical) compact quantum group SU,(2) [99, 101, 70]. A great success of Woronowicz’s
definition was the result showing existence and uniqueness of the Haar integral on any
compact quantum group. The most popular definition of locally compact quantum groups
was proposed by Kustermans and Vaes [57, 56|, it is this definition we will use in our
dissertation (an alternative definition was proposed by Woronowicz [100]). Unlike in the
definition of Woronowicz, this time the starting point is the language of von Neumann
algebras and existence of Haar integrals has to be postulated as a part of definition. Every
locally compact group G can be treated as a locally compact quantum group in the sense of
Kustermans and Vaes, wheras the dual quantum group G is associated with the operator
algebras studied in the abstract harmonic analysis: group C*-algebras C:(G), C*(G) and
the group von Neumann algebra L(G).

An exceptionally interesting phenomenon that appears in the theory of quantum groups
is non-traciality of Haar integrals; if we denote the Haar integral on SU,(2) (0 < ¢ < 1) by

h, then we can find such a,b € C(SU,(2)) for which h(ab) # h(ba). Non-traciality of Haar
integrals is a source of many intriguing problems which are at the heart of this disserta-

’In this introduction we assume that locally compact spaces are Hausdorff.



tion. Using the Tomita—Takesaki theory we can define groups of modular automorphisms
(09 )ier, (07 )ser associated with the left ¢ and the right ¢ Haar integral. Besides those,
there is also a third group of automorphisms — the scaling group (7;)icg. These maps act
on the von Neumann algebra L>°(G), called the algebra of bounded functions on the locally
compact quantum group G. We do not see these groups of automorphisms in the classical
case (they are trivial). However, groups of modular automorphisms appear already in the
case of quantum groups dual to classical ones. If G is a classical locally compact group,
then the Haar integral @ on G is tracial (equivalently: the modular automorphisms (07 ):cr
are trivial) if, and only if G is unimodular. We can see in this example, that there is a
relation between unimodularity of a quantum group, and traciality of Haar integrals on
its dual. In the general case, this connection is more complicated — among others, we will
study relations of this type in the Section 3.

In Section 1 we introduce the notation that will be used in the dissertation. In the next
section we recall the basic results concerning the theory of weights on C*-algebras and von
Neumann algebras, including results coming from the Tomita—Takesaki theory. Next, we
introduce necessary notions and results from the theory of Woronowicz and Kustermans—
Vaes. We also present a couple of examples of locally compact quantum groups.

Section 3 is devoted to the theory of type I quantum groups. We start with introducing
the seminal result of Desmedt from [31]. Tt establishes an existence of the Plancherel
measure and associated objects. In particular, it gives us a unitary operator Q : LZ(G) —
fli(G) HS(H,) du(m) which transports the von Neumann algebra LOO(@) onto the direct

integral fl?i(G) B(H;) ® 1-du(r) and allows us to express the left Haar integral ¢ on G
using a measurable field of strictly positive, self-adjoint operators (Dy)xcim(c) (We also

have an analogous result for the right Haar integral @/D\ — it uses another field of operators
(Ex)rem(c)). After recalling the result of Desmedt, we further develop results of Caspers
obtained in [17, 18]. Among others, we obtain expressions for the operators associated
with G, G on the level of direct integrals (theorems 3.24, 3.25):

S= ([ (B dum)Qr,
Irr(G)
@D

Vi =0;( /1 " D* @ (D)7 du(w)) Qr (0.2)

) S ) )
ot =vt Qi (| DXE @ lg-du(r))Qp
Irr(G)

for t € R, where V7, Vg are the modular operators associated with integrals IZ, o, v is

the scaling constant, and ¢ is the modular clement of G (see Section 2.2). In the next
part of this section, we study implications between conditions like unimodularity or tra-
ciality of the Haar integrals. In the case of type I quantum groups, we use previously



obtained equations (like these in (0.2)) to express these properties in terms of operators
D, E; (m € Irr(G)). In the last part we describe two examples of type I quantum groups:

the discrete quantum group SU,(2) and the quantum group az + b. Results collected in
this section are taken from the paper [49].

In Section 4 we present the theorem obtained together with Piotr Sottan in [51]: it says
that the quantum disc (described by the Toeplitz algebra) does not admit a structure of a
compact quantum group. The proof we present uses theory of type I quantum groups and
results obtained in Section 3.

The next section contains results obtained together with Mateusz Wasilewski in [52].
The problem we were studying is a question whether the von Neumann algebra ‘50; gen-

erated by characters is maximal abelian in L>°(O}.), the algebra of bounded functions on
the quantum orthogonal group O}, in the non-Kac case (i.e. when the Haar integral is
not tracial). We obtained a negative answer. Our techniques allowed us to obtain also
an interesting result concerning the von Neumann algebra L>°(U}) of bounded functions
on a quantum unitary group Uj: (under some conditions) we showed that the relative
commutant ‘5(’]; NL>®(U}) is not contained in CKU;. These results were obtained using the

notion of quasi-split inclusion 6 C L*°(G). In this section we also present a construction
of a compact quantum group H, which appears as the bicrossed product H = SU,(2) < Q.
It has interesting properties: some of its scaling automorphisms are inner, and its von
Neumann algebra L°°(H) is the injective type 1., factor.

In Section 6 we present results connecting approximation properties of a (usually dis-
crete) quantum group G and the von Neumann algebra L*°(G). We focus on amenability
for the quantum group G and w*-completely positive approximation property (w*-CPAP)

~

for L=(G). Connections like this are present in the literature in the case when G has
tracial Haar integrals (that is, when G is of Kac type), but in the general case of discrete
quantum groups, equivalence between the amenability of G and w*-CPAP of L“(@) is
an open problem [13, 7|. We obtained a partial result: equivalence of this type is true,
provided we modify the w*-CPAP in a such way that it takes into consideration also the

von Neumann algebra (>(G).

Section 7 is an appendix - it contains basic information regarding theory of direct
integrals and some lemmas from the theory of operators and quantum groups.
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1 Notation

We will write ®4,, ®,® for respectively: the (algebraic) tensor product of vector spaces,
the minimal (spatial) tensor product of C*-algebras and the spatial tensor product of von
Neumann algebras. The tensor flip will be denoted by Y.

Whenever we have an unbounded operator x on a Hilbert space H, its domain will be
denoted by Dom(z) C H. If x,y are unbounded operators on H, then x oy is given by

zoy: Dom(zoy)={£ € Dom(y)|y¢ € Dom(z)} 5 £ — z(y€) € H.

If x oy is closable, its closure will be denoted by xy.

Let H be a Hilbert space. The identity operator on H will be denoted by 1y (or 1 if it is
clear from the context on which space 1 acts) and KC(H) will be the C*-algebra of compact
operators on H. Scalar products are linear from the right. We denote by H the complex
conjugate of H, i.e. the Hilbert space consisting of symbols £ (¢ € H) and the Hilbert space
structure given by

Oég: ) g+ﬁZM7 <g’ﬁ>:<7]|§> (QEC,&,UEH).

The canonical antilinear map H 5 § € € H will be denoted by Jy. With T € B(H) we
associate the operator T'T € B(H) acting via

El

TTE=T¢ (£€H).

The map B(H) > 7+ T'" € B(H) is easily seen to be linear, bijective, antimultiplicative
and *-preserivng. If 7 is a representation of a C*-algebra A on H, then 7¢ will denote the
representation of the opposite algebra A on H given by

7(a) = w(a)" (a € A).

For a C*-algebra A, its spectrum will be denoted by Irr(A). If 0 is a weight on A,
its GNS Hilbert space, GNS map and representation will be denoted by Hy, Ag, mg. The
modular conjugation and the modular operator will be denoted by Jy, Vg (for details and
assumptions see Section 2.1).

All von Neumann subalgebras are assumed to be unital unless said otherwise.

If (X, p) is a measure space, then sup,.y (or sup) will mean the essential supremum.



2 Preliminaries

In this disseration we will work in the language of operator algebras: C*-algebras and von
Neumann algebras. We refer the reader to the sources |33, 34, 78, 81, 82, 10| for their basic
theory.

Let A be a C*-algebra. According to the Gelfand-Naimark theorem, there is a faithful
nondegenerate representation m of A on some Hilbert space H (nondegeneracy of 7 means
that the set {m(a)¢|a € A,§ € H} is linearly dense in H). Because 7 is faithful, let us
write a instead of m(a) (a € A). Define

M(A) = {T € B(H) | TA, AT C A}.

This is a unital C*-algebra known as the® multiplier algebra of A. It is easy to check that
A is an ideal in M(A). Note that when A is unital, we have M(A) = A — we will use the
C*-algebra M(.A) only when working with non-unital algebras. On M(.A) besides the norm
topology, there is also another useful topology known as the strict topology. We say that
a net (7;);ez in M(A) converges strictly to some T' € M(A) if T;a s Ta and aT; = aT
for all a € A. Tt is not difficult to see (using an approximate identity) that A is strictly
dense in M(A).

Let A, B be two C*-algebras. A morphism from A to B is a x-homomorphism 7: A —
M(B) which is nondegenerate in the sense that span 7(A)B = B. Then 7 extends uniquely
to a strictly continuous x-homomorphism M(.A) — M(B). We denote this extension by the
same letter m. The set of morphisms from A to B will be denoted by Mor (A, B).

2.1 Theory of weights

Let A be a C*-algebra (in particular A can be a von Neumann algebra).
Definition 2.1. A weight on A is a map 6: A, — [0, +0o0] such that

m 0(a+0b)=0(a)+0(b) (a,be Ay),

m O(Aa) = N(a) (A € Rsp,a € Ay).

A basic and motivational example of a weight is given by the integration 6(f) = [, fdu,
where p is a measure on a topological space X (and then A = Cy(X)) or on a measurable
space X (and then A = L*(X, pn)).

When A is non-commutative, 6 should be thought of as a “non-commutative integral”
or an integral on a “non-commutative space”. An example of weight on such an algebra is
given by the trace §(7') = Tr(7T") where A = B(H) is the von Neumann algebra of bounded
operators on a Hilbert space H. A well known property of Tr is its traciality: equation
Te(TT*) = Tr(T*T) holds for all T € B(H). However, not all weights are tracial: for

30ther (equivalent) constructions of the multiplier algebra are also possible — this will be the most
convenient for us. It does not depend on the choice of a faithful nondegenerate representation.



example, we can take a positive operators a € B(H)™ and form a new weight on B(H)
via (T') = Tr(aT). In general (more precisely, when a ¢ Rsol), such ¢ will not be
tracial. This causes a lot of difficulties and at the same time introduces new intriguing
phenomena — in this section we will give an overview of basic tools that one uses to deal
with non-traciality of weights.

First, let us introduce more notation associated with a weight 6 on A.

Definition 2.2. Let 6 be a weight on a C*-algebra A. Define the following subsets

My ={a € A;|0(a) < +oo}
Ny ={be A|0(b'b) < +o0}
My = span M, = N;MN,.

One can check that sm; is a face in A, My is a left ideal and My is a x-subalgebra
in A. Furthermore, 6 extends uniquely to a linear map 9y — C — following the standard
convention, we will denote this map also by 6.

The above subsets are adaptations of subsets used in a (classical) integration theory:
if 0 is a weight on L°°(X, ) given by integration, then

My =L(X, p) NLYX, )t 9 = L(X, pu) NL3(X,p), My =L°(X, u) NLY(X, p).

Definition 2.3. A weight 6 on a C*-algebra A is said to be faithful if (a) = 0 implies
a=0foralla € A,.

Besides faithfulness, one usually imposes more conditions on weights. These are however
different, depending on whether A is a von Neumann algebra or a C*-algebra. This is why
we postpone them to the next subsections.

Before we deal with more advanced theory, let us recall the GNS representation®. As
usual, let 6 be a weight on a C*-algebra A. We introduce a sesquilinear map via

My X Ny > (&,b) — <&‘b>9 = Q(Cl*b> eC

and let ker(f) = {a € A|6(a*a) = 0}. Next, define a Hilbert space Hy as the completion
of the quotient space DMy / ker(#) under the norm induced by (- |-)g. Let us introduce maps

m Ag: 9y — Hy the canonical map,
n m9: A — B(Hy) representation given by my(a)Ag(b) = Ag(ad) (a € A, b € MNy).

7o is called the GNS representation associated with 6. It can be showed that my is
always non-degenerate and faithful if 6 is faithful. In such case, we will not write my and
simply treat A as a C*-subalgebra of B(Hy).

We refer the reader to |77, 78, 81, 82| for more information about weights and proofs
of results presented in this section.

Tt is named after three mathematicians: Israel Gelfand, Mark Naimark and Irving Segal.

10



2.1.1 Theory of weights on von Neumann algebras

Let us assume now that A = M is a von Neumann algebra with a weight 6.
Definition 2.4. We say that

n 0 is normal if §(sup,c7 a;) = sup,c7 0(a;) for all norm-bounded increasing nets (a;);ez
in M™,

m 0 is semifinite if My is w*-dense in M.

We will be dealing solely with normal, semifinite, faithful® weights (abbreviated n.s.f.)
on von Neumann algebras. If 0 is normal, its GNS representation mp: M — B(Hyp) is nor-
mal, i.e. w*-continuous. By a result of Haagerup (see e.g. [77, Theorem 1.3|) the following
conditions are equivalent

m 0 is normal,

m 0 is lower w*-semicontinuous, i.e. the set {a € MT |0(a) < A} is w*-closed for all
A >0,

m 0(a) = sup{w(a)|w € M/ : w <0} for all a € M.

Using this result one can quite easily show ([82, Theorem VII 2.7]) that on every von
Neumann algebra there is a n.s.f. weight.

A theory that is indispensable when dealing with non-tracial weights is called the
Tomita—Takesaki theory. It has its begginings in the 60’s, in the work of Tomita. Initially
however, his work did not receive much attention. It was only when Takesaki improved it
and gave clearer presentation (|80]), when it was recognised as a fundamental achievement.
To name a few consequences, it were these results that lead to a proof of the tensor product
commutation theorem ( (M; ® My)' = M} ® M, for all von Neumann algebras M;, My) and
to classification results due to Connes and Haagerup (|23, 43]).

For a fuller account on the Tomita—Takesaki theory, see e.g. [80, 82, 77, 78|, here we
will present a very brief overview. Our main motivation for introducing this theory, is to
use it for Haar integrals on locally compact quantum groups (which are n.s.f. weights with
special features). This is why we will use the more down-to-earth language of weights,
rather than more abstract theory of Hilbert algebras.

Assume that 6 is a n.s.f. weight on a von Neumann algebra M. Recall that we consider
M as a subalgebra of B(Hy). Consider an (unbounded) antilinear map

Sgyoi DOH](S@()) = {Ag(&) | a < mg N mg*} — Hg: A@(CI,) — AQ(CL*>.

®One can work with weights on von Neumann algebras which are normal and semifinite but not nec-
essarily faithful, by introducing the support of a weight [82, Section VII]. We do not need this level of
generality, hence we will stick to faithful weights for the sake of simplicity.
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Because we do not assume that 6 is tracial, this map can be unbounded. It is however
densely defined and closable. Let Sp: Dom(Sy) — Hy be its closure. Next, let us introduce

1
maps Jp and Vj via the polar decomposition of Sp:

So = JN? (2.1)

Operator Jy, called the modular conjugation is antilinear, bounded, self-adjoint and in-
volutive. Vjy called the modular operator on the other hand is (in general) unbounded,
linear, strictly positive and self-adjoint. The main result of Tomita—Takesaki theory is the
following:

Theorem 2.5.
a JyMJy = M,
m For allt € R we have VEMV," = M.

The second part of the above theorem allows us to define maps
of: M2aw ViaV," €M (t€R). (2.2)

One can easily check that each ¢? is an automorphism — (09);cr is called the modular group
of 6. Tt is not difficult to see that 6 is tracial if, and only if V, = 1 (and consequently
o! =id (t € R)).

In practical calculations, it is often desirable to “move” y outside Ay in an expression of
the form Ag(zy) (we will not care for a moment about domain issues). When 6 is tracial,
we can do this as follows:

No(zy) = JoNo(y"z") = Joy™No(2") = Joy" JoAo(7)

simply because Sy = Jy. However, when 6 is non-tracial we need to take into consideration
the modular operator of 6, i.e. Vy. Performing similar (informal) calculation and using
JoVi =V, 7Jy (2 € C) we arrive at

1 1 1 1
Ag(xy) = JngAg(y*x*) = J(;ng*/\g(x*) = ngg y*ngg Ag(l’)
= nggy*VfJQAg(a:) = Jg(nyvg)*JgAg(x)

11
Notice (looking at expression (2.2)) that V, 2yV ¢ looks as o?(y) for t = z = i/2. However,

so far we have defined o only for t € R. Clearly the definition of af/z(y) must raise some
11
difficulties of a technical kind — simply because the operators V;, V,? are unbounded.

In order to make sense of the expression ¢?(a) for z € C, we will use an analytical
continuation. We say that an operator a € M belongs to the domain Dom(c?;.) of o?,_ if

12



there exists a function F': {w € C| —e; < Re(w) < g9} — M for some 1,9 > 0 such that
—e1 < Re(z) < &y, which is w*-continuous on the whole strip, analytical in its interior and
satisfies®

F(it) = d%(a) (t €R).
0

Then we define 0%, (a) via

F(z) = 0%;.(a).

In other words, a € Dom(o?,,) if the map iR > it — o?(a) € M extends to a w*-continuous
map on some vertical strip containing z, which is analytic in its interior.
The family of (linear) maps (0%).cc have nice properties, to name a few we have

a € Dom(c?) = a* € Dom(c?), ¢%(a)* = o%(a®),

a,b € Dom(c?) = ab € Dom(c?), o%(ab) = o?(a)o?(b),
a € Dom(c?), 0%(a) € Dom(c?) = a€ Dom(c?, ), 0% (0?(a)) =0’ (a)

Z/

I3

and

a € Dom(c?) = o%a) =ViaV,* [ Dom(v;%)

z z

where above ~ stands for a closure of a closable operator (see |77, Section 2.14]). Further-
more, for each z € C the domain of ¢ is SOT*-dense in M.
One can rigorously prove (|77, Proposition 2.14|) that if y € Dom(af/Q) then

No(zy) = Jooip(y)* Joho(z)  (x € Ny).

Another useful property we would like to mention is the following: we say that an element
a € M is called analytic (w.r.t. the modular group (¢?);cr) if @ € .. Dom(c?). For such
an element we have ([77, Section 2.15])

zeC

‘tha Q ‘th, aﬂﬁg, Dﬁga Q mg.

We have said that the Tomita—Takesaki theory helps us dealing with non-tracial weights.
Let us end this part with a result which is an extension of the trace property: let z € C.
If x € My* N Dom(c? ), 0%, € Ny, y € Mg N Dom(a?), % (y) € Ny* then (|77, Proposition
2.17])

0(xy) = 0(ol(y)ol_i(x)).

Let 6,1 be two n.s.f. weights on a von Neumann algebra M. We will now briefly describe
the notion of the Connes’ cocycle derivative between 6 and 7, which is a non-commutative
analog of the classical Radon-Nikodym derivative.

There exists a unique SOT-continuous family ((D : Dn);)cr of unitary operators in M
such that

« (DO : Dn)yys = (D6 Diy),o?((DO: Dn),) (1,5 € R),

SSetting F(it) = o (a) rather then F(t) = 0?(a) is a matter of convention.
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n (D9 : D?])t Ug(mg* N ‘ﬁn) =M N mn (t € R),

m for x € My NN,*, y € MNy* NN, there exists a continuous function F': {z € C|0 <
Im(z) < 1} — C, analytic in its interior, which satisfies

F(t) =6((D : Dn)rof(y)x), F(t+i)=n(x(D0: Dn)ioi(y)) (t€R),

w o/(x) = (DO : Dn);ol(z) (DO : Dn); (t € R, z € M).

For a full discussion, see [82, Section VIIL3|.

We will use the cocycle derivative for the left and the right Haar integrals on G (see
Section 2.2). More precisely, we will use the following result: let as before 6,7 be two
n.s.f. weights on a von Neumann algebra M. Assume that there exists a positive number
v > 0 such that 6 o o] = v7*0. Then ([87, Proposition 5.5]) there exists a strictly positive,
self-adjoint operator ¢ affiliated with M such that

o} (6") = v™'6', (D@ : Dn), = pait’ it (s,t € R)

and 6 = n; (and alternative notation for 7y is n(d2 - 6%)). Let us explain the meaning of
this last assertion (see [87]). The weight 75 is defined as follows: first, let

My = {a € M |aod? is bounded and ad? € N, }.
It is a core for A,, and we have
Aps: My D Ny 3 a— Ay(ad?) € H,,.

The weight ns is n.s.f. and its GNS representation can be identified with this of n. Fur-
thermore, the modular conjugation, modular operator and the modular automorphisms of
75 are given by
Ty = vid,, VI =8 ],60 )V, o (a) = 6] (a)s " (t € R,a € M).
We note that these results can be extended to a situation when v is a strictly positive,
self-adjoint operator affiliated with Z(M).

2.1.2 Theory of weights on C*-algebras

In the theory of locally compact quantum groups, we will occasionally encounter also
weights on C*-algebras. These are usually more difficult to handle than weights on von
Neumann algebras, hence — whenever possible — we will try to work with von Neumann
algebras. For material presented here, we refer to |[53| (see also |61, Appendix CJ).

Let A be a C*-algebra with a weight 0. As before, we start with introducing conditions
on 6.

14



Definition 2.6. We say that 6 is
n densely defined (sometimes called locally finite) if My is dense in A,
n lower semicontinuous if {a € A, |0(a) <t} is closed in A for all £ > 0.

Let (Hg, mg, Ag) be the objects given by the GNS construction for . We would like
to know that we can define a n.s.f. weight # on the von Neumann algebra my(A)" via
Omg(a) = 0(a) (a € A,). This is not always the case — we need to introduce an extra
condition on 0:

Definition 2.7. Assume that 6 is a densely defined, lower semicontinuous weight on A.
Furthermore, let (0;)cr be a continuous group of automorphisms of A, i.e. the map R 3
t — o(a) € A is continuous for each a € A. We say that 0 is a KMS weight with respect

to (01)ier if
m oo, =0, forallt e R,

n for every z,y € M" NIy there exists a continuous function on a strip f: {z € C|0 <
Re(z) < 1} — C, analytic in its interior, such that

Fit) = 0(on(z)y), flit+1) = 0(you(x)) (t€R).

We say that 0 is a KMS weight if there exists a continuous group (oy)cr with respect to
which 6 is a KMS weight.

(See |53, Theorem 6.36] and [53, Definition 2.8|). Group (0¢)cr is not always unique —
however, one can show that it is unique if the weight 6 is faithful.

By [53, Theorem 6.20], if 6 is a densely defined, lower semicontinuous KMS weight on
a C*-algebra A, then there exists a unique n.s.f. weight 6 on 75(A)” which extends 6 in the
sense that 6 o mp = 6. Furthermore we have [53, Section 6]

mo(04(a) = Viimg(a) V5", Ag(0n(h)) = VEAG(D) (a € A,b€ Ny, t € R).

2.2 Locally compact quantum groups

The definition of a locally compact quantum group which we will use was introduced by
Kustermans and Vaes in the seminal paper [56] (see also [57]). Their approach was to define
a locally compact quantum group G via a (possibly non-commutative) von Neumann alge-
bra L>(G) (playing a role of the algebra of (classes of) measurable bounded functions on
a "quantum space" G)7 and a map Ag: L=(G) — L™(G)® L™(G) called comultiplication
corresponding to the group operation. We also assume an existence of n.s.f. weights ¢, ¢
on L(G) satisfying the left/right invariance conditions — these are called Haar integrals
and should be thought of as integrals over G with respect to Haar measures. The precise
definition is as follows:

"Following this notational convention, the predual of L>(G) is denoted by L'(G).
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Definition 2.8. A locally compact quantum group G is a pair (L*°(G), Ag) consisting of
= a von Neumann algebra L>(G) and

» a normal unital x-homomorphism Ag: L*(G) — L*(G)® L*™(G) satisfying
(A@ X ld) e} AG == (ld X A@) e} A(g.

Furthermore, we assume existence of n.s.f. weights ¢,1: L>*(G)* — [0, +00] such that

p((w®id)Ag(r)) = w(l)e(r), P((d @ w)Ag(y)) = w(l)P(y)
for all w € L'(G)*,z € ML,y € M.

(We will sometimes write A instead of Ag if there is no risk of confusion).

In this section we will present fundamental results of the theory which will be used
throughout the dissertation. We will not present their proofs — it would take up too much
space — rather than that, we refer the reader to the literature. Besides the above mentioned
papers [57, 56| results presented here come from Van Daele’s work 93] and Kustermans’
paper concerning universal quantum groups [55]. See also [36].

To begin with, let us denote by L?(G) the GNS Hilbert space associated with a left Haar
integral ¢. Since ¢ is n.s.f., the von Neumann algebra L°°(G) is represented in a faithful
way on L*(G) — henceforth we will treat L°(G) as a subset of B(L*(G)). The canonical
map M, — L?(G) will be denoted by A,. The choice of the left Haar integral over the
right invariant one was arbitrary — luckily one can prove that there exists a number v > 0,
called the scaling constant, such that

pool =g, voof =y (tER).

This has a number of consequences®. First, the GNS Hilbert space of ¢ can be identified
in a canonical way with L*(G). Furthermore,

Jy =vid,, ViA(z)=v 2 A (0] (z)) (z €N, teR) (2.3)
and there exists a strictly positive self-adjoint operator ¢ affiliated with L*(G) such that
142

(Dy: Do)y = 128", = (62 -62) and  oV(z) = 6"of(2)5 " (2.4)

for z € L>°(G),t € R. The operator § will be called the modular element® of G. Whenever
@ = we say that G is unimodular — this happens if and only if 6 = 1. Let us denote by
A, the analog of map A, for 1. Then the identification is given by A,(z) = Ay (z02) for

8See a slightly broader discussion of this result in Section 2.1

9We use this name rather then “modular function” because in the classical setting the modular function
is defined as the Radon—Nikodym derivative “dy/dy” — here morally speaking we have “§ ~ di/dy”,
which could lead to confusion.
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sufficiently nice elements x. To be more precise, this equation holds provided z € 9, is an
operator for which the composition z o 52 is closable and its closure 282 belongs to 91,.
Starting from the axioms in definition 2.8, one can construct a number of objects. Besides
the modular element J, the most important are the two unitary operators W,V acting on
the Hilbert space L?(G) ® L*(G). They are defined by the following equalities:

(W @)W Ap(z) = Ap((w @ id)Ag(z)),  (([d ®w)V) Ay(y) = Ay((id ® w)Ac(y))

which hold for w € B(L*(G)).,x € M,,y € Ny. It is not dificult to show that the left leg
of W belongs to L™(G) and the right leg of V belongs to L*(G)’ (see equation (2.17)).
Furthermore, these operators are related to the comultiplication via

Ag(z) =W (1 ®@x2)W, Agz)=V(@e1)V" (xzecL*G)) (2.5)
and (using the leg numbering notation)
(AG (059 1d>W = W13W23, <ld X A((})V == V12V13. (26)

It is also not terribly difficult to establish these properties. In fact, the toughest feature of
these operators to show, is the fact that they are unitary. Relations (2.6) are equivalent
to the so-called pentagonal equations

WasWis = WiaWi3Was,  VasVipg = V5 Vi3Vas. (2.7)

Before we move further, let us mention here a number of useful density results:

*

(([d®@w)W|w e BILAG)).} =L1L%G),

*

(G)

{(w®id)V|w e BILAG)).} =L%(G),

span® {(id ® w)Ag(z) |w € LY(G), z € L®(G)} = L®(G),
span” {(w®id)Ag(z) |w € L}(G),z € L®(G)} = L=(G).

The property of W,V being unitary turns out to be closely related to the existence of
the antipode S. It is a densely defined, w*— closed operator on L>°(G) such that for any
w € B(L*(G)), we have (id ® w)W € Dom(S) and

S((id ® w)W) = (id @ w)W™.

The space of operators (w ® id)W (w € B(L*(G)),) forms a w*- core for S.

It is rather difficult to work directly with the antipode S. Instead, we will use its po-
lar decomposition. First, there exists a linear, normal, x-preserving, antimultiplicative
bounded operator R: L®(G) — L>*°(G) satisfying R? = id (see also equation (2.15)). This
operator is called the unitary antipode of G. Next, one can define a point w*— continu-
ous group of x-automorphism of L™(G), (7)er called the scaling group of G satisfying
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Ro7, = 1,0 R(t € R). Its analytic continuation to the point z = —% together with R form
the polar decomposition of S, namely

S=RoT ..

M

[t turns out that the Haar integrals are relatively invariant under the scaling group, i.e.
po1 = v, o1 = v ). Using the scaling group of G one can define a strictly positive
self-adjoint operator P via

PUA,(z) = viA,(ry(z)) (z € Ny t €R).

This operator implements (73)icr, i.e. 7(z) = PlaxP~ " (z € L®(G),t € R) (see also
equation (2.13)) and satisfies

PUAu(y) = v 3Au(n(y) (y € Myt € R),

Besides the scaling group we have two modular automorphism groups coming from the
Haar integrals, (0f)icr, (07 Jier. They are uniquely determined — it is a consequence of
the important and non-trivial result that Haar integrals on G are unique up to positive
constants. In particular, we can choose these constants in such a way that the equality
wo R =1 holds. Let us end this part of Section 2.2 with a collection of formulas connecting
the already defined objects:

Agory=(®m)0Ag = (0] ® aﬂ) o Ag,
Agoof =(rn®af)olg, Agoo! =(0f ®7)o0Ag, (2.8)
AgoR=(R®R)oAY, Roof =0¥,0R,
where A7 is the comultiplication Ag composed with the tensor flip. Furthermore, groups
of x—automorphisms (67 )icr, (07 )icr, (7:)icr commute. There is also a number of formulas
concerning the modular element!? §:
Uzp((szs) — Vits(;is’ O_;,Z)((SZS) — Vits5is7 Tt(éis) — 51’57 R(ézs) — 6—is (t, s € R) (29)

It turns out that we also have Ag(6") = 6" ® 6" (t € R) though it is more difficult to prove
and requires (at least in the approach of [93]) passing to the dual quantum group.

An important result in the theory of locally compact quantum groups is an existence
of the dual locally compact quantum group G. Its von Neumann algebra LOO(G) is defined
via

*

L*@G) = {(wei)W|w e L'(G)} ,

in particular it is represented on L?*(G). To see that this subspace is closed under mul-
tiplication one has to use the equation (Ag ® id)W = W;3Wy3. It is also closed under

0Whenever possible we will use the unitary operators 6 € L(G) (¢t € R) rather than § to avoid
unnecessary technical complications.
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the adjoint — we have ((w ® id)W)* = (o' ® id)W for nice enough w € L'(G) (namely for
w analytic with respect to the group of automorphisms of L'(G), predual to (7;)icr) and
certain w’ € L'(G). Recall that x stands for the flip map on B(L*(G))® B(L*(G)). Define

unitary operator'? W = X(W*). Using this operator we define comultiplication on L>(G)
as
Ag(z) =W (1 ®@2)W (xeL*G)).

Tt turns out that W is the right “W operator’'? for G. Showing that there exists a left-
invariant weight @ on L>°(G) is highly non-trivial and is done using the theory of Hilbert
algebras. One can identify the GNS Hilbert space for $ with L?(G) and basically by
definition of Az we have

(Ao (2) [Ap((w @ 1d)W)) = w(z”)

for x € 91, and “nice enough” w € L'(G). The right Haar integral on G is defined via
1 = o R, where R R
R(z) = Jya*J, (x € L*(G)). (2.10)

is the unitary antipode of G and, as usual, J, is the modular conjugation associated with
. _

There is a number of formulas relating objects associated with G and G. To begin with,
the scaling constant of G is 7 = v~! and P = P holds. Next, the modular conjugation J;
can be used to relate operators W and V:

V= (J @ Jp)x(W*)(J5 ® Jp), (2.11)

we also have

(R® R)YW = W. (2.12)

Another important relation expresses the scaling group of G using modular operators V:
n(x) = ViaVz" (zeL*(G),t € R). (2.13)

There are also various commutation relations:

Jody = vid,Js, Vit = JV, ", Vit = 6t(J, 6" J,) Vi
J, P = J,P", Vispit = Pty Vispit = Py, (2.14)
v:’z _ 3—2‘tP—it’ 5z‘t(§z‘s _ Vistéisait7 p2it 5#((]@5%!]@)5#((]@5#(]@).

One can show that the bidual of G is isomorphic to G, so in particular we can put hats in
all of the above formulas — for example equation (2.10) implies

R(z) = Js2*J; (x € L=(G)). (2.15)

1'We will follow this convention and decorate objects corresponding to the dual group with hats.
2Known also as the Kac- Takesaki operator.
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We can obtain information concerning the relative position of von Neumann algebras

L=(G),L=(G) inside B(L*(G)):

L=(G)NL®(G) =C1, L*(G)NL>®G) = Cl, 2.16)
L=(G) NL®(@G) =C1, L*G)NL>G) = CI. '

So far we have considered quantum groups described using von Neumann algebras. Sim-
ilarly to the classical theory, aside from the algebra of essentialy bounded measurable
functions (i.e. L>(G)), there is also the algebra of bounded continuous functions which
vanish at infinity: Co(G). It is defined via the following formula:

Co(G) = {(id ® w)W |w € B(L*(G)),}.

It is not hard to see that

~

W e M(Co(G) @ Co(G)) € L=(G)@LX(G). (2.17)

Since W is unitary, Co(G) C B(L*(G)) is non-degenerate. Note also that (2.17) implies
that Ag restricts to a morphism, i.e. an element of Mor(Cy(G), Co(G) @ Co(G)). It is also
not dificult to check, using already introduced relations, that the scaling group, modular
automorphisms (associated with ¢ and 1) and the unitary antipode preserve Co(G). Haar
integrals after restriction become faithful, densely defined and lower-semicontinuous KMS
weights on the C*-algebra Cy(G).

Another important C*-algebra is the universal version of the C*-algebra of continuous
functions vanishing at infinity: C§(G). It was introduced by Kustermans in [55], let us
mention here only these results which will be of use to us.

First, there is a unitary operator

~

W e M(Cj(G) ® Co(G))

satisfying

CY(G) = {(id ® w)W |w € B(L*(G)).}.
Next, there exists a x-epimorphism

~

such that (Ag ® id)W = W. Similarly, we can define C§(G) and corresponding

o~ o~ ~

Ag: C5(G) = Co(G), W € M(Co(G) ® Cy(G)) :  (Id®@Ag)W = W.
There is also an operator W with “both legs universal”, i.e. W € M(C(G) ® C%(G)). It

satisfies
(A¢ @id)W =W, (id® A@)W =W.

20



The above objects have similar properties to their reduced versions. Using “W operators”
one can define comultiplications on the universal C*-algebras, there are also lifts of the
Haar integrals, corresponding modular automorphisms, scaling group, modular element
and the unitary antipode. These objects will be decorated with “, e.g. " is the left Haar
integral on C{(G). Note however that ¢* " are not necessarily faithful.

A result of utmost importance is the fact that (non-degenerate) representations of C*-
algebra Cg(@) are in one-to-one correspondence with (unitary) representations of G, i.e. uni-
taries U € M(C(G)®K(Hy)) (where Hys is a complex Hilbert space) satisfying (Ag®id)U =
Ui2Uy3. This correspondence is given by the following prescription: having a representation
m € Mor(C§(G), K(Hy)), the corresponding representation of G is given by U = (id @ )W
— one can show that all representations of G arise in this way.

Let us introduce a useful notation:

~ ~

Aw) = (w@id)W € Co(G), N(w) = (w®id)W € C4(G)

for w € L'(G). The images of these maps generate Co(G), Cg(@).

In a couple of places (most notably Section 6, but also when discussing examples)
we will meet the notions of amenability and coamenability of a locally compact quantum
group. They are defined as follows:

Definition 2.9. Let G be a locally compact quantum group. We say that G is amenable,
if there exists a state m € L>(G) (called a mean) such that

m((w®id)Ag(r)) = m((id ® w)Ag(z)) = m(z)w(l) (r € L™(G),w € L}(G)).

We say that G is coamenable, when Ag is an isomorphism — in such case we identify Cy(G)
with C§(G).

Let us mention that coamenability has a number of equivalent formulations [8, Theorem
3.1].

One can quite easily see that coamenability of G implies amenability of G |8, Theorem
3.2], while whether the converse holds is a major open problem. It is known that amenabil-
ity of G implies coamenability of G, when G is compact — this beautiful result was proved
by Tomatsu [86] (and independently by Blanchard, Vaes).

2.2.1 Example: classical locally compact quantum group and its dual

Let us describe here the motivating example of a locally compact quantum group, namely
the quantum group associated with a classical group. Let G be a locally compact (Haus-
dorff) topological group, with Haar measures py, g chosen in such a way that ugr(E) =
pr(E~) for Borel E C G. For the sake of simplicty, assume that G is second countable.
The associated locally compact quantum group G (denoted also by G) is described via
L*(G), the L™-space associated with the left Haar measure, comultiplication Ag given by

Ac(N)(,y) = fley) (f € LT(G), v,y € G)
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and the Haar integrals
p(f) = /GfduL, U(f) = /GfduR (f € L=(G)T).

The associated C*-algebras Cy(G), CY(G) are both equal t0'® Cy(G) and Ag is the identity
map. Since L>°(G) is commutative, the modular automorphisms of ¢, v are trivial. The
scaling group is also trivial and we have v = 1. Consequently, P = 1 and the antipode is
equal to the unitary antipode given by

R(f)(z) = f(z™") (f €L¥(G), z € G).

The modular element ¢ is equal to the Radon-Nikodym derivative TR i.e. the inverse of
the usual modular function. R

The dual locally compact quantum group G = G is more interesting. Its von Neumann
algebra L°°(G) is equal to the group von Neumann algebra L(G), i.e. the von Neumann
subalgebra of B(L*(G)) generated by the image of the left regular representation. Next,

we have Cy(G) = CX(G), the reduced group C*-algebra and C§(G) is equal to C*(G), the
full group C*-algebra of G. Comultiplication on L(G) and C*(G) is given by

Ag(Az) =X ® A, and A%(ux) =u,Qu, (r€GqG)

where A\, u, (x € G) are the canonical unitaries in L(G), M(C*(G)). Both Haar integrals
on G are equal to the Plancherel weight (see [82, Section VIL.3]). It is tracial if and only
if G is unimodular. Indeed, we already know that P = 1, hence V?Z = 6! - see equation

(2.14). N.b., the dual version of this equation (i.e. after applying hats) implies that G is
unimodular. However, as P = P = 1 the scaling group (and the scaling constant) of G are
always trivial. Consequently

S) = RA\) = A (2 € Q).

We will see more examples of locally compact quantum groups in sections 2.3.1 — 2.3.4,
3.6, 3.7 and 5.4.

2.3 Compact/discrete quantum groups

Compact quantum groups were introduced by Woronowicz: in [99] he defined his famous
SU,(2) quantum group and later developed the general theory of compact quantum groups
[98, 101]|. In this section we will describe the basic theory of compact quantum groups
as well as their duals, i.e. discrete quantum groups [70]|. Besides the above mentioned
references we also refer the reader to [85] and a very well written book by Neshveyev and
Tuset [64].

13This means that G = G is coamenable.
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Definition 2.10. A compact quantum group G is a pair (C(G), A) consisting of
» a unital C*-algebra C(G),

» a unital x-homomorphism A: C(G) — C(G) ® C(G) satistying (A ®id) o A
= (id® A) o A and

span A(C(G))(C(G) © 1) = C(G) @ C(G) = span A(C(G)) (1 ® C(G)).

The fundamental result concerning a compact quantum group G is the existence of the
Haar integral, i.e. the unique state h € C(G)* which is left and right invariant:

(h ®id)A(a) = h(a)1 = (id @ h)A(a) (a € C(G)).

This result was proved by Woronowicz under the separability assumption on C(G) and
in general by Van Daele in [91].
The Haar integral provided by the above result does not need to be faithful. Let L*(G) be
the Hilbert space obtained by the GNS representation associated with h and let C"(G) be
the image of C(G) in B(L*(G)). Taking the bicommutant of C"(G) we get a von Neumann
algebra L>°(G). One can show that the comultiplication descends in a canonical way to
C"(G) and then extends to a normal map A" on L>(G). In the GNS representation, the
Haar integral becomes a vector state which we will denote by'* h". Tt turns out that the
quadruple (L*(G), A", h", h") is a locally compact quantum group in the sense of Definition
2.8. In particular, the left and the right Haar integrals are equal hence 6" = 1 and v" = 1.

There is also a more intrinsic characterisation of compact quantum groups among lo-
cally compact quantum groups: a locally compact quantum group G is compact if and
only if Co(G) is unital or equivalently one of the Haar integrals is a state [8, Proposition
3.1].

A feature that makes compact quantum groups especially amenable to concrete calcu-

lations is their very tractable and powerful representation theory — we will see in Section
3 that it is the case (to some degree) also for type I quantum groups.
Let G be a compact quantum group. Recall that a unitary representation of G on a Hilbert
space Hy is a unitary element U € M(C(G) ® K(Hy)) such that (A ® id)U = Uy3Uss. A
matrix element of U is an operator of the form (id ® w)U € C(G) (w € K(Hy)*). An
intertwiner between two representations U,V is an operator 7" € B(Hy,Hy) satisfying
(1®T)U =V(1®T). The space of intertwiners between U and V will be denoted by
Mor(U, V'), we will also write End(U) = Mor(U,U). We say that U is irreducible if the
only self-intertwiners are proportional to the identity operator 1, € B(Hy). Equivalently,
U is not equivalent to a direct sum of two representations. The fundamental results of the
representation theory are as follows:

4 other sections we will be dealing only with compact quantum groups with C(G) = C%(G) (the
universal form) or C(G) = C"(G) (the reduced form). In the latter case we will simply write h = h", etc.
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» irreducible representations of G are finite dimensional, i.e. dim(U) = dim(Hy) < +o0,

m every unitary representation of G is equivalent to a direct sum of irreducible repre-
sentations,

» the subset Pol(G) C C(G) formed by the matrix elements of unitary finite dimen-
sional representations of G is a dense x-subalgebra.

In fact, more can be said about Pol(G): together with the restricted comultiplication
it is a Hopf %x-algebra. The counit € and the antipode S act as follows:

(e®id)U =1y, (S@id)U=U""!

for any finite dimensional unitary representation U. In Section 2.2 we have said that with
any locally compact quantum group G we can associate a C*-algebra C{j(G) which is the
“universal version of the algebra of Cy functions on G”. When G is compact, the definition
of C4(G) (denoted then by C*(G) due to obvious reasons) is much simpler — C*(G) is
simply the enveloping C*-algebra of Pol(G) |7, Section 3.

We have seen in Section 2.2 that the modular theory of Haar integrals can be very inter-
esting: it gives rise to modular automorphisms, scaling group and the scaling constant. It
turns out that in the compact case it has its roots in the representation theory. Let U be a
finite dimensional unitary representation of G. We define the contragradient representation

U= (S®ju)U

(recall that ji: B(Hy) — B(Hy) is the canonical antimultiplicative isomorphism) and the
conjugate representation

U= (R® jy)U.

One can prove that both these elements are equvalent representations of G on Hy and U is
unitary, but U¢ not necesarilly so. One can perform the contragradient construction once
again and arrive at the representation U — it turns out that it is equivalent to U. If U is
irreducible, we define py to be the unique positive invertible intertwiner py; € Mor (U, U)
satisfying Tr(py) = Tr(p;'). For general unitary representation U, one defines py by
decomposing U into irreducible summands and then taking a direct sum of corresponding
operators (see |64, Proposition 1.4.4]) — it is a positive and invertible operator. The number
Tr(py) is called the quantum dimension of U, dim,(U) — in general it is greater or equal
to the usual dimension dim(U).

Let us denote by Irr(G) the set of (equivalence classes'® of) irreducible representations of G.
The family of operators {pq }acir(c) is of utmost importance. Using them we can express
the action of the modular and scaling automorphism groups introduced in the previous
section. First, let us define a family {f.}.cc of functionals on Pol(G) via

(f. ®id)U = p;, (z€C) (2.18)

1PWe will follow the common abuse of notation and identify in notation a class of representations
with its representative. For example, we will write p, to denote the operator associated with a chosen
representation U* € a € Irr(G).
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for any finite dimensional unitary representation U. These functionals have a number of
useful properties (see |64, Proposition 1.7.2]), we will only mention here the following!®

m(a) = feuxax fy o'(a) = fuxaxfy (t €R, ac Pol(G)), (2.19)
where the convolution of functionals ¢, ¢’ and an element a is defined via

pxa=(d®o)A), axdp=(p®id)A(), (pxa)xd =px(axd)=praxd.

Another very useful result is the fact the using operators {pa}aehr(G) we can express the
action of h on products of two matrix coefficients — for o, 5 € Irr(G), £, & € Ho,n, 1" € Hp
we have ([64, Theorem 1.4.3])

*

! / -1 , ,
h(Ugg,*UB ) = Sa,p (€ 0"} | Pa E)) h(Ugg,Uﬁ ) = Oap (€l m)(n Ipa§>’

dimg () dimg ()

where Ugy = (id®@we &)U € C(G). These equations are called the orthogonality relations.

Let G be the locally compact quantum group dual to G, as described in Section 2.2. Any
quantum group which arises in this way will be called discrete. Using the representation
theory of G, we can describe in detail some of the structure of G. First, we have

[I BH.), CiG) =Co(@)= €D B(Ha).

aclrr(G) aclrr(G)

which in some sense explains name “discrete” (when G is a classical discrete group we have
dim(H,) = 1, here we only know that dim(H,) < 4+00). We will henceforth write

(2(G) =L=(G), c(G) = Co(G).

We already know that the scaling constant of G is trivial (because it is for G), but the
modular element need not be trivial. Indeed, the left and the right Haar integrals are given
by

P = Z dim, (@) Tro(p, ' Ta(+)), )= Z dimg(a) Tra(pama(:))

a€clrr(G) a€lrr(G)
(where mq: £2°(G) — B(Hq) (o € Irr(G)) are the canonical projections) and the modular
element is equal to
- @ e
aclrr(G)

Since EOO(@) and the Haar integrals @, 12)\ are given by such simple formulas, one can easily
show that the GNS Hilbert space L*(G) ~ L?*(G) can be identified in a canonical way with

16Note that these formulas make sense also for complex z = t — one can show that elements of Pol(G)
are analytic with respect to (7¢)ier, (07)ier
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D.crrc) HS(Ha) — we will discuss it further in Section 3. The modular automorphisms of

0,1 are given by

Uf(($a>aelrr(G)) = (p;itﬂjapg)aehr(@)a U?(($a>aelrr((})) = (pgxozp;it)ocehr(@) (220)

and the scaling group acts as follows
ﬁ((xa>a61rr((@)> = (p;it'xapg)aehr(@) (221)

where t € R and (24)acm(e) € EOO(@). Note that the above equations show 7, = af for
all t € R. Indeed, it follows from equations (2.14) that Vg = P%. Tt is a consequence of
unimodularity of G (see also Proposition 3.32).

We can also identify the Kac-Takesaki operator for G:

W= Y U*eMC(G)®c(G)) (2.22)

aclrr(G)

(this series converges in the strict topology).

Let us end this section with a definition: one says that a compact quantum group G is
of Kac type if the Haar integral h is a trace. Equ1valently the scaling group of G (or G)
is trivial, (one of the) Haar integrals on G (or G) is tracial, G is unimodular (i.e. § = 1/1)
or py = 1y for all finite dimensional unitary representations U of G. We will obtain more
conditions in this spirit for type I quantum groups in Section 3.3.

2.3.1 Example: the quantum group SU,(2)

In this section we will describe the quantum version of the group SU(2), introduced by
Woronowicz in [99]. Let ¢ € |—1,1[\ {0} be a fixed parameter. The C*-algebra C*(SU,(2))
is defined as the universal unital C*-algebra generated by elements o,y such that

datyy=1, e’ +@yy=1, ="
ay =qya,  ay" =gy

«

o _(33 } is unitary.

Alternatively, one can impose the condition that the matrix U'Y/? = [

Comultiplication is defined by
Ale) =a®@a—qy" @7y, A()=7Qa+a"®@y

and its existence follows from the universal property of C*(SU,(2)).
The representation theory of SU,(2) is quite simple: we have Irr(SU,(2)) ~ 1Z, in such a
way that U is the trivial representation, U'/? is the above two dimensional representation,
U >~ U™ (n € $7Z,) and the fusion rules (i.e. rules of tensor product multiplication) are
given by

UreUm ~U" g o U™™  (n,m e 1Z,). (2.23)
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It follows that Pol(SU,(2)) is the unital x-algebra generated by «, . Conesquently C*(SU,(2))
is indeed universal in the sense of Section 2.3. It turns out that the Haar integral on
C"(SU4(2)) is faithful — the quantum group SU,(2) is coamenable |7, Theorem 2.12] and
we will henceforth write C*(SU,(2)) = C(SU,(2)).

SU,(2) is the fundamental example of a compact quantum group which is not of Kac type.
Indeed, the modular and scaling automorphism groups are given by (|64, Section 1.7])

h

o/ (a) = g™, o}

,oor() =7 (@) =a, 7w(y) =gy (teR).

We can also give an explicit formula for the unitary antipode:

R(a) =a*, R(y) = —sgn(q)y-

We will discuss SU,(2) and its dual in greater detail in sections 3.6, 5.3.

2.3.2 Example: the quantum group O} group

The next class of examples we will introduce are the free orthogonal quantum groups OF.
They were introduced by Van Daele and Wang [94] (see also [3]). One starts with an
invertible matrix F' € M, (C) (n > 2) satisfying F'F € R1, where F is the matrix obtained
from F by taking the complex conjugate of every entry. Then C*(O}) is defined!” as the

universal unital C*-algebra generated by elements {U; ;|1 <1, j < n} satisfying
U is unitary and U = FU°F~!
where U = (U;;)7,—; and U® = (U};)};—; are matrices in M, (C*(Oy.)).

ij=1
Comultiplication A on C*(O}.) is obtained by declaring that U is a representation, i.e.

AU, ) = Z Up @ Uy (14,5 <n). (2.24)
k=1

The representation theory of O} is very similar to that of SU,(2): we have Irr(O}) ~
%Z+ where 0 and % correspond respectively to the trivial representation and U, each ir-
reducible representation is self-conjugate up to equivalence and the fusion rules are the
same as for SU,(2) (i.e. the analog of equation (2.23) holds). In fact, SU,(2) = O for

0 1
SU,(2) quantum groups [85, Proposition 6.4.8].
We note here the intriguing property that whenever n > 3, the Haar integral on C*(07})
is not faithful and henceforth quantum group O} is not coamenable [4, Corollaire 1] (see
also [94, Proposition 2.2|).
We will obtain some interesting information concerning the von Neumann algebra L>°(07})
in Section 5.

and every quantum group O} with F' € My(C) is isomorphic to one of the

17This C*-algebra is often denoted also by A,(F).
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2.3.3 Example: U}’ group

The next class of examples we wish to discuss in this section are the free unitary quantum
groups Ujl introduced in [94]. Similarly to the case of Of, we start with an invertible
matrix F' € M,,(C) but this time we do not impose additional conditions on F. C*(U}) is
defined'® as the universal unital C*-algebra generated by {U; ;|1 <i,j < n} such that

U and FU°F™' are unitary,
where, as previously, U = (U;;)i';=; and U® = (U};)7';=;- The comultiplication is defined
in such a way that U is a representation, i.e. by formula (2.24).
Representation theory of U} was determined by Banica in [4], let us describe its elements.
Let Z, * Z, be the free product of monoids Z, with generators o, and the neutral
element e. There is a unique antimultiplicative involution x — T on Z, * Z, satisfying
€ =e,a = 3. We can identify Z, x Z, with Irr(U}) in such a way that denoting this
identification by = — U,, U, is the trivial representation, U, = U and U, ~ Us for all
x € Zy * Z,. Furthermore, the fusion rules of U} are as follows: for any z,y € Z, x Z,
we have

U,oU,~ @ Ua

a,b,c€Z+*Z+:
r=ac, cb=y

Let us end this section with a remark that the quantum group U} is not coamenable for
any F' € M,,(C) [4] (see also [94, Proposition 2.2]). We will study the von Neumann algebra
L>(U}) in Section 5.6.

In the case F' = 1 it is common to denote the resulting compact quantum groups of
Kac type O}, U by O, UT.
2.3.4 Example: G4, (B,) group

The last class of examples we will discuss here is formed by quantum automorphism groups
Gaw(B,v). They were introduced by Wang in [96] and studied by many authors, let
us mention here papers of Banica [6, 5| and Brannan [12]. We start with the following
auxiliary definition:

Definition 2.11.

» A unital »-homomorphism a: A — A® C(G) is a right action of a compact quantum
group G on a unital C*-algebra A if

(a®id)oa=(id®A)oa, span{a(a)(l®z)|ac A, z € C(G)} = A® C(G).
m Functional ¢ € A* is preserved by the action of G is

(pid)a(a) = p(a)l (a € A).

18Cu(U}) is known also as A, (F).
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Now we can give the definition of the quantum automorphism group G 4..(B, ).

Definition 2.12. Let B be a finite dimensional C*-algebra with a faithful state ¢ € B*.
The quantum automorphism group of (B, 1), denoted G 4. (B, ), is the compact quantum
group with a right action a: B — B ® C*(G 4. (B, 1)) preserving 1 such that

n C*(Gaw(B,v)) is the universal C*-algebra generated by {(w ® id)a(b) |b € B,
w € B*},

n if 5: B — B® C(H) is a right action of a compact quantum group H on B which
preserves 1), then there exists a unital x-homomorphism 7: C*(G4.4(B, 1)) — C(H)
such that = (id® 7)o au.

We will not need this result, let us mention however that a more concrete description of
C*(Gaw (B, 1)), using the multiplication map m: B® B — B and the unit map v: C — B,
is possible. To be more precise, C(G 4,(B,1)) is the universal C*-algebra generated by

elements {Ui,j}iijn:l(f) such that

dim(B)
i,5=1

the matrix U = (U, ;) is unitary, m € Mor(U®? U), and v € Mor(1,U)

(we treat U as acting on the Hilbert space B, with inner product defined by ).
The most studied examples are given by (B, 1) where 1) is a so-called J-form:

Definition 2.13. Let B be a finite dimensional C*-algebra, ¢y € B* a faithful state and
0 > 0 a positive number. Functionals ¢ and ¢ ® 1 give us a Hilbert space structure on B
and B ® B. We say that v is a 6-form if the multiplication map m: B ® B — B satisfies
mm* = §%id, where m* is the (Hilbert space) adjoint of m.

Banica was able to describe the representation theory of G a,:(B, %) (see [12, Theorem
3.8]): we can identify Irr(Gay(B,v)) with Z,: every k € Z, corresponds to a finite
dimensional unitary representation U* and {U"},ecz, have the following properties:

m U is the trivial representation, U ~ U° ¢ U,
m Uk~ Uk forall k e Z,,

m the fusion rules are given by

2 min(n,k)
UloU*~ @ UM (nk € Zy),

m=0
i.e. Gaw (B, 1) has the same fusion rules as SO(3).
When dim(B) < 3, Gaw(B,v) is the finite permutation group Sgim(p). Furthermore
for dim(B) > 4, G (B, ) is coamenable only when dim(B) = 4.

We will obtain new information about the von Neumann algebra L (G4, (B, %)) in
Section 5.
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3 Type I locally compact quantum groups

In Section 2.3 we have seen that compact quantum groups have a very nice representation
theory: one has a family of irreducible representations o which are “building blocks” of
arbitrary representations. With every « comes a positive invertible operator p, € B(H,),
and using these operators, we can express objects (modular automorphisms, scaling group,
etc.) related to the compact quantum group or its discrete dual in a very explicit way. Fur-
thermore, matrix elements of finite dimensional unitary representations form a w*-dense
subspace in L*°(G) where calculations are more attainable.

These properties make compact quantum groups a class of locally compact quantum
groups especially amenable to precise analysis. In this section we will introduce a class
of type I locally compact quantum groups which is significantly larger then the class of
compact quantum groups, but nevertheless preserve some of the properties mentioned
above. This section for the most part is based on the seminal PhD dissertation of Desmedt
[31], results of Caspers [17, 18] as well as the author’s work [50, 49].

3.1 Plancherel measure

Recall |33, Definition 5.5.1| that a C*-algebra A is of type I if for every representation
m: A — B(H,), the von Neumann algebra m(A)” is of type I (see also [33, Theorem 9.1,
9.5.6] for equivalent characterisations). Let us introduce the definition of type I locally
compact quantum group.

Definition 3.1. Let G be a locally compact quantum group. We say that G is type I if

~

the C*-algebra C§(G) is of type L.

This definition is a direct generalisation of the classical notion of type I locally compact
group: such a group G is type I if and only if its full C*-algebra'® C*(G) is of type 1. For
more information and examples of classical type I groups see for example [39, Section 7].
In particular, let us mention [39, Theorem 7.8|: if G is a connected Lie group which is
nilpotent or semi-simple then it is of type L. R
The principal reason we are interested in those quantum groups G for which C§(G) is a
C*-algebra of type I is the fact that (non-degenerate) representations of type I C*-algebras
decompose in a unique way into direct integrals over the spectrum Irr(A), which is a
standard Borel space (see [33, Theorem 8.6.6], we have gathered basic results concerning
direct integrals in Appendix 7.1). We will use this fact to deduce existence of the Plancherel
measure, a result due to Desmedt (Theorem 3.3).

We will be working with direct integrals, to avoid unnecessary technical difficulties we will
impose some separability conditions:

~

19For a locally compact quantum group G, the C*-algebra C§(G) plays a role of the full group C*-algebra,
see Section 2.2.
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Lemma 3.2. Let G be a locally compact quantum group. The following conditions are
equivalent:

1) Co(G) is a separable C*-algebra,
2) Cy(G) is a separable C*-algebra,
8) L*(G) is a separable Hilbert space

(G)
4) Ll(@) is a separable Banach space.

If these conditions hold, we say that G is second countable. Note that since L*(G) ~
L*(G), G is second countable if and only if G is second countable.

Proof. The GNS Hilbert spaces of ¢, " can be identified with L?(G), hence we get 1) = 3)
and 2) = 3) (see [61, Theorem C.2]). Since L(G) is a von Neumann algebra acting on
L*(G), point 3) implies 4). Next, since Co(G) is the norm closure of {(id®w)W |w € L'(G)}
we get 3) = 1). Implication 3) = 2) is analogous. O

The fundamental result concerning type I, second countable, locally compact quantum
groups is the Plancherel theorem proved by Desmedt (a similar result for possibly non-
unimodular classical groups was derived by Tatsuuma in [84]).

Theorem 3.3. Let G be a second countable, type I locally compact quantum group. There
exists a standard measure pw on Irv(G), a measurable field of Hilbert spaces (Hy)xcr(c), mea-
surable field of representations®®, measurable fields of strictly positive self-adjoint operators
(Dx)rete(@), (Ex)rene(c) and unitary operators Qr, Qr: L*(G) — fé’i(G) HS(H,) du(m) such
that:

1a) For all o € L'(G) such that A(o) € Ny and p-almost every ™ € Irr(G) the operator
(e ®id)(U™) o D1 is bounded and its closure (o @ id)(U™) D! is Hilbert-Schmidt.

™

1b) For all o € LY(G) such that A(a) € N and p-almost every ™ € Irr(G) the operator
(a®id)(U™) o E! is bounded and its closure (o ®id)(U™)E-! is Hilbert-Schmidt.

s
2a) The operator Qy, is the isometric extension of

ASMLHG)NNG) 3 As(M@) = [ (aid)(U™) D5 du(r) € / HS(H,) dps(r).
Irr(G) Irr(G)

2b) Similarly, Qg is the isometric extension of

JeT A ALA(©)) N9y) 3JT,A 5 (M(a))

s [ (a®id)UT)E du(r) e / HS(H.) du(),
Irr(G) Irr(G)

20We will often abuse the notation and write m for a representation as well as its class in Irr(G).
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3a) The operator Qp, satisfies

D

QL (w ® i)W = ( / (0 ® U™ ® T du(m)) Qs
Irr(G)

and
®
Qr(w®id)x(V) = (/I o Iy, @ m((w ® id)W) d,u(7r))QL

for every w € L'(G).
3b) The operator Qg satisfies

@
QrJpJ,(w @ id)W = ( (w®id)U™ @ Lg-du(m)) QrJzJy
Irr(G)

and

®
OrJzJ,(w @id)x(V) = (/1 o Ty, @ 7°((w @ id)W) du(ﬂ)) QrJszd,

for every w € L'(G).

4) Haar integrals on G are tracial if and only if almost all D, are multiples of the
identity and this happens if and only if almost all E, are multiples of the identity.

~

5) Operators Qr, Qg transform Z(L>(G)) onto diagonalisable operators.

6) We can assume that (Hﬂ)ﬂelrr(@ 1s the canonical measurable field of Hilbert spaces.

Remark. If G is unimodular, we have E; = D, (7 € Irr(G)) and Qp = QrJyJs5.

The above result is based on a result concerning lower semicontinuous, densely defined
KMS weights (see Section 2.1) on C*-algebras of type I [31, Theorem 3.3.5]|.
If A is a separable C*-algebra of type I, let (Kg),,ehr(A) be the canonical measurable field
of Hilbert spaces, i.e. K, = C%() (¢ € Trr(A)) [33, Section 8.6.1]. Next, for a GNS
representation 7y associated with a weight 6 define a representation py of the opposite
algebra on Hy via py = Jame(-*) Jp.

Theorem 3.4. Let A be a separable C*-algebra of type I and 6 a lower semicontinuous,
densely defined, KMS weight on A. There erists a measure p on Irr(A), a measurable field
of representations (7s)scur(a) 0N (Ko)ocim(a) such that m, € o for every o, a measurable
field of strictly positive, self-adjoint operators (Dg)scne(ay and a unitary operator P: Hyg —
fli(A) HS(K,) du(o) with the following properties:

1) For all x € My and p-almost all o € Trr(A) the operator m,(x) o D' is bounded and
its closure m,(x) D, is Hilbert-Schmidt.

g
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2) The operator P is the isometric extension of

Ag(My) 2 Ag(x) — ; To(x) D, du(o) € /69 HS(K,) du(o)

Irr(A) Irr(A)

3) Let J, be the antilinear map HS(K,) o T — T* € HS(K,) (o € Irr(A)). The operator
P transforms

m Jy onto fli(A) Jy du(o),

m Ty onlo fé’i(A) Te @ Ig=du(o) and py onto fli(A) Tk, ® w¢du(o),

m my(A)” onto fl?;(A) B(K;) ® Ii—dp(o) and mo(A)" onto fli(A) 1k, ® B(K,) du(o),
n Z(mp(A)") onto Diag(fli(A) HS(K,) du(o)).

4) Using the operator P we can write 0 as a composition®*

AT T (/EB B(K,) ® 1. cl,u(a))Jr

rr(A)
@ & (Tre) 1 du(o)
+ JIrr(A) >
~ (] Bk (o) A
Irr(A

5) 0 is tracial if and only if D, € Roolk, for almost all o € Irr(A).

This (slightly modified) result of Desmedt is an extension of [33, Theorem 8.8.5] which
is an analogous result for tracial weights. Due to its importance, we present its proof which
is almost entirely taken from [31].

Proof. The proof will be divided into a number of claims.

Let 6 be the canonical extension of 6 to a n.s.f. weight on my(A)” (see Section 2.1). Recall
that a measure space (Y, w) is called standard if there exists a w-null set Y such that
Y \ Yy is a Borel space of a separable, completely metrizable topological space [34, Section
L1].

Claim 1. There exists a standard measure space (X, u), a measurable field of Hilbert
spaces (K, ).ex, a measurable field of strictly positive, self-adjoint operators (D,).cx and
a unitary operator P: Hy — ff HS(K,) du(z) such that:

m the operator P transforms my(A)” onto fff B(K.) @ 1g du(z): every y € mp(A)”
corresponds to [y v, ® Ig. du(z),

m for all y € Ny and p-almost all x € X, the operator y, o D! is closable and its
closure is Hilbert-Schmidt,

21 For the definition of J}i.(A)(Tro—)D;I dp(o) see Appendix 7.1 and Section 2.1.
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m the operator P acts on Az(9M;) via Aj(y) = [y y.D;" du(z),

m the operator P transforms Jj; onto f;? Jp dp(x), where J, is given by HS(K,) > T, —
Tr € HS(K,) (z € X),

n Z(m(A)") is transformed via P onto the algebra of diagonalisable operators.

Note that since (K, ).ex is measurable, so is (HS(K,;)).ex (see Section 7.1).

Proof of Claim 1. Since A is of type I, we know that the von Neumann algebra my(A)" is
also of type I. By the structure result [81, Theorem V.1.27| there exist a family of (possibly
empty) standard measure spaces {(Xy, fin) }nenugro} such that

71—9(‘4)// = H B((Cn)@LOO(Xm,Un)a

nGNU{No}

where CY = 2(N). Note that there do not appear bigger cardinals in the above decomposi-
tion since we assume that A is separable. Form a measure space (X, u) = [ |, cnypoy (Xns £n)
with the standard measurable field of Hilbert spaces (K, ).cx given by K, = C" for z € X,.
We have

-
Wg(A)”:J/ B(K.) du(z).

X

Now, let Tr, be the (non normalized) trace on B(K,) (z € X) and n = ff Tr, du(x) the

direct integral weight on ff B(K.) du(z) (see Appendix 7.1). It is a n.s.f. weight. One can
easily check that the GNS construction of 7 is given by

D
H, = / HS(K,) du(z),

X

(&3] (&) (&3] D
wn:/ B(Kx)du(x)a/ Txdu(xm/x TI®]1KIdu(x)eB(/ HS(K,) dyu(a),

X X X

An:mna/X@deu(xm/}(®Txdu<x)e/®Hs<Kx)du(x).

X
The corresponding modular conjugation J, is given by
®
Iy = / Jodp(z), where J,: HS(K,) > T, — T, € HS(K,) (z € X).
X

The weight 7 is tracial, hence [87, Proposition 5.2| implies an existence of a strictly positive,
self-adjoint operator D affiliated with f;? B(K,) dj(x) such that § ~ 5p-2 (see also Section
2.1). Since the standard representation of a von Neumann algebra is unique up to a unitary
automorphism, there exists a canonical unitary operator P: H; = Hy — H, conjugating

34



between both representations. To ease the notation we will identify Hy and H,. By [58,
Theorem 1.8] the operator D is decomposable as an unbounded operator, i.e. we can write

®
D= / D, ® 1y, du(z).
b

Let us introduce a subspace
NT = {y € my(A)" |y o D~ is closable and yD~' € N, }.

By construction of 7p-2, the subspace 93 is a core for Aj (87, Section 1]). For y € NI we
have

At = Mo = [ "D, du(a). (3.1)

Define approximate units
ef = l/e‘”QtQD”dt (neN, z e X)
n - T ’
R

and

®
en = / er du(z) = = / e DAt (neN).
X R

The above integrals converge in o-wOT. Let y € 91;. The operator ye,, belongs to ‘ﬁg for
each n € N. Indeed, since D is affiliated with my(A)” we have ye, € my(A)” and clearly
(yen) o D71 is closable with closure y(e, D~'). This operator belongs to 91, by [87, Lemma
3.2|. Using the equation (3.1) we can calculate Ag(ye,):

S

Aj(yen) = Ay(y(en D)) = /X v (€2 DY) dya(x).

Let us write Ay(y) = f;f w, dp(z) for certain w, € HS(K,). By [87, Proposition 2.5] we
have J; = J,. Since e, = €, is invariant under (o?),cg (|87, Corollary 2.7]), we have
@
Aj(yen) = Jymp(en) JiA\(y) = / wyer du(z)
X

which implies
weey, = Yo(en D)

for all n € N and almost all € X. Since ||e?|| < 1 and 2 == 1_, the above equation
n—oo

implies that the operator y, o D! is closable and y, D, ' = w,. This proves

M = [ "D dpe)

X
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for all y € M;. We are left with the last statement: Z(my(A)”) is transformed onto the
algebra of diagonalisable operators. This result is clear since

® @
(] B o 1, du@) = |, @ BK.) dulz).

X X

this proves Claim 1. O

Claim 2. X can be identified with a Borel subset of Irr(A) and we can extend p by
zero to a measure on the whole Irr(A). There exists a measurable field (7,)senra) of
representations of A on (K, )semm(a) such that 7, € o for almost all o € Irr(A) and

®
Ty = / o @ I dp(o).
Irr(A)

Proof of Claim 2. We already know that mg(A)" O Z(mp(A)") ~ Diag(f)? HS(K,) du(z)),
hence by [81, Theorem IV.8.25] there exists a measurable field of representations ((;)zex
on (HS(K;))zex such that

m= [ Gut)

Since my(A)" = ffj B(K.) ® 1 du(z), we have ¢, = m, ® Ig_for a measurable field of rep-
resentations (7, ).cx. Furthermore, for p-almost all x € X we have 7, (A)” = B(K,), hence
almost all 7, are irreducible. Since the algebra of diagonalizable operators is included in
fff B(K;) ® 1 _du(z), [33, Lemma 8.4.1 c)| implies that 7,’s are pairwise nonequivalent
for = outside a null set. Then [33, Proposition 8.1.8] shows that the almost everywhere
defined map f: X > z +— [m,] € Irr(A) is almost everywhere equal to a Borel mapping
(we will neglect writing classes from now on). Assume that we have cut out from X the
neglibible part of “bad representations”, so that f is everywhere defined and Borel. Because
T, are pairwise nonequivalent, f is injective. By [33, Appendix B 21| f(X) is Borel and
f: X — f(X) is a Borel isomorphism. Consequently, we can transport the measure p and
extend if (by 0) to a standard measure on Irr(A). O

Note that in the above proof we have used the property that Irr(A) is standard.
Claim 3. The operator P transforms py onto fli(A) 1k, ® ¢ du(o).

Proof of Claim 3. For y € A we have

@
Ppe(y)P* = PJ@W@(ZD*JGP* - / JU(T(U(y)* ® ]IRL)JU d/L(O')
I

rr(A)

@
- / Ik, ® 75(y) du(o). O
Irr(A)
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Claim 4. The weight 0 is tracial if and only if D, € R.q1k, for almost all o € Irr(A).

Proof of Claim 4. By [56, Propositon 1.32] 6 is tracial if and only 6 is tracial. Indeed,
one direction is trivial, assume that 0 is tracial and y € 91;. Then there exists a bounded

net (y;)iez in My such that mp(y;) SO—TZ> y and Ag(y;) = Aj(mo(yi)) — A;(y). By closedness
1€ 1€

1 ~ ~
of A7 and the fact that J;V2 is an isometry on Ag(A) we have y* € 95 and 0(y*y) = 0(yy*).
Now the claim follows from 6 ~ np-2 and [87, Corollary 2.6]. O O

Now we can prove an existence of the Plancherel measure.

Proof of Theorem 3.5. Since G is second countable, type I locally compact quantum
group, A = C}(G) is a separable, type I C*-algebra. By [55, Proposition 5.9, Definition
5.10] the weights (p\“,zZ“ are lower semicontinuous, densely defined and KMS, hence we
can use Theorem 3.4. Let us first use this theorem for the left Haar integral *. In this
way we get a measure j, measurable field of representations (7,)scmm(c) (on the canonical
measurable field of Hilbert spaces), measurable field of operators (Ds)ocnr(c) and a unitary

operator Qr: L*(G) — fli(@) HS(H,) du(o). Recall [55, Proposition 5.2| that ¢" = o Ag
and the GNS construction for $* is given by (L*(G), Ag, AgoAg). Observe that if o« € L'(G)
is such that A(a) € M5 then (a ® id)W € Nz and

(a®id)U™ = 7, ((0 @ id) VT ).

This shows point 1a) of Theorem 3.3. Since Az(A(L'(G)) NNy) is dense in L*(G) (see
Lemma 7.10), point 2a) is also clear. The second part of 3a) is a consequence of formula
(2.11) and the definition of 7¢. The rest of the claim follows from analogous results in
Theorem 3.4. R

Now we perform a similar construction for ¢*. This way we obtain %, (72)sen(@), (Eo) (@)
and Q%. We can take u* = i and 72 = 7, essentially because the GNS representations
for o, 12)\“ are two standard representations of the von Neumann algebra L“(@), hence are
unitarily equivalent |17, Theorem 1.6.3|. Define

QR = Q(])% o JApJ$7

it is straightforward to check that these objects satisfy properties listed in Theorem 3.3.

From now on we will abuse the notation and neglect writing the measurable field of repre-
sentations, e.g. we will write 7 € Irr(G) instead of 7, € o € Irr(G). This should not cause
any confusion. O

One can prove a (type of) uniqueness result for the Plancherel measure.

Proposition 3.5. Let G be a second countable, type I locally compact quantum group and
let po, (Hx)rerr(@)s (Dr)remr(e)s Qi be the objects given by Theorem 3.3. Assume that we have
objects of the same type (', () wen(@), (D) wem(c), Q1 (together with a measurable field
of representations ©' € Irr(G) such that ©' € [7'] € Irr(G) for p'-almost all 7' € Irr(G) ). If
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1) the operator Q' salisfies
@ !
Q) (w®id)W = (/ (wRid)U™ @ 1y dy/'(n') Q) (we LYG)),
Irr(G) 7

~

2) Q) transforms Z(L>°(G)) onto diagonalisable operators,
then the measures u, (' are equivalent. If moreover
3) the operator Q) salisfies

(&)
Q) (w ® id)y(V) = ( / o I @ (e IW ), (@ L©),

4) we have the equality
® / )
9 Ae(N@) = [ (a®id)U™)DL ™ du' ()
Irr(G)

for all (o) € X, where X is a subspace of Mg containing an approrimate identity
and invariant under (o7 )ier,

then for p-almost all m € Irr(G) there exists a unitary intertwiner Ty : Hy — H. such that

D, =\ ()T DT,

Furthermore, objects with prime satisfy all the properties of Theorem 3.3. R
An analogous result holds for the objects associated with the right Haar integral 1.

This result is again based on a more general result for C*-algebras with a chosen weight
(see also a proof of [50, Theorem 3.3, 3.4]).

Lemma 3.6. Let A be a separable C*-algebra of type I and 0 a lower semicontinuous densely
defined KMS weight on A with a modular group (09);cr. Let p, (T )oenr(a), (Ko)oerr(a)
(Dg)ocnr(a)y be given by Theorem 8.4. Assume that pi' is a standard measure on Irr(A),
(K] )ocur(a) @5 a measurable family of Hilbert spaces, (T,)scne(a) 5 a measurable family
of representations such that ©’ € o for y'-every o. Assume moreover that there exists a
unitary operator P': Hyg — Li(A) K' @ K' dy/ (o). If

1) operator P’ transforms my onto fli(A) (r! @ 1)dy'(0),
2) operator P transforms me(A)” Nme(A)" onto the algebra of diagonalisable operators

then the measures u, i’ are equivalent. If moreover there exists a measurable family of
strictly positive self-adjoint operators (D.)ycrr(a) and
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3) operator P’ transforms py onto flim)(]l @ 7')du(o),

4) we have the equality
@
Phala) = [ m @)D o)
Irr(A)

for all x in a subspace X C Ny containing a bounded approrimate identity such that
of(X) =X (t €R),

then for p-almost all o € Trr(A) there exists a unitary intertwiner T,: K, — K/ such that

D, = /% (o)1, D,T,".

Proof. Let us define a unitary operator

® @
U=P oP K, ® K,du(o) — K! @ K/ di/' (o).
Irr(A) Irr(A)
It transforms diagonalisable operators onto diagonalisable operators. Consider the follow-
ing representations of A:

® ®
| metae). [ metyie)
Irr(A) Irr(A)

We would like to use [33, Proposition 8.2.4]. In order to do that, we need to check that U
is a morphism between these representations. Let a € A. Thanks to properties of P, P’
we have

@ ®
U( To @ Ldu(o)) (a)U ™" = P'mp(a)P " = (/ T @ 1dy'(0))(a).
Irr(A) Irr(A)
Now, [33, Proposition 8.2.4] gives us subsets N, N’ C Irr(A) which are correspondingly of
v and p/-measure 0, Borel isomorphism n: Irr(A) \ N — Irr(A) \ N’ which maps x onto a
measure fi’ equivalent to 1’ and a family (V(0))sene(ay v such that each V(0): K, ® K, —

K;?(U) ® K;](U) is a unitary map and a vector field (§U)U€1rr(A)\N is measurable with respect
to (Ko @ Ko)oer(ann if and only if (V(0)&)n(e)emm(ann is measurable with respect to
(K;v(o) ® K;(U))n(g)em(A)\N/. Such a family is called n-isomorphism [33, A 70]. For o €
Irr(A) \ N operator V(o) is a unitary morphism between m, ® 1 and 7, ® 1, moreover

& @ D
U= K @ K/ dji'(o) — K, @ K, dy/(0)) o/ V(o) du(o).
Irr(A) Irr(A) Irr(A)

Fix ( € K, ZI € K;(U) and define a bounded operator Sg’f € B(K,, K;](U)) via equality

(€152 = (€ |VO)(E@() (€K, & ek,
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For a € A and arbitrary &, & we have
(€192 mo(a)€) = (€ @C | V(o) (me(a)€ @)
= (1 (@))€’ @ |V(o)(E®Q) = (o) (@))€ | v )= (€| W;](o)(a)sg’,z€>'
This means that Si’, 0z is a morphism between 7, and 7’ n(0)" It is clear that there exist C, E/

for which 59 0z is non-zero. Consequently, as there are no non-trivial morphisms between

nonequlvalent irreducible representations, n needs to be identity on Irr(A) \ (V U N').
Therefore = i’ on this set. This proves the first part of the lemma.
Assume now that P’ transforms py onto flim)(]l ® 7'¢)du(o), and we have a family

(D.,)senr(a)y which meets conditions stated in the lemma. Then V(o) is also a morphism
between 1 ® 7¢ and 1 ® 7S, Thanks to the Schur’s lemma we have

_/ J—
q(¢,¢)Ts
for a unitary intertwiner 7, € B(K,, K!) and a bounded sesquilinear form ¢g. We know
how forms like this looks: there exists an operator T, € B(K,, K’) such that

(€T |Ve)E D) = (€526 = (€ o (T, 0 T,) (€2 0)).
Operator T, is a morphism between 7¢ and 7. Indeed, take a,b € A. Then we have
(€ @C (T, ® T,)(mo(a) @ mE(b)0)) = (€ @ | V(o) (my(a)€ @ 75(B)C))
= (€@ C |(m(a) @75 (0)V(0)(E@C) = (€ @ | (v, (a) @ 75 ()(T, & T,)(§ @ C)).

Taking a to be an approximate identity shows that T, is morphism between 7¢ and 7'5.
The calculation

T, w5 (a)¢ = T, my(a*)€ = Tymy(a*)€ = mo(a*)T3€ = 7°(a)T, € (£ € K}, a € A)

implies that 7. is a unitary morphism 7'¢ — 7. Schur’s lemma shows that T, = z,(T;1)T
for a certain z, € C. Since

L= V() =T @ T,|| = Tl = |z,

we know that T, = 2(T; )T isa unitary operator. Let us see how V(o) acts on HS(K,) =
K, ® K,. Forevery £ ® ( € K, ® K, we have

V(o) (e = V(o) (€ @) = (To8) @ (2(T, 1) ' Q) = 2 (T @ T,C)
= 26| ToEN(To | = 2T (1) (¢ T,

Let us make use of our knowledge about operator P’. For a in the subspace X C 91, we
have

/1 (@D Al (o) =t [ 70(a)D; dulo)

rr(A) Irr(A)

/I V(o) (m (@) D) dyt (o),
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which implies

m,(a)D';" =\ $5()V () (mo(a) D, ") = 2| §(0) T (o (a) DT,

[en o

for almost all o € Irr(A). Taking the adjoint of both sides gives us (note that 7/ (a), 7, (a)
are bounded, see [78, Proposition 9.2|)

D'y (a®) =z 4 (0) T (D ' (a)) T,

du

and
D, mo(a") = 2o/ G (0) I, (D ' (a) T, (3.2)
Observe that (3.2) is an equality of bounded operators. Equation (3.2) shows that operators

DY, 21/ Y (0) T, DIV T, are equal on the dense subspace
n

¥V = span{rm,(a*)¢|a € X, { € K,} CK,

(in particular ¥ is contained in the domain of D! and z, %(J)Tng;lTa). Take any
n € ¥ \ {0}, then

< (| D;'n) = (n|zo\/ B ()T, DM Tom) = 20/ () (0| T, D Tom),

hence z, = 1.
Now we need to use the assumption that 6 is a KMS weight. Let (07)icr be a modular
group for #. Let us show that

7y(0?(a)) = D¥r,(a)D;" (a € At €R) (3.3)

for almost all o € Irr(A). Define p}, p?: mg(A) — me(A) via
®

pi(mo(a)) = (07 (a),  p(mo(a)) = 7’_1(/ Dymo(a)D," @ 1 du(o))P
Trr(A)

for all t € R,a € A. Tt is clear that p? is well defined. So is p}. Indeed, by [53, Theorem
6.20] (see also Section 2.1) we have Ag(c?(d')) = Vi Ag(a') for a’ € DMy. Using this equation
we can prove

(0t (a)) = o] (me(a)) (3.4)
for t € R,a € A. Indeed, for o’ € My

(07 (a)Ag(a’) = No(07 (a)a )=V 5 No(ao? ()
= Vymo(a)V;“ViAg(0?,(a')) = o7 (mo(a)) Ao (d')
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and equation (3.4) follows. Consequently, if a € ker(my) then ¢?(a) € ker(my). Next,

(Ag(b) [ i (mo(a)) Ao (b)) = (PAs(b) | ) D?%(@)D;it@ln dp(a)PAg (b))

([ mDano)] [ Dim(a)D;" o 1y, duto) [ m @)D" du(o)

rr(A) Irr(A) Irr(A)
D
oy / b)D 1 dpu(o)| Ditmy(a) Dy, (V) D dpa(o))
Irr(A) Irr(A)

= (A0, (Wf)( b)) | mo(@)Ag(o? (mo())) = O(0” (b)) e (@), (mo(V))))
= 0(mo(b")0f (g (a) ) (b)) = O(mo(b")mo (07 (a))mo (1)) = O(b" 0 (a)b)
= (Ag(me(0)) | Mo (0} (a)) A ()) = (Ao (mo(b)) | i (ms(a)) Ao (V)

for b,V € My, hence p; = p?. It follows that

1o(0?(a)) = Di'ry(a)D;" (a € At €R) (3.5)

for almost all o € Trr(A). Consequently ¥ is invariant under (D%),cg, hence [54, Corollary
1.22] implies that 7 is a core for D, '. It follows that

Dt €\ (o), DL T,

and as self-adjoint operators do not admit proper self-adjoint extensions (|78, Section 9.2]),
we arrive at

D' = /¥ (T DT,

o dp
for almost all o € Irr(A). O

3.2 Operators related to the modular theory of G and G

Let assume for the rest of this and the next section that G is a second countable, type I
locally compact quantum group. Theorem 3.3 gives us a Plancherel measure together with
ObjeCtS QL) QPw (Dﬂ'>7l'€IrI‘(G)7 (Eﬂ'>7r€Irr(G)~

As advertised at the beginning of the Section 3 we will now express various objects
related to the modular theory of G and G using the direct integral picture and operators
(Dx)rene(@), (Ex)rem(c)- Let us start with a description of J; I LOO(G) and LOO(G) on
the level of direct integrals.

Proposition 3.7. Define an antiunitary operator ¥ = ffﬁ(G) Jn, du(m), where
Ju,: HS(H;) 2 ¢ = ¢ € HS(H,) (7 € Irr(G)).
We have '
vids=Jz=QpYQL = QX Qk.
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Furthermore, the following equalities of von Neumann algebras hold:
® @

0, 17(B)Q; — / B(H,) ® Ly du(r), QuL*(B)Q; / L. ® B(Ay) du(x)
Irr(G) Irr(G)

R ® L R ®
Q@)= [ tu BBE)W(, QL @/ Q= [ BH)® Ly dulr)
Irr(G) Irr(G)

Proof. By Theorem 3.4 and [55, Proposition 5.2, Definition 5.10] we have the equality

Q1309 = Jou = Jp.

Similarly, Qr transforms le to 2 ‘]$ = Q*R’OZQR,O. Operator Qr was defined as Qr =
Qro0J,J5. Consequently, we get Jg = JoJ5QR¥QRrJ5J,. Using the commutation relation
s, = ViJng (see equation (2.14)) and formula J; = V_%J@ (equation (2.3), the scaling

constant of G is 7 = v~1) we arrive at
QX0k = Jod (v 1d5)Jpds = v ivi J,dsdsd s = Jo.

The first two equalities in the claim are direct consequences of Theorem 3.4. The equalities

involving Qg can be proven using Qp = QroJ,Js and J,L*(G)J, = L*(G) (equation
(2.10)). O

In the theory of compact quantum groups one often perform calculations on special ele-
ments U, (called matrix coefficients) which form a linearly w*-dense subset inside L>(G).
We will now define an analog of these elements for type I, second countable locally compact
quantum group G. Elements of this form were already considered in [17].

Definition 3.8. For &, € fli(G) H, du(m) we define elements of L*°(G):

My, = /I (@(id ® We, ) (U™) dp(mr), M, = /1 (G)(id ® we, ) (UT) dpu(m).

The above elements will be referred to as left (resp. right) matrix coefficients.

Note that the above (weak) integrals converge in o0-wOT and we have (M}, )* = M.

We will now recall some results obtained by Caspers and Koelink in [17, 18]. We
remark that one needs to be careful when taking equations from these papers as there
is a difference in convention: we prefer to use inner products linear on the right and
functionals we ,, defined accordingly. That is why we choose to state explicitly used results
with necessary changes.

Let us introduce two positive, self-adjoint operators on fli(G) H, du(r):

@ S5
D= D,du(r), E= / E, du(r).
Irr(G) Irr(G)

(see |58] and Section 7.1 for the meaning of a direct integral of unbounded operators).
First, we can transport a left (resp. right) matrix coefficient via Qp (resp. Qg). The
following is a reformulation of [18, Lemma 3.7, Lemma 3.9|.
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Lemma 3.9.

1) If¢&n e fli(({}) H,du(m), £ € Dom(D) and the vector field (N: @ D& )rcir(c) 5 Square
integrable, then ML €N, and QrA,( fhr Ny @ D&y dp(m).

2) If&n e ﬁi(g) Hxdu(m), & € Dom(E) and the vector field (N: @ Er&r)rcim(c) 45 square
integrable, then ME, € My, and QrAy(Mf) = fli(G) Ne @ B & dp(m).

Using the above result and the fact that Q;, Qg are unitary, one can easily derive the
following density results:

Lemma 3.10.

1) The set {A,(ME,)}, where £,m run over vectors in fl ) Hz du(m) such that £ €
Dom(D) and (7]7T ® D& )remn(c) 08 square integrable, is lmeary dense in L*(G).

2) The set {Ay(MF)}, where & n run over vectors in fI ) Hz du(m) such that £ €
Dom(FE) and (7]7r ® Ex&r)rem(c) 08 square integrable, is lmeary dense in L*(G).

Consider an antilinear map??
Ap(Dy NOY) 2 Ay(z) = Ay(z*) € L*(G) (3.6)

and define 7" to be its closure. Let T' = J'V'2 be the polar decomposition of T". Tt is well

known that .J’ is antiunitary and V' 2 s strictly positive and self-adjoint. In Corollary 3.19
we will describe these operators, for now let us recall how they look on the level of direct
integrals.

Proposition 3.11. We have QJ'Q% =% and QRV’ Q= fhr ® (E-Y)T du(n).

The above proposition is a combination of [18, Proposition 4.4, Proposition 4.5, The-
orem 4.6]. We also need formulas expressing the action of modular automorphism groups
on the matrix coefficients.

Proposition 3.12. For each &, € fIi(G) H,du(m),t € R the following holds:
O-Zb(Mgn) = % 5ZtM E2itg D2ity, O'f(Mgn> = V%it2 MERQit&DQitn (Vt,
U;A(Mén) — V_iitzMégitnggitn (S it s O‘f(Mén) = I/_%itQCS_it Mé2it£7E2it77~

The formulas expressing the action of 0¥, 0% on M{ are stated in [17, Remark 2.2.11].
The other two follow by taking the adjoints. We note that they can be derived using the
formula for V' (Proposition 3.11) and equation vz §it = ViV’ " (see [82, Equations (29),

22This map appears during a construction of the Radon—Nikodym derivative between 1) and ¢, see [82].
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(30), page 112] and the proof of [93, Theorem 3.11]).

Our next goal is to describe the polar decomposition of operator 7": Ay(z) — A, (x*)
using more standard operators on L*(G). This result which is interesting on its own, will
give us an tremendously useful relation between Oy and Qg. Before we dive into technical
details, let us see through a formal calcualtion what kind of result we should expect:

T'Ayp(x) = Ap(x*) = J,VEA,(x) = J¢V3J¢Uﬁ2(57§)*{]¢/\@(1’55) (3.7)
= V;i(y_ié_i)*J¢A,¢(x) = (VéJ¢)<J¢V§v;§5_§<]eo)Aw(I)‘

We need to include the factor vs due to the following lemma:

Lemma 3.13. For all s,t € R operators Vi,ocSt, 5t o V¢, are closable. We have the equality
ist

VTVfoét = u—%’t(stv; of strictly positive, self-adjoint operators, moreover

ist __ist,.2 ist .2

(VEVLOT =y FTVEG = yFTGTET (r e R),

The above result is a consequence of the commutation relation V50" = v**§"* V¥ (s,t €
R). Indeed, if v = 1 then V¢ and 4! strongly commute and the claim is clear. Otherwise
operators Vfwét satisfy the Zakrzewski relation (or the Weyl relation after passing to
logarithms). Then Lemma 3.13 follows from [102, Example 3.1, Theorem 3.1]. The next
lemma describes the action of the unbounded operator §°.

Lemma 3.14.

1) Let t € R,z € M, be such that x 0 6" is closable and x0' € N,. Then J,A,(v) €
Dom(3") and vz J,0' J A, (x) = Ay (x6Y).

2) Lett € R,z € My be such that x 06" is closable and 26" € MNy. Then J,Ay(z) €
Dom(8") and vz J, 00 J,Ay(x) = Ay (z8Y).

Proof. We prove only the first assertion, the second one can be derived analogously. Take
x € N, t € R which satisfy conditions of the lemma and define

_ n —np? ip o]
xn—\/;/Re z6?dp € L*(G) (n €N)

(the above weak integral converges in o-woOT). Operator x,, o 0" is closable and we have

wd' =2 / e (2d")o dp = \[2 / e 2™ dp. (3.8)
R R

Clearly z,,, x,0" € 9, and due to the Hille’s theorem

Ap(an) = \/%/R e Ay (w6™) dp = \/%Jg; /R VTR A () dp,
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similarly thanks to the equation (3.8) we have

A (26t = \[J/ npyz52PJA(x5fdp_fJ/ no=it)? =5 5= A (x) dp.

Consequently, A, (z,) — Ay(x) and Ay (2,0") —— Ay(xd?). For each r € R we have
n—oo

n—o0

5iTJ¢A¢(-1'n) _ \/g/Ren;zﬂyg(si(Pr)J@A@(x) dp = fn(r)7

where f,, is the entire function

fnCBZHf/ ne+)*,~ P 5= A (z) dp € L2(G).

From the above follows that J,A,(z,) € Dom(é*) for all 2 € C and 6*J,A,(z,) =
ful(— zz) [78, Corollary 9.15]. Let us show that the sequence (6'J,A,(xy))nen converges
to vz J,A,(x6"):

S I AL (2,) = fu—it) = ﬂ/6_”(”_’%)%_
PAlen) = ful=it) =3 |

_ I/;\/é/ efn(pfit)%/f%éfip{](p/\(p(x) dp = e T (2,6") —— ve Jo N, (26°).
R

n—oo

_ichpAw(x) dp

Norm closedness of 6* implies J,A,(z) € Dom(6) and &' J,A,(x) = v2 J A, (z6?). O

We will now introduce a space Dy of sufficiently nice vectors on which calculation (3.7)
is justified and which forms a core for the operators involved. First, define

- /2 / e gt € T°(G)  (n €N, 2 € C).
R

Note that for each z € C, the sequence (d,, ,)nen is bounded and converges to 1 in SOT.
Next, for z € M, NN, NN, NIN,™ k € N, A = (A, Ay) € C? define

Tha =T / / e M= AN k(=42 52 6 ¥ (1) dt ds € Lo(G).
R JR

Finally, define a subspace Dy, via
Dy = span{Ay (8, .21 A0mw) | T, 2" € N, NNy, n,m,k € N, A€ C? z,w € C}.
Lemma 3.15.

_1 _1
n The subspace Dy is a core for V,2. Moreover, for & € Dom(V,?) we can find a
sequence (§,)pen in

{Ay (T A0maw) |7, 2" € N, NNy, m k €N, A € C* w e C}

such that §, — & and V;éﬁp - V;%f
p—00 p—00
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n Fach element of Dy can be written as Ay(x) for some x € L™(G) such that z,z* €
N, NNy N ,ec Dom(c?). Moreover, o¥(z) € Ny and Ay(z*), Ay(c¥(x)) € Dy.
Additionally, Ay(z) € ,cc Dom(V}) and ViAy(z) = Ay(af(z)).

m Forall z,w € C,Ay(x) € Dy the operator 6*oxod™ is closable and its closure belongs
to m,/) N ‘ﬁgp.

n We have J,Dy = D.

A proof of the above lemma requires only standard reasoning, hence will be skipped.
In the next two lemmas we prove properties of Dy which allow us to derive the polar
decomposition of T".

Lemma 3.16. The subspace Dy is a core for V‘ijwd_%Jw. We have
VT8 T A () = Ag(@)
for all x € N, NNy, such that x o 572 is closable and 2673 € MNy. Moreover, the operator
(JoVE) o (v 3,575 ,) = vi(V, 2 0574) ),
is closable and Dy is a core for its closure Vﬁv;%_%t}@.

Proof. 1t is clear that span|J, 0,0 L*(G) is a core for 572. Take £ = 01 € Dom(6~2)
for some n € N and let (7),),en be a sequence of vectors of the form Ay (xy 4dy,0) (see the
first point of the Lemma 3.15) converging to n. We have 4,91, € Dy,

_1 _1 _1
€ = Sompll <y =l ——> 0 and |73 — 62 50mpll < 15 2nollln — 1l — 0,

which shows that D, is a core for 572, Since D, is invariant under J,, it is also a core for
v,

Take z € 9, N ‘ﬁw such that z o -2 is closable and 20~ 2 € My. Lemma 3.14 gives us
JoAy(z) € Dom(6~2) and v 4J 52 J Ny (x) = Ay (26 2) —A¢(x).

Equality from the claim (J, Vw) (v~ 4J 572 o) = 1/4(V¢,1 0§72 )J is a straightforward
consequence of the relation J, V¢ =V, : Jo-

To deduce the last assertion let us observe that Lemma 3.13 glves us an equahty vs V : 5z
= v§0 2V 2. It follows that the closure of v™1672 o V2 is Vﬁé 2. Take ¢ in
Dom(v~ 1672 0 V2 ) For each n € N we have 4,06 € Dom(v~i672 o V,, )

On,08 —¢ (3.9)
and
vTE0T 0V, (6,08) = v H07,(8,0)02 0 Vi ? (€)
— U6, 120 7 0V (E) —— v I6 7 0 V2 (£).

n—o0

(3.10)
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As previously, since Dy is invariant for J,, it is enough to check that Dy is a core for
_1 1 1 1
V267 2. Take £ € Dom(V,26~2). The above reasoning and equations (3. 9) (3. 10) show

that it is enough to take vector of the form & = 4,,on for n € Dom(v™ 1572 o V,? ) and
some n € N. Let (1,),en be a sequence of vectors of the form Ay (xy 4 o) such that
1 1

n, —— n and Vi, 2n, —— Vi 2n. We have 8,01, € Do, 0no0mp — Onon = € and
p—00 P—00 p—00

_io_1 -1 1 -1
V75072 0 V2 (0n,0m — 0n0mp)[| = [|0n,—1/2072 0 Vo2 (n — mp)||
1 1
< ||0n,—1/20 2 [[[[ Vo * (1 — np) | p—>—oo> 0.

Lemma 3.17. The subspace Dy is a core for T".

Proof. Take z € M, NN, and define z,, as z, =2 [, [pe” n(r*+0%) g5t dr dp - (n € N).
We have z,,, 2}, € 9M,NNy. Next, define z,,,, = %f Jne U +5%) 6 0 0¥ (1,,) ds dt. We have
5n,0xn,n5n,0 € mw N mtp*; Az/)((sn,oxn,nén,o) € D07 ( nOQJnn nO) —> Ad}( ) and

T/Aw(én,oxn,nén,o) = Aw(émol’;’n(sn’o) — A ( ) T/ALP(QZ‘)

n—oo

Now we can derive the main results of this section.

1
Proposition 3.18. We have (JSDV Jo(v™ 4J 573 0) = vi(V,2 062 )J and after closure
VAN, = T,

1 1
Proof. The first equality is a consequence of the equation J,V2 = V2.J,. Take Ay(x) € D.
Lemmas 3.16, 3.15 justify the following calculation:

1 i _1 i "
(JoVE) o (V3 d,0720,) Ay(x) = JpVEA,(2) = Ap(a™) = T'Ay().
) 1 1
In lemmas 3.17, 3.16 we have shown that Dy is a core for 7" and 14V, 26~2.J,,, which shows
) 1 1
T =viV,257 2 J,. O
The above result has a number of interesting corollaries.

Corollary 3.19. The polar decomposition of 7" is T" = (v.J,) (J,vEV,262.J,). More-

over, we have
1

(JAV 2673 = 3 V265, (teR). (3.11)
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Proof. The first equality follows directly from Proposition 3.18. Let us justify that it is
indeed the polar decomposition of 7”. First, it is clear that Véjgo is antiunitary. Next,

1
Lemma 3.13 implies that v3V,, 2572 is self-adjoint and strictly positive. Consequently, the

1
operator J,vsV, 25’%J¢ has the same properties. Uniqueness of the polar decomposition
gives us the first claim. The second formula follows from Lemma 3.13:

i 1 . i1 . i —1 .
(JoriV 262 J,) " = f(UAV,2672)" = [((ViV,?072)")
i —L1 1. i 2 it
= J,(vsV,2872) "), = Ju stV iz J,,
where f:aw Joa*J,. ]

Now we combine our polar decomposition of 7" with the result of Caspers, Koelink
(Proposition 3.11), Proposition 3.7 and commutation relation J;J, = viJ,.J; (equation
(2.14)).

Corollary 3.20. We have Q,v%.J,Q% = ¥ and Q4,Q;, = Q;Qr = v 5 J5J,,.

Formula Q39 = 1/_%(]@(]@ is of great importance and will be used many times throught
the paper. R
Now we can prove several results in which we express operators related to G and G on the

level of direct integrals. The first result of this type comes from the polar decomposition
of T".

Proposition 3.21. For all t € R we have

Vi = J, Vi T, = v Qp( /1 i@) DX @ (E;*")" du(n)) Qr,

TV, = Vit = v ( /1 i@ E2* @ (D7*)" du(r)) O,
V0T = IV, = vat Qg /1 @(G) EZ' ® (D*)" du(r)) Qa,
TN, = Vit = i Q) ( Ii@) DX @ (E;*) " du(r))Qr.

Proof. First, observe that we have Vi = J5V_"*J; = 0"(J,6"J,)VY (see [93, Theorem
5.18| and equation (2.14)). It follows that

Vit =y I = v I, = IV,

and the first equation in each row easily follows. The formula expressing J,V%0".J, via
direct integral of operators follows from equation (3.11) combined with Proposition 3.11.
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The second equation can be found using already derived relation Q; Qp = u‘éj@fgo:

L ® A A i
IV T, = v VA LT ( / DY@ (B2 dp(m)) Qv Jp ],
Irr(G)
342 @ 3 ]
([ B e (02 au(m) Qu
Irr(G)

which implies V6" = vit Qi (i o B ® (D727 du(r)) Q. The last two equations

come from applying the operation J3-.J5 to both sides of the already derived formulas. [

Let us now derive an interesting corollary of these results.

Corollary 3.22. There exists a unique measurable function f: Irr(G) — Ry such that

® ®
30| Dt () Qud, = Q[ B2 @ i dutm) @
Irr(G) Irr(G)
o )
Tl tu© (X du(m) Oty = Ol | f(m)"ta, ® (D27 du(m) Q.
Irr(G) Irr(G)
o ®
JwQE(/ ( )]lHW ® (DF) " dp(m)) Qrt, = Q*L(/ ( )f(ﬁ)“llHﬁ ® (B2*)T du(r))Qr,
Irr (G Irr (G
@ ®
L[ Bt dn(m)) Qul, = Qi [  S(m)*DE & Ly du(m) Qs
Irr(G) Irr(G)
for all t € R.

We note that the function f might depend on the choice of the measure p.

Proof. Fix t € R. The first and the third row in Proposition 3.21 imply

T Qn( e D2 @ (BT du(m)) Qrd, = Qp( /I o E;%" @ (D27 du(r)) Qr.

~ ~ ~ ~ _

Since J, L>(G)J, = L=(G), JWLOO(G>’J¢ = LOO((G)’ and the center of fli(@) 1y, ®B(H;) du(n)
is fli(({}) Clusn,) dp(m), Proposition 3.7 implies that there exists a measurable function
fi: Irr(G) — T such that

© ®
L[ DM v dutm) Qnd Qi | B2 1 dutr)
Irr(G) Irr(G)
o ‘ o ‘
= J¢QE(/ 1y, ® (E24)7T du(ﬁ))QRJ¢Q§(/ Ly, ® (DX dp(r)) Qr
Irr(G) Irr(G)

®
= /1 fe(m) Lus .y dp(r).

r(G)
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The above equations imply

D D
Jo Qi ( D' @ 1g-du(n)) Qrd, = Q;;(/ fi(m)EZ @ 1g-dpu(n))Qr  (3.12)
Irr(G) Irr(G)
and
1.9 e (2T du() " Qe = Qi / o © (D) dp() @
Irr (G Irr (G

| (3.13)
Equation (3.12) together with relation Q5 Qg = v~5J5J, (Corollary 3.20) gives us

®
Jo o J5 Q0 (/ DY ® ﬂmdu(ﬂ))*QL‘]@Jwa
Irr(G)
@ .
=000 ([ RMER @ g du(m) QT
Irr(G)

hence also thanks to QJ;Q} = X (see Proposition 3.7)
@

0 / L, @ (D)7 du(m)" Qo = 1, Q1( | T, @ (B2 du(m)) Q1.

rr(G) Irr(G)

The last equation can be derived from equation (3.13) in a similar manner. Clearly we
have fi(m) = f(m)" for a measurable function f: Irr(G) — R,. O

In the last part of this section, we will transport operators vg,vg,éit (t € R) to
fli(G) HS(H,) du(m). We start with a formula expressing the action of (7):cg on matrix

coefficients introduced in Definition 3.8. Recall that 4, is the modular element of G living

o~

in the universal level, i.e. it is a positive self-adjoint operators affiliated with C§(G).

Lemma 3.23. For {,n € fé’i(G) H, du(m) and t € R we have

_ L2y . -
(M) =y HOT | 4 ® s g ) (UT) ()

— V_%itQ /I (G) (ld ® (AJD;QitEﬂ_’E;Qitﬂ_(&;it)nﬂ)(UW*> d,u(ﬂ')(iit,

142 . - i
Tt(Mg’l]) =z ! / ( )(ld ® wE%itfﬂ,D%itﬂ(S;“)nﬂ)<U )du('ﬂ)ét
Irr (G

yéit25_it/ (id ® WEL (5, ) er, D7 )(U™) dp(r).
Irr(G) o !

Later on in Theorem 3.25 we will get simpler expressions for these actions (once we
find out what m(6%) is).
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Proof. The proof is based on several facts from the theory of locally compact quantum
groups. First of all, we know that 6" = P~V " (equation (2.14)). Next, [93, Lemma
5.14] gives us

(of @)W = (1@ PTOYW(IL® V"), (of ®id)W=(1®V, YW1 ® P,

and (7, ® i)W = (id ® #_,)W. We note also that 6" € M(Co(G)), 6% € M(C%G)) and
A (0) = 0™ (|55]). Fix t € R, a representation 7 € Irr(G) which factorises through Co(G)

(i.e. m = 7’0 Ag for a representation 7' Co(@) — B(H,)) and arbitrary vectors &, 1, € H,.
We have

T ((id ® we, 1, )J(U™)) = (id ® we, 4, ) (1 @ id)(id @ 7) (W)
= (d ®we, n, o) (1 @1d)(W") = (id @ we,, . o 7')(id @ 7—4) (W)
= (id @ we, 4, o 7') (1 @ P7*)(W*)(1 © PY)).

Now we write the above expression in two different ways: we have

7((id ® we, ) (U™)) = (id ® we, , 07" ) (1 @ PT*VIH)(1 @ Vi) (WH)(1 @ P))
= (id ® we, 5, o ) (L ® 0") (0f @ id)(W*)) = 0f ((id ® we, . o 7) (1 ® 6%) (W*)))
= o7 ((id® ww(ég“)gﬂ,nﬂ)(Uﬂ*»

(3.14)
and

7((id ® we, 4, )(U™)) = (id @ we, , o7 ) (1 © P~ (WH)(1 © V") (1 @ Vi P"))
= (id ® we, , o 7) (0, @id)(W*) (L@ 6"
= (id ® we, .y, o ™) ((0”, @ id) (W) ( Au ’
= ([d @ w,_ o, ) (0% @id)(U™)) = 0¥,

=
=g
|
)
~
A\-/\/

i © w0y, ) (U™):
(3.15)

Let now &, 7 be vectors in fI ) Ha du(r). Then fields (W(S;it)fﬂ)ﬂehr(@) (7 (3_“)77,r)7r€1rr((g)

are also measurable and square integrable. Using equations (3.14), (3.15) and Proposition
3.12 we arrive at

7(Mg;,) = 7 / (id @ we, 5, ) (U™) dpu(r)) = / 7((id ® we, . ) (U™)) dp(r)
Irr(G) Irr(G)
- /m(@) 704 & ngizine (U™ dulm) = o7 / (d & wegrie, ) (UT) dplm))

Irr(G)

= y_éit25_it/ (1d®wD2mr(6 e, E2itn, )(U™) dp(r)
Irr(G)
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and

n(ME) =l [ (4 we )0 dutr) = [ (4 ) (U7 ditr)

Irr(G) Irr(G)
= /1 o 02 ([ ® we_ (57, ) (U™)) dp(m) = o ( /1 (G)(id D W ity )(U™) dp())

= yféitQ /I (G)(id ® wDTTzitng;Qitﬂ(S;n)nﬂ)(Uﬂ*) du(w)é“.

The second pair of equations follow by applying the adjoint. ]

Now we are ready to obtain the main results of this section. Even though we will
prove them together, they are of different nature, hence we prefer to state them separately.
First, we have a couple of equations expressing important operators on the level of direct
integrals.

Theorem 3.24. For ecvery t € R we have

ilt — 5thzt — Qz (\/I o E72rlt ® (E;2zt)T d[L(?T))QL
@ . .
=0l Do (DT du(m)Qn
Irr(G)
@
V%= J,6"P"J, = Q; ( o D" @ (DF)T du(r)) Qy

5]
= Qk( / EX @ (E;*)" du(n)) Qr.
Irr(G)

Next, we show that the modular element for G can be expressed using operators
(DW)WGII"I'(G)7 (Ew>7relrr(([})'

Theorem 3.25. For allt € R we have

A i ® . .
ot = v Qg ( / DY'EZ*" @ g dp(m)) Qp
Irr(G)

L, ® I
I/7§t QE(/ ( )]lH,r ® (D;QltE?th)T d/J/(ﬂ'))QR
Irr (G

N 42 L ‘ . . L
Moreover, w(6t) = v’z EZ2# D2t gnd vist D2s B2t — E2t D25 for gll s,t € R and almost all
m € Irr(G). We also get better expressions for the action of (7;)ier on matriz coefficients:

L —it 3 sL L it
Tt(MfJ]) = (5 MEQit&EQitn = MD—Qité‘,D—Qitn(S 5
R R it —it R
Tt(M&n) = MEQit&EZitn 5 = (5 MD_2“§,D_2“7]

for allt € R and &,n € fIi(G) H, du(m).
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Proof. Let §,n be vector fields satisfying conditions from the first point of Lemma 3.9.
Note that vector fields (D;?"&x)renn(c), (Ey 2 m(0, ")) nenm(c) also satisfy conditions of
this lemma. Using the second equation from Lemma 3.23 we get:

00PN ()~ )

Af (A0 )(U™) dnx) o)

Jwai“;Q(é“)*J(pAw(/Irr(G)(ld®wD 2ite p=2it(goity, ) (U™) du())
2 . @ : S
—v ¥ Qu1,57,Q) [ B (G, © DD du(r)

Irr(G)

2] ~ .
—%QE(/I o B e (D7) dp()) Quip (M),

Since the set of A, (M) with &7 as above is lineary dense in L*(G) (Lemma 3.10), we

get
®

1P = Q[ G © (DX du(m) Qe (3.10)

Irr(G)
Since (J,0%J,P")icr, (D) 7)cr are strongly continuous groups (see equation (3.7)), the

it? ; & . . . .
same is true for (v~ 2 E-27 (5 )),cx. Using relations gathered in equation (3.7) one

easily checks that J; commutes with J,6J,P". Since J; = Q;¥Q), Lemma 7.8 implies

A it2 . .
‘TE Gtp(b7y =DM = p(0") =T EZ2D¥ (reir(G),teR)  (3.17)
Let us choose s,t € R and use the fact that (7(67)),cp is a group: we have

i(t+s)?

vz E;Qi(t+s)D72ri(t+s) _ W(S;(t+5)) — W(Szt)ﬂ_<3zs> — U§E;2itD72ritV§ E;ZiSD?TiS,

and formula v E-%s D2 = D2t [-2s eagily follows. Equations expressing the action of
(7¢)1er on matrix coefficients follows from the equation 7 () = v2*° E-2 D2 _commutation
relation between E and D% and Lemma 3.23. Let us now plug in the above results to

equation (3.16):
@

. . it2 .
ISP =T Q[ B © (D2 dum) Qs
Irr(G)

42 ® w2 . .
_7QL (/ E;taVTE?rztD;ta ® (D72th)—|— d,u(’ﬂ')) QL (318)
Irr(G)
D

=9Q;(| D@ (D) du(m))Qr,
Irr(G)

which is the third equation of Theorem 3.24. If we use formula Q;Q; = V’éJQJw we
readily get the second equation. Now we can derive the first pair of equations of Theorem
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3.25. Since for all t € R we have VI = §~#P~% and J,6" = §J,, it follows that
ot = J,0 ], = (Jo P67 J,)(J,6"V ;" J,), which we can express using equation (3.18)
and Proposition 3.21:

QL(Sthz — (/ D72rzt ® (D;ta)T d/L(’]T))VﬁEtz (/ E;mt ® (D72rzt>T dﬂ(”))
Irr(G) Irr(G)

L @ . .
=v 2 DX'E* @ Tg-du(r).
Irr(G)

On the other hand, we also have i = (V,"*6")(6-"P~), hence

A i ® . . @ . .
Qrd™*Qp = 3" ( o D @ (B2 du(m)) ( o DX @ (D**) " du(r)),
Irr Irr

which implies the second equation for 5" and ends the proof of Theorem 3.25. In order
to finish the proof of Theorem 3.24 we have to derive a lemma concerning the function f
introduced in Corollary 3.22.

Lemma 3.26. For allt € R we have

® A . ® ,
T [ 1) Ly () @t = Q1 [ FR) s du(m) Q.
Irr(G) Irr(G)
® , . @ 4
ToQi [ tusouy )" Qudp = Qi) s i) Qe
Irr(G) Irr(G)
Proof of Lemma 3.26. Recall that J,0".J, = 6, hence
® ®

V%tQ‘LpQ*L( ( )DfritE;2it®]l,_,7rdu(7r))QLJ¢ = I/_%tzQ*L( ( )DfritE;%t@]lmdﬂ(W))QL-
Irr (G Irr (G

Using the above relation, the fourth equation of Corollary 3.22 and the commutation
relation vt Ds B2t = 21 D2 we get

@ - *

Q[ DR () Qu,
Irr(G)

= JwQ’Z( D;ME? ® ]lmdﬂ(ﬂ)) QrJ, JsoQ*L (/ E72rlt ® 1mdﬂ(ﬂ)) Qrdy
Irr(G) Irr(G)

—it? % © —2it 721t * © it 2it
=V QL( D7r E;r ®]IHW du(ﬁ))QL QL(/ f(ﬂ') D7r ®]lmd,u(7r))QL
Irr(G) Irr(G)

D
~0i([ B @ty du(m) s,

rr(G)
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consequently

D 52
QE(/ B2 @ 1g-du(r)) Qr = Jw(JwQE(/ B2 @ Tg-du(r)) Quly) " Jy
I I

rr(G) rr(G)

5>

= J,QL( / o F(m)D¥ @ g dpu(m))* QpJ,
Irr

@

(&)
= Q*L(/I "B @ ]lmdu(ﬂ))QLJwQE(/ F(m) s, du(r)) " QrJ,

rr(G) Irr(G)

and

® ' . ® '
JsoQ*L(/I F(m) g, dp(m)) Qr, = Q*L(/ F(m) " s, dpa(m)) Qr.

rr(G) Irr(G)

The second equation can be proved analogously or using equation Q59 = V‘§J¢J¢. [

Using the above lemma and Corollary 3.22 we can derive the first equation of Theorem
3.24 from the third one:
&
§"' P = J,J,6" P I, J, = J,05 ( D*" @ (D2 dp(m)) Qrd,
Irr(G)
o

@ . . . .
— 7,03 / o O D Q) Q01 Q5 / D D) () @0,
Irr (G Irr(G
[S3)

= ([ A s du(m) QuQE([ (B @ (BT d()) O

rr(G) Irr(G)

(&)
—0i([ B (B du(m) Qs

rr(G)

Now, the last equation of Theorem 3.24 follows as usual from the formula relating Q; and
Qr (Corollary 3.20). This concludes the proof of Theorem 3.24 and Theorem 3.25. O

The commutation relation v*!D*sE2t = E2tD2s (1 s € R) derived in the previous
proposition has the following consequence.

Corollary 3.27. If v # 1 then for almost all 7 € Irr(G), operators D,, E, have empty
point spectrum. In particular, if v # 1 then the set of finite dimensional irreducible
representations is of measure zero.

3.3 Special classes of type I locally compact quantum groups

When G is a compact quantum group, then a number of conditions related to the modular
theory of G, G turn out to be equivalent. For example, G is unimodular if and only if the
Haar integrals on G are tracial, which happens if and only if the Haar integral on G is
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tracial [64]. In fact, these properties are governed by the family of operators (pa)acim(c)
(see Section 2.3). In the main result of this section (Theorem 3.34) we will obtain similar,
though more complicated, characterisation for type I, second countable locally compact
quantum groups.

We start with presenting some results concerning modular theory of a general locally
compact quantum group G and its dual. These results are probably well known to the
experts.

Lemma 3.28. The following conditions are equivalent:
1) P* e L>®(G) for allt € R,
2) the scaling group of G is trivial,
3) Pt =1 forallt € R.

Proof. Tmplications 1) < 2) < 3) follow from the equation 7(z) = Pz P~ (z € L>*(G),
t € R). Forall z € M, and t € R we have P*A,(z) = vzA,(r(z)), hence 2) implies
Pit = ps1. Taking the norm of both sides gives us 1 = vz hence v = 1. ]

Lemma 3.29.
1) The Haar integrals on G are tracial if, and only if P = o=1.

2) G is unimodular if, and only if Vi = V;” (t € R).

Proof. We will use formulas gathered in equation (2.14). Equality Vi = 5~ Pt (t € R)
shows that P = 0 = 1 implies V:f = 1 and the traciality of ¢). Then ¢ is tracial because
Vi = J;V " J;5. Let us prove the converse implication. If Vi = 1 then P = 57t € L®(G)
for all t € R. Since P commutes with J5, we have P* = J;P"J; € L*(G)" and by the
previous lemma P* =1 = =",

If G is unimodular, then we have J;V_*J; = Vi = P~ for all t € R. Since P~*
commutes with Jj, it follows that Vi = V_*. On the other hand, if Vi = V_* for all
t € R, then

3—z‘tp—z‘t — Vit — it — J@Vf;(]@ _ J(p\g—itp—it(]@ _ J(p\g—itj(ﬁp—it

¥

and we get 0 = J50'.J5. This in particular means that 6% € Z(L™(G)) and [82, Proposi-

tion 1.23] implies 0% = J¢(§*“J@, unimodularity of G follows. O
Lemma 3.30. For all t,s € R, if of = o then V! = V. If (s,t) # (0,0) then also
v=1.

Proof. For all x € 91, we have V;”Vg/\@(x) = V%SAw(afs(af(:c))) = V%SA¢<$) (see 93,
Remark 5.2 ii)]), hence V;“Vﬁ — 2°1. Taking the norm of both sides implies v2* = 1
and proves the first claim. If s # 0 then we get v = 1, if s = 0 and (s,t) # (0,0) then
t # 0 and we get V¥ = 1. Formula V¥A,(y) = v2Ay(0f (y)) = vZA4(y) (y € Ny) implies
v=1. ]
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Lemma 3.31. For all t € R, 6" € Z(L™(G)) if and only of of = o' If these conditions
hold, then vt = 1.

Proof. The first part of the result is a consequence of the formula o) (z) = 6%o¥ ()6~
(r € L=(G)) - see equation (2.4). For the second part, observe that when 6” € Z(L>*(G)),
we have 0 = ¢%(6") = v*'§" (s € R) by equation (2.9). It follows that v*** = 1 for all
s € R, hence v = 1. O

For unimodular quantum groups we obtain another useful piece of information (cf. equa-
tions (2.20), (2.21)):

Proposition 3.32. If G is unimodular, then

t t

) , O’;p(CL') —55xh s

ol
ol

oF (w) = ) = 6~

and

Ag(o7 () = (of @ 07)Ag(x), A

forallt e Rz € LOO(@).

&)
R)
+ e
~—~
=
Il
S
&
)
=
b
&)
S
S~—

Proof. This proposition is a straightforward consequence of P~2%= §%(.J,6%.J,)6" (J50"T5),
Vi = J,6"P"J, (equation (2.14)) and Ag(0") = 0" ® 0" (Section 2.2). O

Proposition 3.33. The Haar integrals on G and G are tracial if, and only if G and G
are unimodular.

We remark that in [49] this result was stated as a corollary of Theorem 3.34 hence only
for type I, second countable locally compact quantum groups. However, we have realised
that this assumption is superfluous.

Proof. Implication “=" is an easy corollary of Lemma 3.29. Assume that G and G are
unimodular. Using formulas from equation (2.14) we arrive at

P*it — vit — JQV;MJQJ\ — J@V;Zt{]@; — J@Pltjs’,g — Pit7

hence P =6 =6 = 1 and Lemma 3.29 gives us the claim. [

The next theorem is the main result of this section. It presents a web of connections

between various properties of a type I, second countable locally compact quantum group
(and its dual).

Theorem 3.34. Let G be a second countable, type I locally compact quantum group. Con-
sider the following conditions:

1) D% € Cly, for allt € R and almost all 7 € Irr(G),

2) E% € Cly, for allt € R and almost all T € Irr(G),
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3) the Haar integrals on G are tracial ( left < right < both),
4) 0 € Z(L®(G)) for all t € R,

5) G is unimodular,

6) E*D_" e Cly, for allt € R and almost all T,

7) B = D for allt € R and almost all 7 € Irr(G),

8) G is unimodular,

9) EXD" € Cly, for allt € R and almost all © € Irr(G),

Then the following implications hold:

1) 2) 3)
5) «<——= 9) 7) <——= 8)
6) 4)

Moreover, each of the above conditions implies v = 1.

Proof. First, let us note that ¢ is tracial if and only ¢ is tracial: it is a consequence of
the equation Vii = J;V_"J5 (t € R). An analogous result holds for $ and ¢. Equivalence
1) & 2) < 3) is a part of the Desmedt’s theorem, one can also deduce this from formulas
for V3, V5 — see Theorem 3 24. Equivalence 6) & 4) follows from the formula for 6% in

Theorem 3 25 and Q; L=(G fIrr(G ) ® Ly dpu(m) (see Proposition 3.7). Equiv-
alence 7) < 8) is a stralghtforward consequence of Theorem 3.25.

Assume 5), i.e. that G is unimodular and let us derive 9). Fix ¢t € R. Theorem 3.24 gives
us

@ ®
Pogi([ e aum)er = ai([ D e (D) du(r) s
Irr(G) Irr(G)

which implies E%' @ (E-?)T = D %" @ (D?")T (7 € Trr(G)). Consequently, DX E?1S =
SD2*E?" for all S € HS(H,). This means that D?*E?** = X\ 1y_ for some \; € C and we
arrive at the point 9). On the other hand, point 9) implies that there exists \;, € T such
that B = \, D" It follows that v = 1 and A_,, = A\, ', moreover the first and the
third row of Theorem 3.24 imply 6" = J,6"J,. This in particular means that 6" belongs to
the center of L>°(G) — we have § = J (5”) J |82, Proposition 1.23]. These two equations
together imply 6 = 1.

The remaining implications are trivial. Let us now argue why all of the above conditions
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imply v = 1. Clearly we only need to justify this for 6) and 5). If E¥D_"* € Cly, then
Vit D2is B2it — B2t D2s forces v = 1. If 6" € Z(L®(G)) then v*° 5" = ¢¥(5) = 6% for all
t € R (|82, Proposition 1.23|), hence also in this case v = 1. O

Let us now show how certain classes of quantum groups fit into the above diagram.
Proposition 3.35. Let G be a type I, second countable locally compact quantum group.

n If G is classical and non-unimodular, then it satisfies 8) and does not satisfy 5).

" ]f@ is classical and non-unimodular, then G satisfies 3) and does not satisfy 8).
n If G is compact and not of Kac type, then it satisfies 5) and does not satisfy 4).
n If G is discrete and non-unimodular, then it satisfies 8) and does not satisfy 5).

The numbering in the above proposition corresponds to the numbering introduced in
Theorem 3.34. Clearly each of the above classes is non-empty: examples are given by the
classical ax + b group, its dual, the SU,(2) group and its dual (see Example 3.6).

In the next four sections we will describe some examples of type I locally compact
quantum groups. This description is taken (with minor changes) from 50| and [49].

3.4 Example: compact quantum groups

Let G be a compact quantum group with countably many classes of irreducible representa-
tions (recall that we have introduced compact and discrete quantum groups as well as their
basic properties in Section 2.3). We equip Irr(G) with the discrete measurable structure
and declare all vector fields on Irr(G) to be measurable.

Define positive invertible operators D,, F, € B(H,) and a measure p on Irr(G) via

Do = pa?, Bo=pa?, p({0}) = dimy(a) (o € Ir(G)),

Next, define operators Qj, Qr via

D @

Topa? dp(a) € / HS(Ha) dy(a).
Irr(G)

Qr: L*(G) 3 As((Tw) (@) — /
Irr(G)

52} D

T.pubdule) € [ HS(H)dufa)

QRZ LZ(G) > JQJhAﬁ((Ta)aEIrr(G)) H/ (G)
Irr (G

Irr(G)
where (T3,)acm(c) belongs respectively: to 915 in the case of @ and Sﬁqz in the case of Qp.

Proposition 3.36. The objects

QL: QR7 M, (Da)aeIrr((G)a (Ea>a€Irr((G)

satisfy all the conditions of Theorem 35.3.
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In order to prove this result, we will use Proposition 3.5. First, let us check that Q; is
a well defined isometry:

@ 1 2 12
I T bdnt@)l = [ Tpa [ dute)

Irr(G) Irr(G)

= Y dimg(a) Tr(pa " To"T0) = [|Az((To)actn@) |-

a€clrr(G)
It is clear that the image of Q is dense, hence Q is a unitary operator. An analogous argu-
ment shows that Qp also is unitary. For w € L'(G) such that \(w) = ((w@id)Uo‘)aehr(G) €
N5 (see equation (2.22)) we have

QAW = [ (e id)(U)p, ¢ dp(a).

rr(G)

Similarly, for w € L'(G) such that A\(w) € O we have

@ 1
Qr s Az (Mw)) = / (w @id)(U°) pé dp(a),
Irr(G)
which proves point 4) of Proposition 3.5 (note that X = {\(w)|w € L'(G)} N N satisfies
assumptions of Proposition 3.5, see [93, Lemma 5.14]). Take 2 = (24)acir@) € M and

w € LY(G). We have

&

Qr((w@id)W)Ag(z) = QrAs(((w @ id)W)z) = /I o (w ®id)(U*)2apa 2 du(a),

on the other hand

2
( /1 o (w@id)(U*) @ 1 du(e)) QrAs(z)

&b
_ / (@ ®id)(U%) ® Li)zapa? du(a)
Irr(G)
@D

- / (w® id)(Ua)xapoz_% dp(a).
Irr(G)

The last equality follows from the isomorphism HS(H,) = H, ®@H,. The above calculation
proves the commutation rule

D

QL (w ® i)W = ( /1 @O @ L du@)Q (@ ell©)

Let us introduce a dense *-subalgebra in co(G):

alg

(@) = P B(Ha).

aclrr(G)

In order to show the second commutation rule, we need the following lemma:
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Lemma 3.37. The subspace coo(G) is a 0-SOT x || - || core for As.

Above (and everywhere else) we treat KOO(@) as a subalgebra of B(L*(G)), not as a
subalgebra of B(ED,,cr(e) Ha)-

P’I’OOf. Let T'= (Ta)aelrr((}) € ‘JL;, that is

= Y dimy(a) Te(T;Tap,") < +o00. (3.19)
a€lrr(G)

Let {X, |n € N} be any increasing family of finite subsets of Irr(G) such that (J, .y X» =

Irr(G). Let (T™),en be a sequence of elements of COO(@) given by T = 1x, (a)T,. It is clear
that 7" € M for each n € N. An easy calculation using (3.19) shows Az(T") —— Az(T).
n—oo

Furthermore, we have 7" Z=°5% T. Indeed: as the sequence (T™)nen is bounded, it is

n—oo
enough to check convergence in SOT and on vectors from a dense subspace {Az(S) |5 €

9Nz N Dom(ay),)}. For such a S € 9z N Dom(c /2) we have

ITAS(S) — T"As(S)]| = IAS((T — T")S)|| = [ T5070(S) ToAAT — T
< (o8, (SMIAAT ~ T —0,

which proves the claim. O

Let us now check the second commutation rule, i.e.

®
0y (w®id)y (V) = (/ I, ® (@ ® )W) du(@)) Q. (w € LY(G)).
Irr(G)

Take any T = (T,)acin(c) € cgo(@) and w € LY(G) such that \(w) € Coo(@)- Let us
note thf/i\t the unbounded operators 6% = @aem(G) p2* and V% (a € R) have the subspace
A3(coo(G)) in their domain, and moreover this subspace is preserved by them. Indeed, it is
clear for 4, and we know that VeAs(ef;) = Ap(a?,,(ef;) = EEZ;Q Ag(ef;). Recall equation
(2.11)

X(V) = (Jz @ Ja)W*(Jz @ J3),

hence using equation (2.12) we arrive at
(w®id)x(V) = Js((wo R®id)W)*J; = JR((w @ id)W)* J; (3.20)
and

Qr(w®id)x(V)Ap(T) = QrJpR((w @ id)W)" JpAp(T).
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On the other hand

(&)
( /I e a(@oidw) du()) QuAA(T)

dim(a)

3]
:/1 (Tn, ® a((w @ id)W Z 15 (Tupa?) "G ldp(a)

I‘I’

dim(a)

/I(@ > ¢ ®ao R(w®id)W) (Tupa®)¢; dyu(a)

j=1

_ / Toontao R((w®id)W) du(a)
Irr(G)

= QUAG((Tupa a0 R((w ©id)W)pi)neinie)
— Q1JsVE(pa a0 R((w @ id)W)p2):epme) JaV2AS(T)
= QLJ@Vé(péoz oR(w® id)w)*paé)aelrrm,)% Jshs(T),
where {¢f']j € {1,...,dim(a)}} is any orthonormal basis in H,. Notice that by Lemma

3.13 the operator Vé‘loga is closable for all @ € R. Furthermore, on Ag(coo(@)) it commutes
with operators from ¢°(G). Indeed?, by equation (2.14) and Lemma 3.29 we have

—it _ V% _ 6—z‘tP—z’t _ P—z’t7 P—2it _ 5it(Jh6itJh)(§it(J¢5it(]¢) _ 5#((]@5&(]@)

P

hence

A

Vgitgit _ p2itgit _ 5—it((]A5—itJA>5it _ Jag—itl][ﬁ c Eoo(@)/
for all t € R and V2“6“ is affiliated with ¢>°(G)’ ([78, Exercise E.9.25]). Consequently

QrJsV 7( Zao R((w & id)W)*p?)agrr(G)V;J¢A¢(T)
= Qulp(evo R((w @ )W) aer(e) (V301) (07 V) JpAp(T)
= Q1 Js(a 0 R((w @ id)W)") sty JoA (1),

and the second commutation relation holds. R R

Assume that = (24)acmr(c) i an element of £>°(G) N ¢>°(G)". Triviality of the center
of B(H,) impliess that z, € C1, for each o € Irr(G). Operator = is mapped via Q, to
fIi(G) zo du(a), which is a diagonalisable operator. On the other hand, any diagonalisable

operator fli(G) Yo dpp(@) (Yo € Clpg(n,)) is an image of (Yo )acim(c) € ¢>(G)Ne>=>(G). This
proves that we have identified objects that are given by the left version of Theorem 3.3.

1
Let us now check that Qg and E, = p, 2 satisfy conditions from Proposition 3.5: we

23 A more direct proof is also possible, see [50].
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only need to check the commutation rules, since the rest is clear. Now we need to use the

formula %Aﬁ(e?’j) = Egzgg Ag(ed;). Take w € LY(G)and T € 01 as before. We have

S

& 1
_ / (0 ®id)U°Tupd du(a) = ( / (w0 ® )0 © T dp(0) Qs uhs(T),
Irr(G) Irr(G)

which shows the first commutation rule. Let us now prove the second one using this time

the result that Vf“(g“ is affiliated with ¢>°(G)’ (recall also that 7 = 1, hence Je = Jg):

®
(/1 o Iy, ® a‘((w®id)W) d,u(oz)) QRJ@]hAJ(T)

(&) 1 .
_ / Topd 00 R((w ®id)W) du(a)
Irr(G)

= QrJpn g ((Tupd a0 R((w @ id)W)pa?)aci(c))

50} 0o Bllw ©id Wa- ) }
= QuJpiJzV 2 (pd a0 R((w @1d)W)pa®), ) oV EA(T)
= QrJpJnJ5R((w @ id)W)* JpAS(T) = QrJaJu(w @ id)x(V)A4(T),

which concludes the proof of Proposition 3.36.

Remark. Note that one gets a general Plancherel measure by taking any positive measure
on Irr(G) with full support. Indeed, let ¢: Irr(G) — R be an arbitrary function. Define
measure 4¢: {a} — c(a). It is equivalent to the above measure u = p4™ and we have

dps ¢

dp  dim,’

With this choice of a Plancherel measure we can relate the following Duflo-Moore operators:
dch 1
Da = a2
\ ()P
dpe
Ea = o
\ s (@)e

— c(a)?dimy(a) 2 p,?,

[NIES

N

"
( (@) 2dimy(a) ?pq

o

3.5 Example: quantum groups dual to classical

Assume now that G is a classical locally compact group which is second countable (for

preliminary results see Section 2.2.1). We have equality of C*-algebras C}j(@) = Co(G), its
spectrum can be identified with Irr(G) = G as a topological space, and every point ( € G

~

corresponds to the one dimensional representation of Co(G) given by evaluation at . We
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will abuse the notation and identify (as sets) H¢ and B(HC) with C for each ¢ € G.
Take any p € R. Define a measure p, = (5”/@ = P Lk, the structure of measurable
field of Hilbert spaces (C)ce(} given by measurable functions on G positive operators

De=0(0)%, B =6(0)"7 (¢ € G) and operators Q,, Qp given by

N p @
01 L2(G) 3 Ag(f) = /G FOHO (<) € [ HS(HG) din ()
S5

o . -
Qu: LA(®) 3 o Ag(1) = [ 1507 dilO) € [ HS(HO ).

G
Operators Qp, Qr are at first only densely defined: f belongs respectively to 915 and
N
Proposition 3.38. For each p € R the objects

QL; QR» Hp, (DC)<6@7 (EC)CG([A};
satisfy all the conditions of Theorem 35.5.

From this proposition follows that a general Plancherel measure is given by guy for
a strictly positive function g. We restrict our attention to the case g = &P because this
choice simplifies our calculations. Furthermore, this family of measures includes a measure
invariant under conjugation (when p = 1, see [50, Section 13.2]) and the natural choices of
left and right invariant Haar measures pur, jig.

First, let us check that the densely defined operators Q;, Qg are isometric:

I / FQIO) 2 dp(Q* = / IFOP(C)P8(C)P dpr(C) = As(F)II?,
I / £SO dm(Q = / LFOPRSC)™T8(0)"  dur(C) = A ()%

It follows that they extend to the whole L?(G). It is clear that they have dense image,
therefore are unitary. As before, to prove Proposition 3.38 we will use Proposition 3.5. We
have

&

Quha(M@)) = [ (e @ dIW)QB(C)  diy(C)

G

52}
- [ o@D i)
for a € L'(G) such that A(a) € N5. Similarly,

2]

QrJpJo(Aj(A(a))) =/ (0 ®id)W)(Q(¢) ™7 dpsp(€)

G

_ /G (0 @id)(U)E duy(¢)
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for a € L'(G) such that \(a) € 1. Consequently, point 4) holds. Now, for f € 915 and
w € LY(G) we have

0, (1w ® id)WAL(f)
— QA 5((w @ id)(W) )

& a P
_ / (@ ® WO F(OS) " dyip(C)

G

([ (0 ® W)(Q) © 1 dpu€)) Q2o

G

:(/@(w ®1d)(U°) ® T () QrAs(f),

which gives us the first commutation relation. The Haar integrals on G are tracial, hence
the operator J; acts as follows: J3Az(f) = As(f*) (f € 915). Consequently for each

~

z € L*(G), f, g € N5 the following holds

(Aa(9) | Jor™ Jpha(f)) = (Ap(9) [ Ap(fx)) = (9" fr) = Pg"af) = (Ag(g) | 2D (f))-

It follows that Jsr*J; = (z € L>®(G)) and
(w@id)x(V) = R¥((w ®id)W) (w € L'(G)).
Clearly we have RE(2)(¢) = z(¢™?) (z € L®(G), ¢ € G), therefore
Qr(w®id)x(V)Az(f)
= [ (@ vIN0R0 T i)

G

_ / T @IdWEDFOSO) S djy ()

G
and on the other hand

([t o (@i W)an(©) 2usts)

r(G)

@
— ([ 1@ (@I d(0) QuAelr)

[S14S)

_ / (1h, @ (W)WY ) (FOFC) ) dy ()

G

D A P
_ / (w @ id)W)(C)F(O)S(C) 5 diy(Q)

G

for w € L'(G), f € M5, which ends the proof of commutation relations for Q..

Y
o~ ~ ~

We have L>°(G) N L™(G)" = L*>(G) and it is clear that operator Q; maps a function
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z € L®(G) to the operator fg z(¢) dpp(C). Note that for each x € L>(G) and f € N we
have

® . -
0rrQ} /G FOFO) 5 dupl€) = Qo A(f)
= QudpJy " TN (f) = Qulp RO () A5(f) = QrlatoA;(RE(x) f)

- / RE(@)(0)F(O3(0) %" duy(©).

rr(G)

therefore QrxQf = fg R@(x)(C) d,(C). Consequently, Qp, Qg transform Z(L"o(@)) onto
the algebra of diagonalisable operators. We are left to show the commutation relations for
Qr. Take any w € L'(G) and f € 915. We have

Qs (w0 ® )WA(f) = /j«w S W) FOSO) " duy()

- / w0 @id) U FOFO " dug(¢) = ( / (w0 1) (U9) ® Ly, djiy(Q)) Qs oA ()

G G

and
QrJstp(w @)X (V)AS(f) = QrJat,RE ((w @ I)W)AS(f)

_ / " RE (w0 @ )W) £SO djy(©)

G

= (/; Ly, ® ¢ ((w @ )W) disy (C)) Qr T A (f).

This concludes the proof of Proposition 3.38.

—_—

3.6 Example: SU,(2)

Fix a real number ¢ € |—1,1[\ {0}. Let G be the quantum group SU,(2) (see Section
2.3.1) and let T" be the dual discrete quantum group I' = SU,(2). To avoid confusion, in

1

this section we will decorate objects related to SU,(2) (resp. SU,(2)) with G (resp. I"). We
have already said that G is coamenable, consequently C(SU,(2)) = C*(SU,(2)). This C*-
algebra is separable and type I (see [99, Theorem A2.3|) hence I is an interesting example
of a second countable, type I discrete quantum group?*. We will describe the Plancherel
measure for this group and show how various operators related to I act on the level of
direct integrals. Let us start with describing the measurable space Irr(I") (i.e. the spectrum
of C(SU4(2))). The following result is a reformulation of [90, Theorem 3.2| (see also |44,
Section 3.2]):

?4In this section I is the "main" group and G is the "dual" one.

67



Proposition 3.39. Measurable space Irr(I") can be identified with the disjoint union of two
circles TUT = {1 | p € T} U {**| X € T}. Representations 1* are one dimensional
and given by

() =p, OM(@) =D, () =0, ¥**(y) =0 (peT).

Representations 1>* act on a separable Hilbert space Hy = (*(Z.) with an orthonormal

basis {¢pr | k € Z+} via

1/]27>\(a)¢k =V 1- q2k¢k—1a ¢27A(a*)¢ \% - q 2(k+1) gbk-ﬁ-la

T/JQ’/\(’Y)% = Aqubk, w27)\(7*)¢k = >\q ¢ka (>\ S Ta ke Z+)7

with the convention ¢_, = 0(n € N).

In what follows, ¢, 1 are the Haar integrals on I" = Sﬁ,—](\2) and h is the Haar integral
on G = SU,(2).
In the next proposition we calculate the Plancherel measure of T, the unitary operator Oy,
and operators (Dx)reirr). Then, as G is unimodular, we have £, = D, (7 € Irr(I")) and
Qr = QrJ,J, (see Remark 3.1).

Proposition 3.40. The Plancherel measure of T equals 0 on {1 | p € T} and the normal-
ized Lebesque measure on the second circle {1p** |\ € T}. Consequently, we will identify
Irr(T) with T. Operators {Dy| X € T} are given by

Dy = (1-¢* 2 Diag(1,lg| % gl %...) (AeT)

with respect to the basis {¢x |k € 7, }. Operator Qp, is given by

® @
Qui L(©)3 Mufa) -+ [ @Dy duV e [ HS(H)Au() (o € CSU,(2).
Trr(I7) Irr(I7)
Proof. Define p to be the normalized Lebesgue measure on the second circle of Irr(I") =
TUT and let Q@ be the operator given by the above formula. In order to show that these
objects are the ones given by Desmedt’s theorem, we will use Proposition 3.5. Let us start
with showing that Qj, is well defined and unitary. First, it is clear that for a € C(SU,(2))
the field of operators (¢%*(a)Dy')ser is measurable and square integrable. Consequently,
we can introduce a densely defined linear map Qp: Ay(a) — flﬁ(T) Y?Ma) Dy dp(N). Since
1QrAL(a)] < |lal| (@ € C(SU,(2))), the linear map Qj, o Ay is bounded. Let us now show
that Qy, is isometry, i.e. (QrAx(a') | QrAn(a)) = (Ap(a’) | An(a)) for all a,a’ € C(SU,(2)).

Since

(QrAn(d)| QrAn(a)) = w“< Dyt dp(N)] V*H(a) Dy dp(N))

Irr(I7) Irr(T")

@ ®
= </I - ¢2>\ D dlu ‘ I w?,)\(a/*a)D)Tl d,u()\)> _ <QLAh(]l) | QLAh(a’*a)>
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and (An(d’)|An(a)) = (An(1) | An(a™a)), it is enough to consider the case ' = 1. Next,
as maps Qr o A, A, are bounded and linear, it is enough to consider a in a basis of
Pol(SU,(2)), {aly™y*™, a¥' "y ™| 1,n,m € Z,,I' € N} (see [99, Theorem 1.2]).

In order to calculate (An(1)| Ap(a)) we need to introduce a faithful representation

mo: C(SU,(2)) — B(£3(Zy x Z)) defined in [99]. One can express the Haar integral h as

ha) = (1= ¢%) ) a™{drol mo(a)dro) (a € C(SU,(2))),

where {¢r, | (k,p) € Z, x Z} is the standard basis of (*(Zy x Z). Now, for l,n,m € Z,
we have

(An(L) [ Ap(ay"y™)) = h(a!y"y™) = §0(1 - ¢* Z 7> o, mg "R = 6, 00n mT(lin)
k=0

and similarly (A, (1) | Ap(a*lyy ™)) = 5%05”77”% On the other hand

D D
(QLAR(L) | QrAL(aly™y*™)) = ( ()Dildu )| ()w“(alvnv*m)Dildu(W
Irr (T Irr(T
= d10(1 — ¢*) Z On | AT GG dpa(A)
Irr(T) —g

o0

2 (n+m)k 2k: _ 1—¢>
- 5[ Odn m 1 - C] q 5l 05n m 1_q2(({+n) .
k=0

In an analogous manner we check (QpA(1) | QrA,(a* Yy ™)) = 61,06n7m%. This
shows that Qj is isometry and consequently extends to the whole of L*(G). Let us now
argue that Qj is surjective. Fix A € T, k,l € Z,. We have ¥**(yy")¢r = ¢** ¢y, hence
VMg (77)) bk = Oradr (note that operator 1z (y7*) belongs to C(SU,(2)) because
q? is an isolated point in the spectrum of vy*). Next, for n € Z, the following holds

n—1 n—1
V"L (7)) b = ok ([ = @52 = Sea([[ (1 = 2F)2)g1
a=0 a=0

which (together with a similar reasoning for o*) implies that for all [,n € Z, there exists
an operator FE,; € C(SU,(2)) such that ¥?*(E,;)¢r = dx¢n (k € Zy, X\ € T). Next, for
m € Z, we have

VMg By bk = kN by 0PN G EL ™) O = OpN "0 (K €Zy, A ET)

and consequently for any polynomial function P in A\, X and n,l € Z, an operator

fm(r) (NP> E,,) du()) belongs to the image of Qp. From the density of such polyno-
mials in L*(T) it follows that for all f € L*(T)
o
. FOVP*N(Eng) du(X) € Qi(L*(G)). (3.21)
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We have an isomorphism (given by choice of bases) fl@ y HS(Hx) dpu(A) ~ ~ LA(T)®HS((*(Z,)),

hence it is clear that operators as in (3.21) span a dense subspace in fI HS(Hy) dp(A),
and consequently Qp is unitary. Let us now check the first commutation refatlon of Propo-
sition 3.5. We have

QA () Q1 (QrAn(a)) = QuAK(N (w)a) = /1 . YN (w)a) Dy du(N)
S2) 2]

= | R @) @D () = ([ 9O (@) @ Tarda(V) QuAn(a)

Trr(T) Irr(T)

for all w € (1(T"),a € C(SU,(2)) where \''(w) = (w ® id)W" | hence
®
QLN (w)Qp = VAN (W) ® Ty dp(N)  (w e (4(T)). (3.22)
Trr(I7)

In order to show the second commutation relation, let us show that Q; transports .J, to
the direct integral of adjoints. For a € Pol(SU,(2)) we have

()
QuJuA(a) = Qwawxwzlmwwzmww¢wm.

Next, observe that ¥?*(ct(a)) = D;*"?*(a)D¥* for all A € T,t € R,a € Pol(SU,(2)).

Indeed, we have ol () = |¢| %, ol (y) = v (t € R) and consequently

Y* (o} (7)) = ¥*(7) = DY** (1) DY (t €R)

and similarly for all k € Z,,t € R

D3N @) DY gy, = (1 — ¢*)2]g] Mg Dy = [q] M) dr = ¥* (0] ().
It follows that for all a € Pol(SU,(2))

@ 5]

Q. JuAn(a) = mw“wwwfwwzf (6% (@) D) du(N),

Irr(T) Trr(T)

hence Q1 J,Q; equals ¥ = fI (T JHA du(N). Now we can show the second commutation

relation. Recall that formula X(VF) (Jn@J,) (WEY*(J,®Jy,) implies that for all w € £(I)
we have (w ® id)x (V") = J,R®((w ® id)W")*J, (equation (3.20)) and consequently

b
Quer (VG = QuAQi(| (170 KN @ Lig dn(N) Q0
Irr(I"
@ (&3]
= [ e @ e BT = [ L @ @O @) du),
Trr(T) Trr(IT)
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which is the second commutation relation. We are left to show

®
Q(L™(6) NL™(6))Q; = Ding( |  HS(H) (),
Irr (T
let us first argue that
®
Q. Lx(G)Q; = / ( )B(HA) ® ]lmdﬂ()\))- (3.23)
Irr(T

Inclusion C follows from the commutation relation (3.22). On the other hand, equation
(3.22) and a reasoning similar to the one showing that Q is unitary, implies that for any
polynomial P in A\, A and n,l € Z, we have

(&)
/ POV (E,p) © Ti-du()) € 00 L%(G)Q}.
I

rr(IM)

The o-wOT density of polynomials in L°°(T) and the isomorphism fli(]l‘) B(Hy)@1g-du(A) =~
L>®(T)® B(¢*(Zy)) gives us (3.23). Consequently

2] 5]

B(H,) ® Tg-du(A)) N (/I - In, ® B(Hy) du()))

01L& N1=(6)); = ([

Irr(T)

[S5)
~ Diag( (L) ().

O

In the next proposition we find the action of the operator P¥ on the level of direct
integrals.

Proposition 3.41. For each t € R, operator Q. P*Q} acts on fé’i(r) HS(H,) du(N) as

follows:
e &

QLP“QE: / T)\ d/L()\) — T)\|q‘2it du()\)
Trr(T) Trr(T)

Note that the above result implies that Q7 P*Q% is not decomposable.

Proof. Let P be the operator in the claim, i.e. P": fli(r) Ty du(N) — fli(m Tyjgzie dpu(X).
Clearly it is well defined and bounded. Recall that the scaling group of G = SU,(2) acts
as follows

(@) =a, i) =a 7F0) =ldy, 7O =ld™ (teR).
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and P satisfies P*Ay(a) = Ap(78(a)) for all t € R,a € C(G). Fix I,k,n,m € Z,,\ €T
and the corresponding operator a!y"y*™ in the basis of Pol(G). We have

-1

¢2,A<al7nv*m>¢k _ (H(l . q2(k7a)>%))\nfmqk(ner)(ﬁkil

a=0
-1
—2t(n—m —a)\ L it\n—m n+m
= g (T = @5 )2) (Mg g gy
a=0

—2it(n—m 2it n__xm
= [g| 7>y () gy

(recall that we use the convention ¢_, = 0 for p € N) and consequently
QLPitAh(al,yn,y*m) — |q|2it(nfm) QLAh(al,yn,y*m)

52 " ~ .
= [ @D ) = P Quafalyy ™)
Irr (I

In a similar manner we check Q; P™Ay,(arly™y*™) = P*Q; Ay (arly™y*™). The claim follows
because Aj(Pol(G)) is dense in L*(G). O

The last result of this section describes the action of an operator QJ,Q7.
Proposition 3.42. Operator QpJ, Q7 acts on fli(ﬂ,) HS(Hy) dp(A) as follows:
@ @
QuloQp [ TdulN) = [ BT du),
Trr(I7) Irr(T)
where jy is the antilinear operator on Hy = U(Z.) given by jaodr = ¢ (A € T,k € Zy).
Note that this result implies that operator QrJ,Q7 is not decomposable if g > 0.

Proof. Using the formula R® = SGTSQ and [99, Equation 1.14] one easily checks that
R°(a) =a*, R°(a")=a, R°(y)=-—sgu(q)y, R°(Y")=—sgn(q)y"

On the other hand we have R®(a) = J,a*J, for all a € C(SU,(2)), hence
Joa=ad,, J,of =a" S,  Jyy=—sgn(q)v S, J,v = —sgn(q)y .

Denote by j@ the operator from the claim and fix A\ € T, k,n,m,l € Z,. We have

-1

ol
PPl g = AR T = ?¢)2) gy
a=0
-1

= (—sgn(q))" " (= sgn(g) )" g R (1 - %))y

— (_ Sgn(q))ernj)\wQ,fsgn(q))\(al,.)/n,y*m)j)\¢k,
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consequently
QrJpAn(a'y" ™) = Qra'(—sgn(q))"y™" (= sgn(q)) ™" JoAn(1)

(S5}
= (—sgn(g))""™" ( )wm(alvmv*”)DI du(N)
Irr (T

D
= / Jatp® T EN DA (@l my iy DI dp(N)
I

rr(I)
~ @ ~
= )W’A(a YYD dp(N) = JpQuAn(a’y" ™).
Irr(IT
Equation QpJ,Ap(ay"y*™) = J »Or A (a'y"y*™) can be checked similarly. O]

Remark. In propositions 3.41, 3.42 we have expressed operators P (¢t € R) and J, on
fIi(IF) HS(H))dp(A). Theorem 3.24 and Proposition 3.21 allow us to do the same for
off, VI, Vi (t € R) — operators obtained in this way are not decomposable.

3.7 Example: quantum az + b group

In this section we will describe some aspects of the theory of the quantum az + b group.
We begin by introducing a complex number ¢ and an abelian group I'y € C*. We will
consider three cases:

1) ¢=e¢ for a natural number N € 2N\ {2} and U, ={¢"r |k €Z,r € Ruo},

2) ¢ is a real number in ]0,1[ and T, = {¢"™* |0 € R, k € Z},

3) ¢= e%, where Re(p) < 0,Im(p) = &£ and N € 2Z\ {0}. In this case
I,={er |keZteR]}

It will be more convenient for us to work in the dual picure?: let G be the quantum
az + b group associated with the parameter . We refer the reader to papers [103, 73, 104]
for construction of these groups, here we will recall only necessary properties.
We treat all three cases simultaneously. The group I'; has closure given by fq =TI, U{0}
and is selfdual. This duality is implemented by a certain bicharacter x: I'y x I'y — T.
We choose a Haar measure on I'; in such a way that the Fourier transform F(f)(y) =
fr (v') du(v') is a unitary operator on L*(T,). Next, the group I', acts on Co(T,)

by translatlons. o (£)(Y) = f(Y) (f € Co(Ty),y € Ty, € T,). Let Co(T,) x, Iy C
B(L*(T,)) be the associated crossed product C*-algebra (note that since T, is abelian,
the reduced crossed product is universal). The C*-algebra Cg(@) is isomorphic to the
crossed product Co(T,) %, [',. Furthermore, it is known that G is coamenable. Indeed,

25In fact, G is isomorphic to the quantum group opposite to quantum az + b.
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it was pointed in [73, 74|. It follows from an easy observation that the universal prop-
erty of Co(I';) x, I, together with the trivial representation of I', and the character
Co(T,) 2 f — f(0) € C give rise to a character of Co(T,) %y Iy ~ Co(G). Then [8,
Theorem 3.1] implies that G is coamenable.

One easily checks that the quotient space fq /Ty consists of two points and is not an-
tidiscrete. Consequently, [97, Proposition 7.30| implies that G is second countable and
type I. Using [97, Theorem 8.39| one can describe the spectrum of CO(@) ~ Co(T,) %o Ty
there is a family of one dimensional representations indexed by fq and one faithful irre-
ducible infinite dimensional representation given by the inclusion into B(L*(T,)). Denote
this representation by 7.

Proposition 3.43. The Plancherel measure of G equals the Dirac measure at , a repre-
sentation corresponding to the inclusion w: Co(G) = Co(T,) x4 Ty = B(L*(T,)). Conse-
quently we have Qr, Qp: L*(G) — HS(L*(T,)).

Proof. 1t is observed in [104] that we have ¢ o 7C = |¢~4"|¢) for all ¢ € R, hence the
scaling constant of G equals v = 0! = |¢7%|. In the first and the third case ¢ is not real
and it follows that v is non-trivial. Corollary 3.27 implies that the set of one dimensional
representations is of measure zero, and the claim follows?%. Let us now consider the second
case, i.e. ¢ € |0, 1[. It is argued in [92, Section 5, Proposition A.3| that the von Neumann
algebra, LOO(@) is isomorphic to the von Neumann algebra M associated with a pair (a, b) of
admissible normal operators (see [92, Definition 5.1]). Moreover, up to an isomorphism M
does not depend on the choice of (a, b), in particular we can take a pair (a, b) introduced in
[92, Proposition 5.2]. In this case one easily sees that the resulting von Neumann algebra
equals the whole B(¢*(Z)). In particular it is a factor, hence Proposition 3.7 implies that
the Plancherel measure of G must be the Dirac measure at . O]

Now we turn to the problem of identifying operators D,, F,. To simplify the nota-
tion, we will call these operators respectively D and E. Let us start with introducing two
normal (unbounded) operators on L*(I';): a and b. Operator b acts by multiplication:
(bf)(v) =vf(v) (f € Dom(b),y € I';) and has the obvious domain. The second operator
a can be defined as a = FbF*. R
Note that there exists an isomorphism of von Neumann algebras ®5: L>(G) — B(L*(T,))

~

induced by QgrJsJ,, such that ®r(z) = w(z) for v € Cy(G) (see Theorem 3.3 and Proposi-
tion 3.7). Under this isomorphism, the right Haar integral W is transformed to Tr(E~1-E~Y)
— it follows from the construction of the Plancherel measure in Theorem 3.4. On the other
hand, we have ¢ (z) = Tr(|b|7(z)|b]) for all x € Co(G)™ ([104, Theorem 3.1]). This means
that the weights Tr(E~" - E~1), Tr(|b| - [b]) are equal on D (Co(G)). Let 6 be the restric-

tion of these weights to ®z(Co(G)). The modular automorphism group of Tr(E~!- E~1) is

26We remark that it was already observed in [92] that in the first case, LOO(@) is isomorphic to the
algebra of bounded operators on a separable Hilbert space.
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given by o, 7" (A) = E"?"AE?" gimilarly atTr'b' (A) = |b|%tAlb|%t (A € B(L*(T,)),t € R).
Next, the weight 0 satisfies the KMS condition for both groups (J;HE_1 |¢R(CO(@))>1€€R and
(o, |05 (Co(@)))rer and as this weight is faithful, [53, Corollary 6.35] implies E~**AE*" =

~ ~

b]? AJb| 72" for all A € ®g(Cy(G)),t € R. By the o-WOT density of ®r(Co(G)) in
B(L*(T,)) we get E = c|b|™* for some ¢ > 0. Equality Tr(E~!- E~') = Tr(|b| - |b]) on
®;(Co(G)) forces ¢ = 1 and consequently E = ||~

The next step is to identify the operator D. Observe that Lemma 3.26 implies f(7) = 1,
where f is the function from Corollary 3.22. Recall ([73, Section 6.2], [103, Equation
3.18|) that operator a~! o b is closable and its closure a~'b is normal. Moreover, we have
RE(n71(b)) = 7= Y(—qa~'b). If we combine this information together with Corollary 3.22

and the equality £ = |b|~! we arrive at

QZ(DQit ® ]lLQ(Fq))QL = RG(QE(Ezit ® ﬂ]}(rq))QL) = RG(Q*L(“)’_QNt ® lm) QL)
=0, (| —qa” "0 ® Iigy) QL = Q; (lqa™ 0| & Iiry) Qe

which implies D = |qa='b| 7.

Proposition 3.44. We have D = |ga™'b|™! and E = |b|~L.
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4 The quantum disc

Choose 0 < ¢ < 1 and let 7, be the universal unital C*-algebra generated by an element
s satisfying
$98q — q5¢5; = (1 — q)1. (4.1)

This C*-algebra was considered (under the name Cy ,(U)) in [48]. Let us recall an argument
(|48, Proposition 1V.1]) which shows that such an C*-algebra exists.

Lemma 4.1. Let H be a Hilbert space and t € B(H) an operator satisfying t*t — qtt* =
(1—q)1. Then |t|| = 1.

Proof. We have
't = qtt* + (1 — )1,
hence
[#1* = lItt]l = llgtt* + (1 = @)1]] = qlltt*|| + (1 — q) = q|lt|* + (1 — q)
and as ¢ # 1, the claim follows. ]

The above lemma shows that s, is a contraction in 7,. If we formally set ¢ = 1 in (4.1),
the resulting 7; would have to be a universal C*-algebra generated by a normal (bounded)
operator — such an algebra does not exists. However, we can define such an algebra if we
put an additional condition (superfluous in the case 0 < ¢ < 1) that the generator is a
contraction. Due to the spectral theorem, such obtained C*-algebra is isomorphic to the
C*-algebra of continuous functions on the closed unit disc, C(D). Consequently, we can
think of algebras 7, as the algebras of continuous functions on quantum discs.

Our next aim is to realise 7, as algebras of operators on (*(Z,). To this end, let us
introduce a weighted shift

Syt en = V1I—q¢"e,y (n€Zy),

where {e,}nez, is the standard basis of ¢*(Z;). In particular, S = Sy € B(¢*(Z,)) is the
unilateral shift. One easily checks that

Syientr /1—q'eny (nEN), Sriegr0

and
S;Sq - quS; =(1—-qg)1.

It follows that there exists a x-epimorphism p,: 7, — C*(S,) defined by p,(s,) = S,

Proposition 4.2. Each p, is an *-isomorphism and we have C*(S,) = C*(9).
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Proof. pg is a x-isomorphism by Coburn’s theorem (see e.g. [27, Theorem V 2.2]). Assume
therefore that ¢ > 0. Let us first prove the second claim. Since 1 — SS* € C*(S) is the
projection onto Ceg, one easily checks that the C*-algebra of compact operators is contained
in C*(S). Next, consider compact operator q € B(¢*(Z,)) given by qe,, = ¢"e, (n € Z).
Clearly S, = /1 —qS, hence S, € C*(S) and C*(S,) C C*(S). To prove the converse
inclusion observe that S;S, = 1 — qq € C*(5,), hence q € C*(S,) and

S=(1—aq) 25, =S,(1—qq)2 € C'(5,). (4.2)

Let us now prove that p, is a x-isomorphism. To this end we will find the inverse map
C*(S) = C*(S,) — T, using the universal property of C*(S). The idea is to construct a “s
operator” instide 7, using formula (4.2). Let us first show that

Sp(sqsy) C {0,1—q,1—¢* ...} u{1}. (4.3)
Recall s}s, — gsqs; = (1 — q)1, hence
Sp(sqsy) \ {0} = Sp(s;sq) \ {0}
= Sp(gsgs, + (L —q)1) \ {0} = (¢Sp(sgsy) + (1 —¢q)) \ {0}

Assume by contradiction that we have a number A = Ay € Sp(sgs;)\({0,1—¢,1—¢°,... }U
{1}), then using (4.4) we can define

=q¢ ' M—1=q)=¢ " M+1—q ") eSplsgs;)\({0,1—q,1—¢%...yU{1}).

Indeed, clearly Ay # 0 and if Ay = 1, then

(4.4)

g=M—-—(1—-q) = \N=1,
a contradiction. Similarly, if Ay = 1 — ¢" for some n € N then
L—q"=q' (M —(1-q)
and

M=01-q)+q1-¢")=0-¢Q+ql+qg+---+¢""))
=(1-q¢)(A+qg+--+q")=1-¢"",

which again gives us a contradiciton. Consequently, we can inductively define numbers
Ak € Sp(sgsy) (k € N) such that

M1 =q¢ M +(1—-¢ ") (keN).

It follows that

E

-2
_g—k+1

N=q"NA M=)y " =" N+ (- )T =1 (M = gt

I
o

n

7



for k> 2. As 0 < ¢ < 1and A\ # 1, the sequence (\g)ren diverges to +oo and we arrive
at a contradiction. We have showed equation (4.3). It follows that also

Sp(s;sq) € {0,1—¢q,1— ... YU{1}.

However, if 0 € Sp(s}s,) = ¢ Sp(sqs;)+(1—¢) then —¢~'(1—q) € Sp(sys;), a contradiction.
This shows that in fact

Sp(sise) C{l—q,1—¢* ...} U{1}.

Recall that S;S, = 1 —qq, hence g 1 - s784) Plays the role of q inside 7;. Consequently,

*

let us define s = sq(sqsq)_% € 75 One easily sees that s is an isometry, hence by the
universal property of C*(S) there exists a x-homomorphism

C*(S,) =C"(S)>S—seT,
Clearly this map is the inverse to p,. [

The above proposition tells us that all the quantum discs underlying 7, (0 < g < 1)
are homeomorphic. Due to this reason, henceforth we will only consider 7 = Ty which is
usually called the Toeplitz algebra. To ease the notation we will write C*(S) = T.

The main question we will answer in this section is whether there exists a compact
quantum group structure on 7, or in other words, whether the quantum disc is a quantum
group. This question was posed by Piotr M. Sottan in his paper [75]. Let us first note that
in the classical setting an analogous question has negative answer: there is no compact
group structure on the unit disc D = {z € C||z| = 1}. To see this observe that D is
not homogenous — e.g. there is no homeomorphism of I taking 0 to 1 — which shows that
a structure of a topological group on D cannot exist?’. The same result holds for the
quantum disc:

Theorem 4.3. There is no compact quantum group G with C(G) ~ T.

Note that we do not assume that C(G) is universal or reduced.

We’ve obtained this result together with Piotr M. Sottan, which resulted in a pub-
lication [51]. The proof underwent some modifications. During the revision process an
anonymous referee suggested us some changes which made the argument shorter but also
more relying on the structure of 7 and less on the theory of type I quantum groups. This is
why we will present here its former version. Let us mention also that afterwards, together
with Alexandru Chirvasitu, we were able to generalise this result to C*-algebras with dis-
crete CCR ideal (see [21] for the definition of a discrete CCR ideal and a precise result).

2TLet us mention that a similar question for spheres S™ (n € N) is much more subtle, see [1].
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The rest of this section will be devoted to the proof of Theorem 4.3. Assume by
contradiction that there exists a compact quantum group G with C(G) isomorphic to 7.
Let us denote the dual discrete quantum group by I = G. It will be more convenient for
us to work with the concrete C*-algebra of operators C*(S) C B(¢*(Z.)) generated by the
unilateral shift. Let

Te: C(G) = T = C*(S) C B(H,)

be the coresponding isomorphism, where H, = (*(Z).

To proceed we need to recall some properties of the Toeplitz algebra. First, by the universal
property of 7, there exists a x-epimorphism p: 7 — C(T) (called the symbol map) given by
S+ z, where z € C(T) is the identity function on T. The kernel of p equals K C B(¢*(Z.)),
the algebra of compact operators, hence we have a short exact sequence (see e.g. [27,
Theorem V.15 or [10, Example 11.8.3.2 (v)|)

0—K—T2%C(T) o, (4.5)

Furthermore, K is an essential ideal in 7 [22, Theorem 1]. It follows that 7 is postliminal,
hence of type I (|33, Theorem 9.1]). The spectrum of T, Irr(I") = Irr(7) is equal to
{e} UT, where e corresponds to the representation m, and each A € T is associated with

the character
ev

pr: T L C(T) £ C,

where ev) is the evaluation at A € T. It is not difficult to check that the (Mackey Borel)
measurable structure on Irr(I") is the “obvious one™ {e} is measurable and the measurable
structure on T is the Borel measurable structure corresponding to the standard topology
(see |33, Section 3.8.1]). Then because T is of type I, by [33, Proposition 4.6.1] this mea-
surable structure equals the measurable structure induced by topology.

After recalling these results about the Toeplitz algebra, we can prove some preliminary
results concerning G.

Claim 1. The Haar integral on G is faithful, i.e. C(G) = C"(G).
Proof. Denote the Haar integral by h. Its kernel ker(h) = {a € C(G)|h(a*a) = 0} is
an ideal (|98, Page 656], see also [59, Proposition 7.9]), hence if it is non-trivial, we have
IC C ker(h). But then the reduced C*-algebra of continuous functions on G, C"(G), which
is the quotient C"(G) = C(G)/ ker(h) (see |7, Section 2]) would be commutative. However,
the quotient map is injective on Pol(G) C C(G) which forces ker(h) = {0}. O

Claim 2. G is coamenable, in particular C(G) = C*(G).
Proof. This claim follows from [7, Corollary 2.9] — a compact quantum group H is coa-
menable if and only if there exists a character on the reduced C*-algebra of continuous
functions on H. Since C(G) ~ T, there exists a character on C(G). O

Claim 3. G is not of Kac type.
Proof. If G were of Kac type, then its Haar integral h would give a faithful tracial state
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on 7. However, the operator 1 — SS* € T is non-zero, positive and it is annihilated by
any tracial state. ]

In the remainder of the proof we will use theory of non-Kac type quantum groups
together with theory of type I quantum groups to arrive at a contradiction.
Let us denote by G the group of characters on C(G), with the group operation given by
the convolution G x G 3 (¢,¢) = ¢px ¢ = (¢ ® ¢') o A € G. G is equipped with the w*
topology of C(G)* — this makes G into a compact Hausdorff group (|7, Theorem 3.5]). Since
C(G) ~ T, we have G = {py om, | A € T}. Recall that in Section 2.3 we have introduced
a family of functionals {f,}.,ec on Pol(G). As {fi}ier are x-preserving (|64, Proposition
1.7.2 (ii)]), they extend to characters on C(G) (|7, Theorem 3.3|). Let us denote by Fy the
set { fi}rer. It is easy to see that Fyy is a subgroup of G (see [64, Proposition 1.7.2 (iii)]),
furthermore the map R >t — f;; € G is continuous. As R is connected it follows that Fy
is a non-trivial connected subgroup of G which is homeomorphic to a circle — consequently
we have Fy, = G:

Lemma 4.4. The group of characters on C(G) equals {prome |\ € T} = {fi|t € R}.

For each « € Irr(G) let us choose a basis in H, which diagonalises operator p,. Denote
the corresponding eigenvalues by p,; (i € {1,...,dim(«)}). Equation (2.18) implies

fiu(US5) = 6ijpa; (o € Ix(G), 4,5 € {1,...,dim(a)}).

In next two propositions which are based on Lemma 4.4 we connect properties coming
from two pictures — quantum group C(G) and operator algebra T C B(¢*(Z.)).

Proposition 4.5. An operator A € T is compact if and only if fi(7m71(A)) = 0 for all
teR.

Proof. The short exact sequence (4.5) implies that A is compact if and only if py(A) =0
forall \ € T. As {pr |\ € T} = {fisom, ! |t € R} we get the claim. O

Proposition 4.6. For any a € Irr(G) and 4,5 € {1,...,dim(a)} the operator mo(US;) is
compact if and only if i # j. Moreover, mo(US;) is a Fredholm operator.

Proof. The first part of the proposition follows immediately from Proposition 4.5. For the
second part note that from the unitarity of U®:

Z U’Laj U@aj* _

and from the fact that 7,(Ug;) are compact for i # j it follows that p(ma(U)) is unitary,
so the operator 7,(Uy;) is Fredholm. O
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The observation that m,(Uf;) is Fredholm, will be a crucial ingredient in our proof.

The next step in our reasoning is to treat I' = G as a second countable (discrete) type I
quantum group. Theorem 3.3 gives us a measure y on Irr(I") = {e} U T, unitary operator
Q;, and a measurable field of strictly positive, self-adjoint operators D,, Dy(\ € T). Since
L*°(G) is non-commutative, Proposition 3.7 implies that subset {e} has positive measure
(recall that representations coresponding to T are one dimensional), hence after rescalling
we may assume that p({e}) = 1. Consequently we will write

(&)
0,(L%(G)) = HS(H.) & / HS(Hy) dyu(A)

52

QU L™(6)Q) = (B(H) © 1) © | B(Hy) & Lardu()

(4.6)

and work with the above decomposition. It will be useful to introduce the following no-
tation: write M for Q; L=(G)Q} and My, M for the two summands in the above decom-
position, so that M = M; & M,. Next, let us denote by 1, € M; (i € {1,2}) the units, so
that 1; + 1, = 1 € M. The next lemma holds for general type I, second countable locally
compact quantum groups.

Lemma 4.7. Let H be a type I, second countable locally compact quantum group with
Plancherel measure pg, corresponding unitary operator QF and measurable field of repre-

sentations (7y)zerm)- Then for any a € Cu(H) we have

(&)
QB Ag(a) Q5" = / (o) ® L) dpus (), (4.7)

Trr(H)

where Ag: Ci(H) — Co(H) is the reducing morphism.

Proof. Given a € CY(H), element Q¥ Ag(a)QF* can be written as

QrAgz(a)Qy" = / (a0 © 1) dps ().

Trr(H)

for some measurable field (a,),er(m. By Desmedt’s result (Theorem 3.3) for any w € L' (H)
we have

o

Qi (woi)(W)Q = [ (woid)(U™) o Ly duale),
Trr(H)

where U™ is the unitary representation of H corresponding to 7,. Thus

5]

QF A5 (\(w)) Q" = / TN 8 i ).

Both sides of the above equation are continuous with respect to \*(w) (for the right hand

side we can use |34, Section 2.3, Proposition 4| because the range of A" is dense in C{j(H))
and (4.7) follows. O
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Lemma 4.8. Let 5 be an automorphism of M. Then 5 preserves the decomposition M =
M, ® Ms. In particular f(11) =1y and B(13) = 1,.

Proof. Let E; and E, be the projections of M onto the two summands M; and M, (so
that Ej(z) = Lz for any € M). The map M; > y — E»(B(y)) € M is a normal
x-homomorphism M; — M, which must be zero because M is a factor and M, is com-
mutative. It follows that S(M;) C M; and since this is also true for the automorphism
B~ we have f71(M;) € M; and acting with 3 on both sides gives M; C B(M;). It
follows that (3 restricts to an automorphisms of M, so it must preserve 1. Clearly if there
were z € M, such that By (8(z)) # 0 then z = 871(B(2)) = 87 (E1(B(2)) + E2(B(2))) =
B~ (E1(8(2))) + B (E2(B(2))) which is a contradiction because 87! is injective and pre-
serves My, so 371 (E1(B(z))) = 0 and hence F;(8(z)) = 0. It follows that § preserves M,
and consequently 5(15) = 1,. ]

One way to use Lemma 4.8 is to apply it to the scaling automorphisms of L>(G)
transferred to M via the unitary Qp:

Bi(a) = Qr1i(Q1aQL) Q5. (a €M, t eR).

It follows that the one-parameter group (5;);cr restricts to a one-parameter group of au-
tomorphisms of M;. Thus we obtain a one-parameter group of automorphisms (ay);er of
B(H,) defined by

() ® I, = Qrn(Qr(z ® 15,) Q1) Q. (x € B(H,), t € R)

and thus by [46, Theorem 4.13] (see also [47]) there exists a strongly continuous one-
parameter group of unitary operators (A;);er on He such that

a(r) @1 = AwwA_, @ 1,  (z € B(H.), t € R).

The one-parameter group (P™),cg also induces automorphisms of L™(G)" C B(L*(G))
which can be transferred to automorphisms of M’ by the unitary Qp. Clearly M’ =
M," @ M’ and by a process analogous to the one presented for M we obtain a o-weakly
continuous one-parameter group of automorphisms of M;" = 1y, ® B(H,) which yields a
group (a})ier of automorphisms of B(H,):

In, ® ay(y) = QL P"(Q;(In, ®y)QL)P~"Q; (y € B(H.), t € R).

It follows that there is a strongly continuous one-parameter group of unitary operators
(Bi)ier on He such that

Iy, ® aj(y) = Iu, ® B/yB',, (y€B(H.), t €R)

(for future notational convenience we choose to consider the group (B;);ecr on He and work
with the transposed operators on H,).
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Clearly the group (3;)scr is implemented by the unitary operators (Qp P*Q% )icr and
since the group preserves the projections 1; and 1, these operators are block-diagonal in

the decomposition (4.6). It follows that for any = € B(H,) and y € B(H,) we have
(1,QLP"Qp)(z ® y)(11QLP™Q]) = au() ® ey(y) = (A ® B )(z ®y)(A-, ® BL,)
for all ¢ € R. This implies
1,Q,P"Q; = M(A,®B/), teR

for some complex numbers (\;)icr of absolute value 1 depending continuously on ¢. More-
over, since the two one-parameter groups (QP* Q5 )ier and (4; ® B, )ier obviously com-

mute, t — ); is also a homomorphism, so defining A, = A\;A; we obtain a strongly contin-
uous one-parameter group of unitaries such that

1,Q,P*Q; = A, ® B (te€R).
Proposition 4.9. With the notation introduced above we have gt =B_, forallteR .

Proof. We will use the fact that for all ¢ we have P"Jg = JgP" (equation (2.14)). More-
over, by Proposition 3.7 the operator

(&) D
Q. J: 0 : HS(H.)@/ HS(H,) du()\)—>HS(H.)e9/ HS(Hy) dp(N)
acts as
(€®ﬁ)@/T (6 ®TR) du(A) <n®€>@/T (1 © B) du(N).

In particular QJg Q7 is block-diagonal and
1,9,J5Q; : HS(H.) 3 (£®7) = (n® &) € HS(H,).

Therefore
1,QrJcQ; (A ® B) = 1,0, Je P"Q; 1
= 1,9, P"JcQ; 1 = (4, ® B/)1,Q, /e Q1 1
for all t € R. The claim follows from Lemma 7.8. ]

Corollary 4.10. For each t € R the restriction of Q; P*Q% to HS(H,) is equal to B_;® B, .

In what follows we let B be the unique strictly positive, self-adjoint operator on H,
satisfying B, = B® for all t.

Recall that using operators D, (D))rer We can express the Haar integral on T'=G
(see Theorem 3.3): in particular we have

1=nh(1)=Tr(D,? +/TTr(DA2)du()\).
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This shows that D! is a Hilbert-Schmidt operator, in particular it is compact hence
D;' € T C B(H,). The eigenvalues of D;! are of finite multiplicity, they form a countable
subset of ]0, +oo[ and we have the norm convergent series

D' = )l (D).
q€Sp(Dy )
Proposition 4.11. The operators B and Do strongly commute.

Proof. From the properties of the Plancherel measure we get
@ o
QA1) = D! @/ Dyt du()) € HS(H.)@/ HS(Hy) du(N).
T T
Now we fix ¢ € R and note that since 7(1) = 1, we have
-
D' [ D3t duh) = Qun(t) = Qua(r(1)
T
@
— QuP"Ay(1) = B_.D;'By @ (12(Qu.P" Q3) / Dyt du(n),
T

which implies that B,D;! = D;!B,. O
Corollary 4.12. The operator B preserves the decomposition of H, into eigenspaces of
Dt

H, = @ 1{q}(D:1)H.

qeSp(Dy )
so that
B = L (DY) Bl (D).
q€Sp(DJ)

Now we will prove three lemmas relating the structure of the compact quantum group
G to the decomposition of H, into eigenspaces of D .

Lemma 4.13. Fora e T andt € R we have

me (0} (7. (a))) = DS aDY,
Te(Te(m, ' (a))) = B_iabB.

Proof. By Theorem 3.24 the modular operator for h transported via the unitary Qj acts
as follows:

@

Q.ViIQ; = (D7 & (D2)T) @ / (D37 @ (D)) du(\).
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Take a € C(G). Denoting 7y = py o me we conclude using Lemma 4.7 that

D

01aQ} = (mu(a) ® 1) & / (m2(a) © T5i) du(N).

T
SO

(re(0o1(0)) ® 1) & / (ma(07()) @ 15) dp(N)
= Qr0)(a)Q; = QLV}/aV, " Q]

— (D ra(a) D2 ® 1) @ /T (ma(a) ® Te) du()

(representations {my} et are one-dimensional) and consequently
Te(of(m, () = D;*"aD?* (a €T, t €R).
The second part of the lemma is proved analogously using Corollary 4.12. [

Lemma 4.14. For any a € Irr(G), i € {1,...,dim(a)} and q € Sp(D;') the operator
e (U7%;) shifts the eigenspaces of D7Y as follows:

W-(Ufi)l{q}<D:1)Ho C 1{qoa,i}(D._1)Hv
Proof. For t € R and § € 143(D,;")H,, by Lemma 4.13 we have
Dme(Ufy)E = DIme(Us) DT DYE = (05 (US) a7 = a5 me(UF)€
(cf. Section 2.3) which means that me(U%)E € 1igp,..3(Dy)Ha. O

Clearly for any ¢ € Sp(D, ") the operator 1(4(D;") B 1(4(D,") acting on 114 (D, ")H,
is bounded and positive. We let A, denote its spectrum:

Ay =Sp(Lig(D.) Blg(D, 1))
Lemma 4.15. For any o € Irr(G), i € {1,...,dim(a)}, ¢ € Sp(D, ') and ¢ € A, we have

Te(U) ey (Liy (DT1) By (DTH))He € 11y (Ligpay (D) B Lgp, 3 (D)) Hee  (4.8)

Proof. Fixt € R. Since Uf, is invariant under the scaling group (Section 2.3), from Lemma
4.13 we know that BﬂT.(Uﬁl)B,t = e (T-4(US)) = ma(US;). Therefore if

€ € 1y (14 (DY) By (D 1)) Ha

then
Br (U)§ = BW.(U%)Blef = cme(U3)€

and (4.8) follows (note that there are no domain issues because we are restricting to finite-
dimensional eigenspaces of D, ! for the eigenvalues ¢ and gp,;). O
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Theorem 4.16. The set

U 2 (4.9)

g€Sp(De)
s finite.
Proof. First let us choose a € Irr(G) and 7 € {1,...,dim(«)} such that p,,; > 1 (this is
possible because G is not of Kac type and Tr(p,) = Tr(p;!)).

We have the decomposition of H, into eigenspaces of the positive compact operator
Dyt

He = @ L (DI H..

q€Sp(Dy )

Consider n € ker 7, (U;;) with decomposition

n= Z Mg

a€Sp(Dy )

where 7, € 115(D;')H.. Now

0= Wo(Uﬁi)n = Z 7T-<Uz'o,éz')77q

q€Sp(Dy )

and by Lemma 4.14 each summand is orthogonal to the remaining ones. It follows that
Te(Uf%)ng = 0 for all ¢ and consequently

kermo(U) = @D kerma(Uf) N 1gy(DSH,. (4.10)

q€Sp(Dy )

As m,(U;) is a Fredholm operator, its kernel is finite-dimensional. In particular (since
the summands on the right hand side of (4.10) are pairwise orthogonal) there exists gy in
Sp(D, ") such that 7,(U;) is injective on 1g (D, " )H, for all ¢ € Sp(D, ") such that g < go.
Clearly, since there are only finitely many eigenvalues of D! greater than ¢, and each

is of finite multiplicity, the set
U A (4.11)

q€Sp(Dy 1)
q>qo0

is finite. Therefore, if (4.9) is infinite, there exists ¢ > 0 such that
¢ € A8q=Sp(Lizn(D.Y) Blg (D, )

for some ¢ < gp and ¢ does not belong to (4.11).
Consider now a unit vector £ € 11z (14(D; ') Bl (Dy1))H.. For k € Z, we have

{ark ,
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As k increases (jp’fy,i tends to infinity, so we let k = max{k S/ ’ (jp’fm < qo}.
We have

Wo(Uiofi>(7T-<UiOfi)kf) = Wo(Uz’Ofi>k+lf
€ 1{5}(1{~ (,;+1)}(D:1) B l{qu;;rl)}(D._l))H..

But the latter subspace is {0} because qp( +D) > go and ¢ is not in the spectrum of

L (DY) B 1{q}(D ) for ¢ > qo. This contradicts injectivity of m,(U;) on
Laor (D, M)H,, since
qpa,i} °
To(U)"€ € Ligy (1500 (D] )31{% (D) H S 1k }(Djl)H.

because B preserves the decomposition of H, into eigenspaces of D; ! (Corollary 4.12). [
Corollary 4.17. The quantum group G is of Kac type.
Proof. Recall from Corollary 4.12 that

B= @ LuD0)Bly(Dr)

q€Sp(Dy )

EB P c 1 (14 (D) By (D).

q€Sp(Dy ') c€Aq
Therefore Theorem 4.16 implies that B and B! are bounded with

|B|| = Sup  sup ¢ < 400 and ||B7!| = sup. sup ¢! < 400.
qeSp(Dy ') C€Rq qeSp(Dy 1) €A

By Lemma 4.13 for any a € C(G)
To(1i(a)) = B_yme(a)B; = B "n,(a)B" (t € R),

so for a € Pol(G) the holomorphic continuation of the function R > ¢ +— 7,(7(a)) tot = —
is given by 7e(7_;(a)) = B 7, (a )B and hence

mo(7-i(a)|| < 1B~ [llall |l Bl
Thus for any « € Irr(G) and i,j € {1 ., dim(a)}
PaiPas U = llpaipa,; USll = [|—U2) | < 1B TS NIBIIL

so that

PaiPay < BB
which implies that G is a compact quantum of Kac type (cf. [64, Remarks after Example
1.7.10]). 0

As we already mentioned in the introduction, the assumption that there is a compact
quantum group G such that the C*-algebra C(G) is isomorphic to the C*-algebra of contin-
uous functions on the quantum disc, 7, leads to the contradiction between the relatively
easy conclusion that G cannot be of Kac type (Claim 3) and the conclusion of Corollary
4.17 that G is of Kac type. It follows that no such compact quantum group exists.
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5 The von Neumann algebra of class functions

In this section we will study a certain structural property of the algebra of L*° functions
on a compact quantum group (mostly not of Kac type). These results were obtained
together with Mateusz Wasilewski and resulted in a preprint [52]. Let us first start with a
motivation.

Let F), be the free group with n > 2 generators ¢i,...,g, and let L(F,) = A(F,)” be
the corresponding group von Neumann algebra. Inside L(F},) one finds the so called radial
subalgebra Z, the von Neumann algebra generated by the operator (Ag, + A7 )+ -+ (Ag, +
Ay ). Tts name stems from the property that if we (informally) write 2 = > . f(w)A, €
L(F},) then x € Z if and only if f is a radial function on F,, i.e. f(w) depends only on the
length |w| of w. The radial algebra was intensively studied — the result most important
for is [71] where Pytlik proved that % is maximal abelian (MASA) in L(F,,). Later #Z was
proved to be singular |72] and even maximal injective |16].

One may look at the element (Ag, + A% ) + -+ + (Ag, + A} ) from a different perspetive.

It is the character of a fundamental representation of the compact quantum group F,,
dual to F),. Consequently, the radial algebra & is the von Neumann algebra generated by
this character. It is therefore natural to wonder whether similar properties holds for other
discrete (or by duality, compact) quantum groups. This question was studied in particular
in the case of the (Kac type) free orthogonal quantum group O}, (see Example 2.3.2). In
42| Freslon and Vergnioux showed that €5+, the von Neumann algebra generated by the

character of the fundamental representation, is a singular MASA in L*(O}). Observe
that now %”O+ has also a different description — it coincides with the von Neumann algebra
generated by all characters of irreducible representations. Let us take this description as a
general definition of ¢ for a compact quantum group G2°.

Definition 5.1. For a compact quantum group G we define the von Neumann algebra of
class functions 6z = {xa | @ € Irr(G)}" .

We choose to call 6; “the von Neumann algebra of class functions” because the two
coincide for classical compact groups.

Lemma 5.2. Let G be a compact group. Then {x.|a € Irr(G)}" equals the von Neu-
mann algebra of bounded measurable class functions, i.e. the set of f € L™(G) satisfying

f(hgh™) = f(9) (g,h € G).

Proof. Since every character x, is a class function, one of the inclusions is clear. Let ug
be the Haar measure on G and E: f — [, f(h-h™")dug(h) (f € L(G)) the normal con-
ditional expectation onto the von Neumann algebra of bounded measurable class fuctions.
As matrix coefficients of irreducible representations span a w*-dense subspace in L*(G),
by Lemma 7.8 it is enough to show that E(ug,) = 0 for all a € Irr(G) and orthogonal

28Note however that for G = 1/7\" we do not have equality of #Z and %g. In fact, 6z = L>°(G) holds for
all abelian compact quantum groups.
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vectors £, € H,. It is a consequence of the orthogonality relations:

[ B aue = [ [ ([ TETatar el ook ducl) dua(h dueh)
~ ey [ [ Tl Tt g b~ o)) dpah) ()
~ s | Ol | duch) =

[
Let us mention that in [2, Theorem 3.7] Alaghmandan and Crann obtained an analo-

gous result for compact quantum groups: 6 = {x € L=(G) | A(x) = A%(z)}.

The question that motivated our work was whether 4+ is MASA in L>°(O}) for non-

Kac type quantum groups O}. The main tool that was used in solving this riddle was the
notion of quasi-split inclusions of von Neumann algebras.

5.1 Quasi-split inclusions

In this subsection we assume that B C M are von Neumann algebras with the same unit,
separable preduals and ¢ is a normal faithful state on M.

Definition 5.3.
1) The inclusion B C M is split, if there is a type I factor F such that B C F C M.
2) The inclusion B C M is quasi-split, if the map
B @41y M? 5 b @ y? — bJ,y"J, € B(H,)
extends to a normal x-homomorphism B& M® — BV M’ C B(H,).

(Quasi)-split inclusions of von Neumann algebras were extensively studied: let us men-
tion papers [15, 25, 35| and later works |9, 37|. We will present here results which are
mainly taken from [9].

Let us start with a remark that if B C M is quasi-split and B, M are factors or one of
them is a type III algebra then the inclusion is in fact split [25, Corollary 1].

We are interested in this condition mainly because it is, in some sense, opposite to
being an inclusion of a MASA. We will present here two results in this spirit, the first one
assumes that the “big algebra” is of type III.

Proposition 5.4 (|9, Corollary 3.11|). If B C M is a quasi-split inclusion and M is a type
IIT von Neumann algebra then B'NM is also of type III. In particular, B is not a MASA
wn M.
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Proof. By assumption, the map B ®q, M? 3 b®@y® — bJ,y*J, € BVM' extends to a nor-
mal *-epimorphism, hence there exists a central projection 0 # p € Z(B ® M) such that
p(B&M?) ~ BV M. As M is of type III, so is B& M? and p(B& M?) (see [81, Theorem
V.2.30] and [78, Exercise E.4.18]). It follows that the isomorphism p(B® M%) ~ Bv M’
is spatial ([78, Corollary 8.13]), hence the respective commutants are also isomorphic. It
follows by [81, Corollary 2.24| that B'N M is a von Neumann algebra of type III. O

The next proposition gives us a structural result on M under the assumption that B is
a MASA in M and B C M is quasi-split. The benefit of this result is that we do not need
to assume anything on M.

Proposition 5.5 (|9, Remark 3.10 (2)]). If B C M is a quasi-split inclusion and B is a
MASA in M, then M is isomorphic to a direct product of type I factors.

Proof. Let us first argue that the abelian von Neumann algebra Z(M) is purely atomic.
Using the x-homomorphism provided by the quasi-split inclusion B C M, we deduce that
Z(M) € M is quasi-split with associated *-homomorphism n: Z(M)®@ M — Z(M) v M.
If we compress n[znnezar With the Jones projection ez associated to Z(M), we get
a x-epimorphism Z(M)®Z(M) — Z(M) C B(ezanHy), i.e. Z(M) C Z(M) is also quasi-
split. It follows that Z(M) is purely atomic. Indeed, otherwise there is a von Neumann
subalgebra in Z(M) isomorphic to L*°([0,1]). After further restriction of n we see that
the multiplication map extends to a normal x-homomorphism L*([0,1])® L>([0,1]) —
L>°([0,1]). One can easily see that it has to act via F' — F o d, where §(z) = (z,2) (v €
[0,1]), at least for continuous functions F' € C([0, 1] x [0, 1]). However, it is not difficult
to find a sequence of functions (F,)nen in C([0,1] x [0, 1]) which converge to 1 in w*, but
are zero on the diagonal: F,(z,z) = 0(n € N,z € [0,1]) — this gives us a contradiction.
Consequently M is a direct product of factors.

Take now a non-zero central projection py € Z(M). It is easy to see that the inclusion
po B C pg M is also quasi-split, hence by the previous discussion it is enough to deduce that
M is of type I assuming it is a factor.

Since B is a MASA in M, BVM' = (B'nM)’ = B’ is of type I (see [81, Corollary V.2.24]).
Reasoning from the proof of Proposition 5.4 gives us a central projection p € Z(M) such
that p(B®M?) ~ BV M'. But M is a factor, hence p =1 and B& M (and consequently
M) is of type L. ]

We would like to present now a useful criterion for proving that a given inclusion is
quasi-split, which is a variant of Proposition 2.3 from [15]. Observe first, that if a von
Neumann algebra M with a faithful normal state ¢ is represented on a Hilbert space H,

then we have an inclusion ®; : M — H,, given by = — Vé_/\w(m).

We will also need the notion of a nuclear map between two Banach spaces X and Y.
A map T : X — Y is called nuclear if there are sequences (y,)neny C Y and (z),eny € X*
such that T'(x) = > 25 (2)yn (x € X) and D |25 ||yn]| < oo.

Proposition 5.6 (|9, Proposition 3.7]). If the map ®3[5 : B — H, is nuclear then the
inclusion B C M is quasi-split.
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Let G be a second countable compact quantum group. Using the above criterion we will
derive a useful condition (Theorem 5.9) which says the the inclusion 6 C L*™(G) is quasi-
split provided G is “sufficiently non-Kac”. Before doing that we need some preparation
regarding the action of the modular group on characters of unitary representatiolns.

Our aim is to show that the map @3]y : 65 — L*(G) given by z — V[ A,(z) is
nuclear. Note that 4G is the closed linear span of the characters of (finite dimensional)
unitary repr?sentations and these characters are analytic elements for the modular group.

Therefore V} Au(x) = An(c™ . (x)) holds for every character y; we first have to understand
4
the action of the modular group on the characters.
Recall that (see |64, Page 30| or Section 2.3) for any (unitary, finite dimensional)
representation U on Hy and z € C we have (o @ 1) (U) = (p¥ @ 1)U (p¥ ® 1y). If

we choose an orthonormal basis of Hy in which py is diagonal then we can write more
dim(U)

concretely that o(Uy,;) = PUkpUlUkl Therefore for the character xy = > -, Ui we
have o’ (yy) = 21:H11(U) 02 Uy, We will now compute the L*-norm of this element.

Tr(pg "~
Lemma 5.7. We have ||o”_, (xv)|3 = T for all a,b € R.

Proof. Recall that by definition ||x||3 = h(z*z), so in our case we get

dim(U

ol (o) |3 = Z Py 2ol PR (U W UL).-

k=1

Using the orthogonality relations (see [64, Theorem 1.4.3] or Section 3.4) we get h(Uy ,.Up1) =

71
Okl dlfn 0 Therefore we obtain

dim(U)

—1 4b—1
. Pur Tr(pg)
h 2 _ 4b ko U
||Ja+zb<XU)||2 - Z pU,k dlmq<U) dlmq(U) :
k=1
To finish the proof we just have to recall that dim,(U) = Tr(py). O
Corollary 5.8. We have ||xy|l2 = 1 and ||o", (xv)||3 = iﬁl((UU)).

Relation between the quantum and the usual dimension will be crucial for proving that
the inclusion of the algebra of class functions is quasi-split.

Theorem 5.9. Let G be a compact quantum group. Suppose that Zaehr )(Cﬁéln—q(&)))% < 00.

Then the inclusion 6z C L™°(G) is quasi-split.

Proof. We want to show that the map @5y, : 4z — L?(G) is nuclear. Note that it is a
1

composition of two maps: the inclusion Ay, : 65 — An(6s) and V' Au(%s) — L(G).

1 _
We will first show that V' extends to a contraction from L*(%6g) = A(¢5) to L*(G).
Note that the (images of) characters of irreducible representations are linearly dense in
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L?(%;) and they form an orthonormal set. Let x = > acin(@) CaXa be a finite sum of

characters of irreducible representations. Note that || An(z*)||> = || 22, crrc) Calln(Xa) I” =

> aetnn(c) [€al? = 1A (2)[|?. Tt follows that

IV A(@)|2 = (An(z) | VEA(2)) = (JWVEA(z) | Jnhi()
= (An(@®) [ b (@) < 1A ()] [An(@)]] = [[An()]12,

1
so V,' extends to a contraction from L*(4g) to L*(G).
We will now show that ®s]y, : 6z — L*(G) is a nuclear map. Take z € €. As Ay(z) €

L2(6c), we can write Ap(2) = 3 cre) (A (Xa) | An(2))An(Xa). Since Viili2eg: L?(€6) —
L?(G) is bounded, we have

Do) = 3 (Mnlxe) | An(@)) Vi An(xa).

a€lrr(G)

If we define functionals w,: 6 3 y — (An(Xa) | An(y)) € C then it suffices to check that

> lwall IV An(xa)ll < o

a€lrr(G)

1 .
We already know that ||V A,(xa)|| = (220)2 and it is clear that [|wal| < [[xall2 = 1,

dimg ()
hence N 1
1 dim(a) \ 3
D lwall IVEAGI < D (Fm)? < oo
a€lrr(G) a€lrr(G)
By Proposition 5.6 the inclusion 6 C L>(G) is quasi-split. O]

This result is already enough to prove that in many cases the radial subalgebra in
L>(0}) is not a MASA; it follows from [89, Theorem 7.1] that L>°(O}) is often a type
III factor and we can use Proposition 5.4. We will be able to generalize this result (see
Corollary 5.22).

5.2 Relative commutant of 4 and inner scaling automorphisms

We will be interested in the relative commutant 6} N L>=(G). If 4 is commutative,
as is the case for example for the free orthogonal quantum groups, then the condition
¢ NL*(G) C 6 precisely means that 6¢ is a MASA in L™(G).

Our strategy for proving that 6 cannot be a MASA in many cases will be the following.
We will show that if g were a MASA then L*°(G) would have to be a factor. Moreover,
if the inclusion 6 C L*°(G) were quasi-split then it would have to be a type I factor. We
will then use properties of the scaling automorphisms to exclude this case. Let us now
move on to more precise statements.
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Proposition 5.10. Let G be a compact quantum group such that €, NL*(G) C 6. Then
Z(L*®(G)) Cspan” {xa | € Ir(G): py = 14} = €6 NLZ(G)°.

In particular, if po # 1, for all non-trivial irreducible representation of G then L>=(G) is
a factor.

Proof. We first argue that span” {x.|a € Irr(G): po, = 1.} = 6 N L¥(G)?. Clearly
the left-hand side (denoted from now on by A) is contained in the right-hand side. If
z € ¢c NL¥(G)” then we can write Ay(2) = >, cru(g) CaMln(Xa). As z belongs to the
centralizer of the Haar integral, we have Ay (z) = Ay (ch(x)) = Y acnn(@) CalMn(of(xa)). Tt
follows from the orthogonality relations that the elements o,(x") and ys are orthogonal
unless o = 3. Tt follows that 07'(Xa) = Xa OF ¢o = 0. The condition o}'(xs) = X implies
that p, = 1,, so we proved that any element = € 6 N L>(G)7 satisfies Ap(z) € An(A).
Since A is contained in the centralizer, there exists a normal, state-preserving conditional
expectation onto it (|82, Theorem 4.2|), and it is easy to conclude that it implies z € A.
Alternatively one can invoke Lemma 5.18 because the Haar integral on the algebra A is
tracial.

To finish the proof, note that the condition 6;NL>*(G) C % implies that Z(L*(G)) C
%G- Moreover the center is always contained in the centralizer (|78, Corollary 2.10.13]), so
we obtain Z(L*(G)) C 6z N L>=(G)°. O

The next technical ingredient, featuring the scaling group, is the following proposition.

Proposition 5.11. Let G be a compact quantum group and let t € R. Suppose that
C:NL>(G) C 6g, the scaling automorphism 7 is inner and is implemented by v € L=(G).
Then v € span” {xa | € Irr(G): p, = 1,}.

Proof. The scaling group acts trivially on characters, so we have y, = T¢(Xa) = UXa¥"
for any a € Irr(G). Therefore v € 6, NL*(G) C %s. Because of that we can write

Ah(v) = Zaelrr(G) CCVAh(XOé)'
We will now use the fact that the scaling group and the modular group commute, so

for any z € L™(G), s € R we have

vav* = 7(x) = oo (2)) = o (va” (2)v*) = o™ (v)zol (vF).

—S

It follows that o”(v*)vz = xo”(v*)v, hence o (v*)v € Z(L™(G)). We can write o(v) =

vws for some wy € Z(L*(G)). As Z(L™(G)) C %, we have vws € 65, so Ap(vws) =
> actnn(@) @s,aAn(Xa). On the other hand Ay(v) = 3°, calAn(Xa), s

Mn(@l(0) = Y catn(0l(Xa))-

aclrr(G)

By orthogonality relations this implies that c,0"(xa) = dsaXa- If pa # 1, we can once
again infer that ¢, = 0, hence Ay(v) =3 . _; can(Xa) and exactly as in the proof of
the previous proposition we conclude that v € span" {x, | a € rr(G): po = 1.} O
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Now we can prove our main result of this section.

Theorem 5.12. Suppose that G is a non-trivial second countable compact quantum group
such that the inclusion 6z C L>(G) is quasi-split and po # 1, for any non-trivial o €
Irr(G). Then 6 is not a MASA in L>=(G).

Proof. Suppose that 6 is a MASA in L*™°(G). It follows from Proposition 5.5 that L=(G)
is a direct sum of type I factors. Moreover, it follows from Proposition 5.10 that L*(G) is
a factor, so L>(G) ~ B(¢?).

By our assumptions there exists an irreducible representation o with p, # 1,, thus G
is not of Kac type — there exists a non-trivial scaling automorphism 7;. All automorphisms
of B(¢?) are inner, hence there exists v € L>°(G) implementing it. By Proposition 5.11 v €
span” {xa | € Irr(G): po = 1,} = C1. But that means that 7; is a trivial automorphism
and this leads us to the desired contradiction. ]

We will provide examples to which this result can be applied in Subsection 5.5 (see
Corollary 5.22).

5.3 Properties of SU,(2)

Fix ¢ € |-1,1[\ {0}. In this subsection we establish a number of properties of €5y, (2):
we show that it is not a MASA in L*(SU,(2)) (Proposition 5.14), however it is a MASA
in L>(SU,(2))7, the fixed point subalgebra of the scaling group (Proposition 5.15). This
property will be used in the next subsection, where we construct new compact quantum
group out of SU,(2) and Q, using a bicrossed product construction.

Recall that we have defined the quantum group SU,(2) in Section 2.3.1 and given
its description from the dual perspective in Section 3.6. In particular, we can identify

—

Irr(SU4(2)) with the circle T and the Plancherel measure p with the normalised Lebesgue
measure, consequently the unitary operator Q gives us a unitary isomorphism

&

L (SU,(2)) ~ /T B(H,) ® I, dju(A). (5.1)

Each X\ € T corresponds to an irreducible representation ¢?* of C(SU,(2)) (see Propo-
sition 3.39). To ease the notation we will write ¢ = ?* (XA € T).

The next lemma says that the von Neumann algebra generated by the real part of a
weighted shift is MASA in B(¢*(Z.)).

Lemma 5.13. Let S € B((*(Z,)) be the shift operator given by Sor = ¢p_1 (k € Z,), and
let My € B((*(Z)) be the multiplication operator associated with a function f € (°°(Z). If
f(N) C Ry then the von Neumann algebra 9B generated by T = S M+ My S* is mazimal
abelian in B((3(Zy)).
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Proof. According to [68, Theorem 4.7.7|, the claim follows once we show that there exists
a cyclic vector for 8 = {T'}". We claim that ¢ is such a vector. Indeed, it is clear that
¢o belongs to V. = HB¢y. Next, assume that ¢g,...,¢, € V for some n € Z,. Then

Gn+1 = ﬁTqbn — %gﬁn_l belongs to V and consequently V = B((*(Z.)). O

One easily sees that %gu, () is abelian and sy, = {o + a*}’. Indeed, a + o* is
the character of the fundamental representation and the fusion rules of SU,(2) (equation
(2.23)) imply that x(U") € {a + o*}" for all U™ € Irr(SU,(2)). Consequently,

5>
Q1 Gsu, Q) = {/ T @ 1 dp(N) | T € ¥ (Gsu,0) } = ¥ (Gsu,e) @ T (5:2)
T

(observe that ¥*(a + a*) = ¥!(a + a*) for all A € T). Since L™(SU,(2)) is not a factor®®,
Proposition 5.10 implies that @su,(2) is not a MASA in L*(SU4(2)). The next result
describes its relative commutant.

Proposition 5.14. The relative commutant of Ggu,(2) is given by

D
Q1 (@l 2 NL=(SU,(2))) Q5 = { / Ty ® L du(N) | Vacr Ts € 0} (Gsu )}
T
~ 1/}1 (%SUq(Q))@ LOO(T)

Proof. Inclusion 2O clearly follows from equation (5.2), assume that T belongs to the sub-
algebra Q(€gy, o) NL™(SU,(2))) Q7. Using (5.1) we can write T' = fT@ Ty @ Ty dpu(N) for
some Ty € B(H,). Our assumption forces Ty € 9! (%sy,(2))’ for almost all A € T. From the
definition of ¢! we see that 1! () is a weighted shift and Lemma 5.13 applies — ¢! (Gsu,(2))
is a MASA in B(¢*(Z..)), hence Ty € ¢'(6su,(2)) and the claim follows. O

Despite the above negative result, we can nonetheless prove that %5y, (2) is MASA in
the smaller von Neumann algebra of fixed points for the scaling group. We denote this
algebra by L>(SU,(2))".

Proposition 5.15. The algebra of class functions Gsu,(2) is MASA in L°(SU,(2))7, i.e.
Csu,2) NLT(SU(2)" = Gsu, -

Proof. Observe first that since ¢sy,2) is generated by characters, we have gy, o) C
L*(SU,(2))". Take T = [’ T) ® Lg; du(N) in Qr(%y, 5 N L¥(SU,(2))7)Q;. Proposi-
tion 5.14 implies that T € ¢1(<€SUq(2)) for almost all A € T. Recall that P is the operator
implementing the scaling group for SU,(2) and its dual (see Section 2.2). We know how

29From (5.1) we see that L™°(SU4(2)) ~ B(¢?(Z+))® L>°(T), hence the center of L>°(SU,(2)) is isomor-
phic to L>(T).
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to express this operator on the level of direct integrals (Proposition 3.41): for all t € R we
have

) D
0,P"Q; / HS(Hy) du(r / Exdu(N) / Exgor d(N) / HS(H,) du(),

T
(5.3)
and since T is invariant under the (transported) scaling group we have

2 2]
/ Ty @ g du(X) =T = (QLP"Q;)T(QP"Qj) = / Tyjgrie @ Lg-dp(A).  (5.4)
T T

It follows that T > A\ — T\ € B(¢*(Z,)) is constant almost everywhere. Indeed, for
k € T denote by f, € B({*(Z,))@L>(T) the function A\ — Ty,. Equation (5.4) implies
fi=f.(k €T). For all § € L'(T),w € B({*(Z,)). we get®

(w8 0)fi = (0 0)( / fodu(r)) = / (w0 0)(f,) du(r)

= [ [ 00 ) o) = [ 608 [ (o) ) )
= ([ o0 au(w) / (T du(r) = (02 0)( [ Todp() © T,

hence f; = fnr T, dp(k) ® Lyee(r). Consequently, T belongs to Q1%su,2)Qr (see equation
(5.2)). O

5.4 Certain bicrossed product construction

In this subsection we present a construction of a class of compact quantum groups H given
by a bicrossed product of a compact quantum group G and the additive group of rational
numbers Q (in this subsection we equip Q with the discrete topology), where Q acts on
L>°(G) using the scaling grup of G. Our construction is a slight variation of a construction
presented in [26, Section 4.1| — the main difference is that we replace R with a discrete
group Q in order to get a compact quantum group as the bicrossed product. The principal
reason why we are interested in this family of quantum groups is the fact that they admit
non-trivial inner scaling automorphisms — a property that appeared in Proposition 5.11 (see
Lemma 5.16. Observe also that equation (5.3) implies that non-trivial scaling automor-
phisms of SU,(2) are never inner). Another reason is that these bicrossed products provide
examples of compact quantum groups H with L°°(H) being the injective factor of type 11

Later on we will specify to G = SU,(2), for now let G be an arbitrary compact quantum
group. Fix a non-zero number v € R\ {0} and denote by p the normal x-homomorphism
(*(Q)®L*(G) = (*(Q)® L*(G) given by

p(E)(7) =75 (F(7) (v € Q. F € (*(QRL¥(G))

30Integrals of B(¢%*(Zy)) or L(T)® B(¢%(Z,))-valued functions are understood in the sense of Pettis,
where the von Neumann algebras are equipped with the w*—topology.
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(we identify (*°(Q)® L>*(G) with ¢>°(Q,L*(G))). Now, a pair (Q,G) together with p
forms a matched pair with trivial cocycles ([88, Definition 2.1]) let H = Q > G be the
resulting bicrossed product quantum group. For the details of this construction and its
properties we refer the reader to [88, 95| (see also [38]), here we will recall only some of its
aspects. Using the notation of [88], a: L™(G) 3 x — p(1 ® z) € £*(Q)® L*>(G) is given
by a(z)(7y) = 7 (x) and B: (°(Q) 3 f — p(f ® 1) € £°(Q)QL™(G) is the trivial action
B(f) = f ® 1. Furthermore, we have
L*(H) = Q xa L*(G) = {a(z),uy |z € L7(G), 7y € Q}"

(where Q 3 v — A\, € B(£?(Q)) is the left regular representation, u, = A\, ® 1) and

~

C2(H) = (Q@0(G).
These von Neumann algebras are represented on the Hilbert space
L*(H) = *(Q) ® L*(G).

The Haar integral on H is a state, hence H is compact (see [88, Definition 2.7]). In fact,
the GNS map for hy is given by

Ahm(u’YO‘(x)) = Ah@()‘“{) ® Ah@(m) (33 € LOO(G)>7 € @) (55)

We can also identify the (left) Haar integral on H - it is equal to 0o ® pg (Where pg, vz
are the left Haar integrals on Q and G), hence

Ve =1®V,,

(it is a combination of Proposition 2.9, Theorem 2.13 and Proposition 2.16 in [88]). Since
the equality V“@ = P holds for any unimodular locally compact quantum group (equation
(2.14)), we arrive at

Pf=Vy, =10V, =1®F; (t€R). (5.6)

It is a well known property of crossed products that automorphisms with which Q acts
on L>°(G) become inner after the inclusion of L°(G) into Q x, L=(G):

a(r,(x) = uya(z)u: (€ L*(G),vy € Q). (5.7)

vy
Let us now record a simple result concerning the scaling group of H.

Lemma 5.16.
n We have 78 (a(z)) = a(r8(z)) and 2 (u,) = u., for allt € R,z € L®(G),v € Q.

m For every t € R, the scaling automorphism 7% is trivial if and only if 7 is trivial. If

v € Q, then 7, is inner.
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Proof. The first part is a direct consequence of equations (5.5), (5.6):
A (15 (a(2))) = (1 @ PE) (Mg (1) ® Apg () = Ang (1) © Mg (737 (2)) = Apy (a7 ()
and
A (7 (1)) = (1@ Pg)(Ang (Ay) @ Ang (1)) = Apg (Ay) ® Ang (1) = Ay (us).

Since hy is faithful on L°(H) we get the first claim. As « is a monomorphism, 7% is trivial
if and only so is 7°. The last claim follows from equation (5.7). O

Let us end these general considerations with an observation that
uy €6 (y€Q) and (%) C Gn.

Indeed, it is a consequence of |95, Theorem 3.7].

Fix ¢ € |-1,1[\{0}. From now on we consider the special case G = SU,(2) — accordingly
H is given by H = Q »<x SU,(2). Note that this quantum group depends on two parameters:
q and v and is not of Kac type. Using Proposition 5.15 (€gu,(2) is MASA in L>(SU4(2))7)
we are able to deduce the following interesting property of H:

Proposition 5.17. Let H = Q > SU,(2). The von Neumann algebra 6y is MASA in
L (H).

Proof. First, it is clear that 3 is commutative. Indeed, since sy, (2) is commutative, com-
mutativity of €y follows from [95, Theorem 3.7]. Take now 7' € ¢}; N L*°(H) — we want to
show T' € 6. Let E: L>(H) = Q x, L>(SU,(2)) = L>(SU,(2)) be the canonical faithful
normal conditional expectation satisfying E(u,a(z)) = 6,0z for v € Q,z € L>(SU,(2)).
Define operators

T, = B T) € L¥(3U,(2)) (7€ Q).

Clearly we have
(€1Tym) = (€1 BTN = (60 @ €| (uT) (B0 @ 1))
for all £, € L*(SU,(2)). Fix v € Q. Using the fact that T € %}; N L°(H) we will now
show T, € €4y, (). Since for any y € Gy, (2) operator a(y) belongs to 6y, we get
(€1 Tyym) = (6, @ £ T(60 @ yn)) = (0y @ | Taly) (50 @ 1))
= {a(y") (6, ® ) [T (0 @ 1)) = (6o @ y"&| (w3 T) (00 @ 1)) = (Y& | Tom) = (€| yTyn)

for all vectors &,n € L*(SU,(2)) and consequently T, € C3u,(2)-

Take v/ € Q. Observe that Lemma 5.16 together with equation (5.7) implies that TI]EIY/ is
implemeneted by u., € én. Using equation (5.6) we calculate

(€ o @ (T)n) = (G0 @ Pyl €| (wiT) (80 ® Py )
= (5, @ &| PX TR (50 @ 1)) = (6, ® £ | 72,(T) (60 @ 1))
= (0, ®&| U’Y'Tuj;’(é(] ®n)) = (0, ®E|T(6 @n)) = (£ Tyn)
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and as before we arrive at 7, 3 «(2) (7)) = T,. Density of vQ in R implies 7., € L>(SU4(2))".
These two properties of T', imply that 7', € %5y, 2) (Proposition 5.15) and consequently
OK(TF\/) € CKH

Formally we have T'= 3", u
in the w*-topology (see [62]), Wthh is why we will argue on the L*level. Let us first prove

that
Ah]HI Z AhH Uy Z Ah ® Ahsu o)) (T ) (5'8)

7€Q v€EQ

4o (T,). However, this series does not need to converge

Since {0, },eq forms an orthonormal basis in £*(Q), we can write Ay, (T) = > 0, T,
for some T, € L?(SU,(2)). Then

<€|Tv> = <57 ®¢| Z % ®Tv’> = <5v ® & [ Any(T))
7'eQ

= (0y @ E[T(00 ® Mgy, ) (1)) = (€ [ Mgy, ) (17))

for all v € Q,¢ € L*(SU,(2)) which proves (5.8). Recall that hy is tracial on %}, hence
the claim follows from equation (5.8) and the following lemma. O

Lemma 5.18. Let M be a von Neumann algebra with a fized faithful normal state w.

Assume that N C M is a von Neumann subalgebra such that wly is tracial. If v € M and
A(x) € Ay(N) then x € N.

This lemma is well-known to experts but we were not able to locate a precise reference,
so we decided to add a proof for completeness.

Proof. We will show that x commutes with every y € N'. Take a,b € M that are analytic
with respect to (0y)wcr and fix a net (Ay(z;))ier (x; € N) which converges to A, (x).
1 1

Observe that since wly is tracial, J,VZ is an isometry on A,(N). As J, V2 is closed,
it follows that lim;c; Ay (z}) = A, (2*). Consequently

(Au(a) [y2Au (b)) = (Au(a) [ o7 (D) Sl (2)) = Lim{Ay(a) | yJ0i)5 (D) Ju e (i)
= lim(Ay(a) [y2iA(0)) = Im{Juogs(a)" Johu(27) | yAu (D))
= (Ju0i)a(a) oo (%) [y (D)) = (2"Au(a) [yAu (b)) = (Au(a) | zyA. (D).
A standard density argument implies x € N” = N. O

Remark. In the proof of Proposition 5.17, we argued on the L*-level that o(T},) € %y (v €
Q) implies that 7' € %y. Alternatively, we could use a Fejér-type theorem for crossed
products and arrive at the same conclusion (see e.g. [24, Theorem 4.10] for a general
result).
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In the penultimate result we prove about H = Q pa SU,(2) we study its von Neumann
algebra of bounded functions. In particular, we show that for some values of v, ¢, it is a
factor of type II, — we are not aware of another example of a compact quantum group in
the literature with this property.

Proposition 5.19.

n Z(L™(H)) is equal to {u, |y €QN S10ms
7Q and isomorphic to L*°(T) otherwise.

Z}Y'. In particular, it is trivial if v1og(|q|) ¢

m Let t € R. The scaling automorphzsm 2 s trivial if and only if t € —=—7. It is

inner if and only if t € vVQ + —F—Z.

log(\ql)
log( IQD

n H is coamenable and consequently L (H) is injective.
n Ifvlog(lq|) ¢ mQ then L°(H) is a factor of type 11,

Proof. Observe first that for all ¢ € R, the scaling automorphism TtH is trivial if and only
794 s trivial (Lemma 5.16) which happens if and only if ¢ € ; oatan 2 (equation (5.3)).
Take x € Z(L*°(H)). Since 6y is MASA in L*(H), we know that

x € span{xs|f € Irr(H) : pg = 15 = span{u, |y € Q} "

(Proposition 5.10). Write

T = SOT—hmZC Uy,  Apy (2 ZC Apy (uy)

v€Q 7€Q

for some C,, C% € C, where ), C’u, belongs to span{u, |y € Q} for each i € I. Take
now y € L*(SU,(2)). Since z € Z(L*(H)), we have

D048, ® Mgy, (1Y P (1)) = aly) (Y Oy (1)) = A ((y)) = Ay (za(y))

7€Q v€Q

= z(0p ® AhSUq<2)( y)) = lzlenll c <5’Y ® Ahsuq<2) ®)),
7€Q
which implies '
Gy @(y) =lmCly (7€ Q).

As this equation holds for every y € L>(SU,(2)), we must have C, = 0 whenever TESQ(Q)
is non-trivial, i.e. for vy ¢ Toa( |q| Z Lemma 5.18 gives us

Z(L*(H)) € {uy[v € QN ok 2"
The inclusion D is clear, hence we have identified the center of L°°(H). If Vlog(|q|) ¢ mQ
then clearly Q N = {0} and L*(H) is a factor. Otherwise Q N —Z2—7 is

Vlog(\QI

l/log(IQ\ Vlog(\q\)
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subgroup of Q isomorphic to Z and {u,|y € QN Z}” is therefore isomorphic to

Vlog lal)
L(Z) ~ L>(T) [45, Theorem A]. This proves the first point®'.
— _ H H
Take now ¢ € R. If t = vy + s € vQ + 5% then ™ = Twaﬂ_s/log(‘qD Tom
is inner by Lemma 5.16. Assume that ¢ ¢ vQ + ; a2 and ' = Ad, for some unitary

v € L*(H). Proposition 5.11 implies that v € {u,, | v € Q}”, hence we can write

Apa(v) = DyAp, (1)) =Y Dy (6, @ Apg, o) (5.9)

~eQ 7€Q

for some D, € C. Since v is unitary, we have 3 _ [D,[> = 1. Let f € L>(T) be the char-

acteristic function of the arc {? |0 € [0,7]} C T and F' = Q5 ([ F(M\)Lus,) du(N)Qr, €
L*(SU,(2)). Equation (5.9) together with Lemma 5.16 gives us

ZD’Y ® AhSU (2)( e )( ))) = O‘(F) (Z D’Y((S’Y ® Athq(z)(]l))) = Ahm(a(F)v)

7€Q 7€Q

= 0, (75, ((F))) = 0(J0 @ Angy, o, (75 "D ().

Since v € {A\, ® 1|y € Q}”, the last vector belongs to span{d, @ Ang;, ) (77 750 (F)) |~ e
Q}. It follows that there exists v € Q such that
7_SUq(Q)(F> _ CTSEq( )(F)

vy

for some ¢ € C. Each scaling automorphism acts by a rotation (equation (5.3)), hence

¢ =1 and Tﬂi,y(z)(F ) = F. However, TSE,"W(Q) is a non-trivial rotation. Indeed, otherwise
t+vy € 1og(\q\)Z and we assumed that it is not the case. It follows that f is equal to its

proper rotation, a contradiction. This ends the proof of the second bullet point.

The compact quantum group H = Q > SU,(2) is coamenable because Q is amenable
and SU,(2) is coamenable [32, Theorem 15]. It follows that L>(H) is injective [8, Theorem
3.3] (see also Section 6). Alternatively, to obtain injectivity of L°°(H) one can also use
the fact that a crossed product of an injective von Neumann algebra by an action of an
amenable group is injective |83, Theorem 3.16].

Assume vlog(|q|) ¢ 7Q. We already know that L*(H) = Q x, L>(SU,(2)) is a factor.
Since the n.s.f. tracial weight on L>(SU,(2)) ~ B(¢*(Z,))® L>(T) given by Tr ®@hr is
invariant under the action of Q, it gives rise to a n.s.f. tracial weight on L*(H) (|82,
Theorem 1.17]) and consequently L*(H) is not of type III. It follows from the proof of
[101, Theorem 1.3] that if there were a faithful normal tracial state on L°°(H), then H
would be of Kac type. As this is not the case, L>(H) cannot be of type II;; we are left

with two cases, I, and I1,. Clearly |[vQ + 1og(\q|)Z| Ny < |R| hence there exists a scaling

31'We could also argue that L>°(H) is a factor if vlog(|q|) ¢ 7Q using [69, Theorem 7.11.11].
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automorphism 7% which is not inner. Tt is well known that all automorphisms of B(¢*(Z.))
are inner ([10, I1.5.5.14]), hence L*(H) has to be of type I
Let us also give an alternative proof of the result that L°°(H) is not of type .. Let

E: L(H) = Q xo L¥(SU,(2)) — L=(SU,(2))

be the canonical faithful normal conditional expectation. Assume by contradiction that
L*(H) is of type L. Then it is purely atomic and it follows that L>(SU,(2))

~ B((*(Z,))®@L>*(T) is purely atomic as well ([10, Theorem IV.2.2.4]), which gives us a
contradiction. [

As a corollary, we can show that our family of bicrossed products contains uncountably
many different isomorphism classes of quantum groups. To formulate this result, let us
denote by H,, , the bicrossed product Q <1 SU,(2) constructed using the parameter v.

Corollary 5.20. Let v,/ € R\ {0},¢,¢' € |-1,1[\ {0}. If H, , and H,, , are isomorphic,
then |¢| = |¢'| and vQ+ woatan £ = V'Q+ 5z{g Z- In particular, for each ¢ € |—1,1[\ {0} the
family {H, ,|v € R\ {0}} consists of ¢ isomorphism classes of compact quantum groups.

Proof. Let ¢: C(H,,) — C(H, 4 ) be a Hopf -isomorphism implementing the isomorphism
between H, , and H,/ , (recall that H, , is coamenable). Since ¢ intertwines scaling groups
(163, Proposition 3.15]) it follows that for each ¢t € R, 7,7 is trivial if and only if TiHIV/’q,
is trivial and consequently Proposition 5.19 implies log(quZ = log(|q \)Z = |q| = |¢|- Next,
since inner scaling automorphisms of Hj, , are implemented by elements of C(H, ) (similarly

for H,, ;) it follows from the same proposition that vQ + 1og(\ I) =1VQ+ Toa(] \)Z The

last claim is a consequence of dlm@(R/((@log Iql))) =c. O

Remark. We have constructed a compact quantum group H such that L°°(H) is the
injective type 11, factor (with separable predual). Clearly there exists a compact quantum
group with L°°(H) being the type II; factor (with separable predual) — one simply has to
take an amenable ICC group I', e.g. S, and define H = [. It is not difficult to observe
that L°°(H) can be isomorphic to M,, (n € N) only for n = 1. Indeed, one line of reasoning
would be as follows: since dim(M,,) < 400, H would have to be coamenable. But then
C(H) ~ M,, is universal and has a character, which forces n = 1. It is an interesting
question, which is to our knowledge open, whether there exists a compact quantum group
H with L°(H) isomorphic to B(¢?) or a type III, (A € [0, 1]) injective factor.

5.5 Examples with commutative %¢

dim(a) - +o00 from Theo-
dimg ()

rem 5.9 holds for a fairly general class of non-Kac type compact quantum groups. More
precisely, in this subsection we consider any compact quantum group G with the following
properties:

In this subsection we will prove that the condition ZQGIH(G)
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1) there exists an irreducible fundamental representation U with dim,(U) > dim(U)
and U ~ U,

2) irreducible representations of G are labeled by Z, so that Irr(G) = {U" },.cz, , where
U' = U and U" is the trivial representation,

3) the fusion rules are given by U@ U™ ~ @2, C(k,n)U*, with C(n + 1,n) > 1 and
Sup,ez, C(n+1,n) < +oo.

Let us mention two classes of compact quantum groups that fit into the above descrip-
tion:

= Non-Kac type free orthogonal quantum group G = O} satisfies the above conditions
with U being the standard fundamental representation (see Section 2.3.2).

n Let (B, 1) be a finite dimensional C*-algebra with a non-tracial é-form. The non-Kac
type quantum automorphism group G 4,+(B, ¥) also satisfies the above conditions (see
Section 2.3.4).

To keep the notation lighter, let us write dim(n) = dim(U™) and dim,(n) = dim,(U")
for all n € Z, . Using our assumptions on the representation theory of G we can show that

(;iiéln—(z;)))ne@ decays at an exponential rate.
q

Lemma 5.21.

m We have Ut ~ U and U@ U™ ~ U™ @ U™ for alln,m € Z,.

m There exists d > 0,c > 1 such that dim(n) - d foralln e Z,.

dimg(n) — ¢

Proof. Observe that we have (U')®" ~ @_, ¢, ,U" (n € N) for some ¢}, € Zy. As Ul ~
U, it follows inductively that Unr ~U" for all n € Z.. Equivalence U"@U™ ~ U™ @ U"
can now be justified with the following calculations

Ur@oUm ~UreU™ ~Um@Ur ~U™®U™.

To prove the second bullet point, let us introduce positive numbers A,, > 1 via dim,(n) =
A,dim(n) (n € Zy). Clearly Ag = 1 and we assume that A; > 1. The fusion rule
UleU" ~ @t C(k,n)U* implies

n+1 n+1
A1 A, dim(1) dim(n) = dim,(U' @ U") = dim, (€D C(k, n)U*) = > C(k, n) A, dim(k)
k=0 k=0
and
n+1 n+1
dim(1) dim(n) = dim(U' ©U") = dim(EP C(k, n)U*) = > C(k, n) dim(k).
k=0 k=0



Combining these equations gives us
A A, dim(1)dim(n) < ( max
ke{0,...,n}

= (k r{%ax }Ak) (dim(1) dim(n) — C(n+ 1,n)dim(n + 1)) + C(n + 1,n) Apyq dim(n + 1),
€10,...,n

A) Y C(k,n)dim(k) + C(n + 1,n) A, dim(n + 1)
k=0

hence

_ dim(1) dim(n)
Anyr 2 ker{%?ﬁ} Ap + (AlAn ker{%?_)_fn} Ak) C(n+1,n)dim(n+1) "

The above inequality implies A, 1 = maxXpeo,..nt1} Ap. Consequently, we can further
write

Ai—1 dim(1) dim(n)
An-i—l Z An + An supm€Z+1C(m+1,m) dim(ntl)

Since U™ is a subrepresentation of U @ U", we have dim(1) dim(n) > dim(n + 1) and

An+1 2 An<1 + A1 )

SUPez, C(m+1,m)

Write ¢ = 1 + Al > 1. We have shown A, > cA,. Using dim,(n) =

SUPpez C(m+1,m)
A, dim(n) we arrive at

dim,(n) = A, dim(n) > " 'A; dim(n) (n € N).
]

In particular, the above lemma implies that 4 is an abelian von Neumann algebra.
Theorems 5.9 and 5.12 give us the following corollary (it follows from the fusion rules that
the assumptions are satisfied).

Corollary 5.22. We have >~ dimin) - 4 5. hence the inclusion g C L>(G) is

dimg(n)
quasi-split. Furthermore, 6 is not a MASA.

5.6 Quantum unitary group Uj

Let F' be an invertible matrix with complex entries and U} the associated compact quantum
group (see Section 2.3.3). In this subsection we show that the sum condition

; 1
Y ()2 < oo (5.10)

'yEIrr(U}')

is satisfied provided U} is “sufficiently non-Kac” (see Proposition 5.25 for the precise
statement). Consequently, in this case we obtain information about the inclusion %U; C

L=(U).

104



The representation theory of U} was described by Banica in [4, Théoréme 1]. Recall
that Irr(U}) can be identified with Z, x Z, in such a way that the neutral element e
corresponds to the trivial representation, the first generator a to the fundamental repre-
sentation and the second one f to its contragradient (see Section 2.3.3). The fusion rule is
given by

TOY @ ab (v,y € Zy *x 7). (5.11)

a,b,cEZJr*ZJr:
r=ac, y=cb

In order to efficiently calculate the sum (5.10), we need to single out a family of irreducible
representations out of which all of Trr(U) is built. Observe that each non-trivial word
v € Irr (U )\ {e} has a well defined beginning and an end s(7), t(y) € {a, 8}. Let us define
sets

Lo = {a(Ba)" |n € Zy}, Ig = {(aB)" |n € N},
Igo = {(Ba)"[n € N}, Igg ={(Ba)"B|n € Z}.

The following observation was already made e.g. in [60]:

Lemma 5.23. Every non-trivial word v € Irr(Uf) \ {e} can be uniquely written as
7=!E1---:13p=$1® @:va
for somep €N, 01,...,0,1 € {a, B} and x1 € Lyy) 5., 22 € L5 55 Tp € L5, | 1)

The above result follows easily from the observation that if 6a™¢’ for some §, 8" € Trr(U})
and n > 2 then (5.11) implies
5" = da®a™ e

(and similarly for 68"0"). It follows that in order to calculate the sum (5.10) we need to
find the (quantum) dimension of representations from the sets I; 4.

Lemma 5.24. Let d be the classical or the quantum dimension function. If d(a) = 2, then

d((af)") = d((Ba)") = 2n +1,
d((af)"e) = d((Ba)"f) = 2n +2

formn e Z,. If d(a) > 2, then

o N2n+1__ @) —d’)2n+1
d((aB)™) = d((Ba)™) = (d(e)+d')** 1 —(d(a)—d')?"t

22n+1d/ )

d((aﬁ)n@) — d((,BO()nﬁ) _ (d()+d)2"+2 —(d(a)—d')2"+2

22n+2d/

forn € Z, where d = \/d(«)? — 4.
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Proof. Fixn € Z,. As
(aB)"a® B = (af)" @ (aB)",

we have
d(a)d((af)"a) = d((aB)") + d((B)"). (5.12)
Similarly,
(@) af®a = (af)" " a® (af)"a
and

d(e)d((ap)"") = d((aB)"a) + d((af)"a). (5.13)
Equations (5.12), (5.13) imply

) - o2l

hence iterating the above equation gives us
d((eB)") | _ | -1 de) 1"[ 1
B R s s P I
Assume first that d(a) = 2. One easily checks that
—1 dla) 1" [-1 21" _[-2n+1 2n
—d(a) d@)?—=1| —|[-2 3| | =2n  2n+1|°

) g e |

—2n 2n+ 11| |2 2n + 2

hence

Observe that
a® Ba(fa)” = a(fa)" ™ @ a(Ba)™,

hence

d((Ba)" ) = o) (d(a(Ba)™™) +d(a(Ba)") = 12n+4+2n+2) = 2n+3 = d((aB)"1).

(x

The last equation can be checked as follows

d((B)"B) = d((ap)"a) = d((af)" ). (5.14)
Let us now consider the case d(a) > 2. This time d' = y/d(a)? — 4 > 0, the matrix
—1 da) 1" |
—d(e) d(a)?—1] °4"®
(d(a)*d')%(d’+d(ag)igd(a)+d')2”(d/*d(a)) (d(a)+d’)2”2*£ld(a)*d')2"
n ! 22n g/
_ ([d(@)+d")*" —(d(a)—d")*" (d(e)—d")?" (d'—d(0))+(d(e) +d")*" (d'+d(a)) |
22nd/ 22n+1d/
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o [0

(d(a)—d')*"(d' +d(e))+(d(e)+d)*" (d' ~d(a)) (d(e)+d')*" —(d(a)—d')*" 1
22n+1/ 22n g/
 (d(@)+d)2m—(d()—d')?" (d(0)=d")?" (d'~d(a))+(d(e) +d")*" (d'+d(a)) [d(a)]
22nd/ 22n+1d/
(d(a)+d")*" (d'+d(e)) +(d(a) —d')*" (d' —d(cv)) (d'+d(e))*" 1 4(d' —d(a))*" !
_ 2n+14/ _ 2n+1 g/
= | d(@)—d")?"(d(a)d’ —d(a)?+2)+(d(a) +d")*" (d(a)d’ +d(a)*~2) (d'+d(a))?" 2 —(d'~d(a))*"+?
22n+1d/ 22n+2d/
for all n € Z,. Next, as before we get
((/304)”“) d(la) ( (O‘(ﬁ@)m_l) + d(a(ﬂa)”)
1 ((dd(0)? (@ —d(a)* | (d/d(a))*? (d —d(a) "+
m ( 22n+4 g + 22n+2 g/ )
(@ d(@))PR (@ () )~ (&' —d(2) >3 (d —d(@))*+4)
- 22n+4d(a)d/
_ (d'+d(0))?*"2(2d(a)?+2d(a)d") — (d —d(e))*" 2 (2d()* —2d(c)d’)
- 22n+4d(a)d/
d +d(o 2n+3 d —d(o 2n+3 n
_ (d'+d(e)) 227:ng (@) _ d((aﬂ) +1)
and (5.14) gives d((Ba)"B) = d((af)" ) for all n € Z,. O

Using the above result we can show that for “sufficiently non-Kac” quantum unitary
groups, the sum condition (5.10) is satisfied.

Proposition 5.25. If dlm(a < % then Zvehr(U;) cﬁimnz(gy)) < +o0.

Proof. Lemma 5.23 shows that

1 im 3
2 G =1 2 2 X (Emmeron)

eI (U) PEN 6p,....0pE{r,B} 11€154,5, Y€l5, 1.6,

(5.15)
_ dim(y1) \ 3 dim(yp) \ 3
—1+Z Z ( Z (dimq(ﬂyl))Q).”( Z (dimq(':p))z)'
PEN do,....0p{a,B} 11E€IL5,5, Ywels, 1.6
, 1
Let us define S5 5 = 27615 . ((ﬂi(g)) 2 for 0,0 € {a, B}. Lemma 5.24 implies that
Sap =S80, Saa =S58
We will now show that our assumption (ﬁinrr;(a) < 15 forces max(Sy.a, Sa) < %
T 1
More generally, let us fix 2 < x < y such that v S 1 and show
0o 1
Si(,y) = ((wrvamapre@-vazme) ira\ o oo (5.16)
14, e ((y+\/y2_74)2"+2*(y*\/y2_*4)2"+2)\/m = U .
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and

((e+va—2)201 —(a—va?—2)20+1 ) \/y2—4
(/v —a2ntt - (y—y /221 ) VaZ—a

= dim,(«), inequalities (5.16), (5.17) imply max(Sp.q, Sa ) <

1
) < 0.499. (5.17)

Clearly for 2 < x = dim(a),

2 .

Observe that the mean value theorem applied to the function |0,+oo[ 3 s +— sP €
(0, +00) gives us

(x+ Va2 -4 — (x — Va2 —4)P < 2p(z + Va2 — 4P a2 —4 (x> 2,p€N).

Consequently,

= 2(2n+2) (z4+VaZ—4)2n 1 fy2—4 L
Si(r,y) < 3 (2 VY

<N (/P4 = (=)

| — CRIY
VAT / 1 (z+V22—4)2 ( g4/z2—4 1
)4; n—‘f_ y+\/y2 4 (y+\/y2 4) (1_(y—\/y2—4)2n+2)% (518)
Y/ y2—4
I e L@V D)}  or =i \n 1
4 = %
Z yty/y2—4 (y+\/92*4 _ yf\/y2_74 2n+2 3 7
n=0 (1 = )

where we replaced n+1 by n+ % to match the corresponding bound for Sy (z,y). Similarly,

() <i 2(2n+1)(z+va2—1)2"[y2—4 )%

y+\/y2—4 2+l (y— \/y2—4 2n+1

_ 2 _ A% S L (e+va?—D)7 (o4 /ZZ A\ 3
_2(y 4)4Z(n+ ) y+\/y2*4 (y+\/y274)

1
(oY iy

y+y/y>—4

L (o4 Va2—D)3 [ pi/aZ 4\t 1
(n—l— ) y+y/y2—4 (y+\/y2—4) (lf(w)ms)%
y+/y2—4

(n+§)%(x+mﬁ r4/71 yn
207 1 Nyt ( IV \/y 2n+2)%
Y+ y?—4

= *.

y_\/m)2n+2)

Thus, it i h to bound th ion *. Note that th i 1—(—f—=
us, it is enough to bound the expression ote that the expresswn( (y+\/@,m

is the smallest when n = 0, and we will use this to obtain a crude upper bound for x. We
also have

»MH

wa( ?Q = 24y ~ D,
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so we obtain the following bound for x (using an elementary estimate y/n + % < \/gn for
n>1):

2 )L etVaT D) \[ \[ x+wz
i = (AR W=l
z+\/:p2

:c+\/x2

y+v/ y2—4

Now, let us introduce the variable ¢ : }O, 115] Recall that 2 < x = ty < y, hence
\/1 — 4y=2 > /1 — t2. Using this observamon and the fact that the function f(z) = ﬁ
is increasing on |0, 1], we get

*<\/_\/> \/E 1+‘/ﬁ .

1+\/1 2

Let us argue that the condition t < E implies that the expression above is bounded by

0.499. As the function h(z) = 1+\/ﬁ defined on |0, 1] is increasing, we have h(t) <
h(sz) < 0.067. Tt follows that f(h(t)) < f(0.067) < 0.077. Putting this information
together we arrive at

* < \/27(\/§+ ﬁﬂh(m) < 0.4917 < 0.499.

Consequently, we have shown (5.16), (5.17) and max(Sa,q, Sa,3) < 3 in the case dim(a) > 3.
Let us now turn to the case dim(«) = 2. Using expressions from Lemma 5.24 we see

_ dim(y) \5 _ - (2n+2)22n+2, /dimg ()24 i
Sa,a o ; (dimq('y)) o ZO((dlrnq(oz)Jr\/dlrnq(oz)2 4)27+2—(dimg () \/dlmq ()2—4) 2""‘2) (519)
Y€l a n=
and
_ dim(y) \3 __ - (2n41)22n+1 /dimy(a)2—4 1
Sa,,@ = Z (dimq('y)) - Z((dimq(a)+\/dimq(a)2f4)2”+1 (dimg (cr) \/dlmq (@)2—4) 2n+1) . (520)
’YEIayﬁ n=0
Observe that e e Ry _
r—2+t 2PVa2—4 -Pp

for all p € N, hence Fatou’s lemma and inequality (5.16) imply

o0

s lim ( ((e+va=a)2n+2— (o Va7—2)20+2)  [dim, (a)*—4
a,a — 1m
O e ( (dimg (@)++/dimg (a)2—4)m+2—(dimg (@) — /dimg (@)?—4)2n+2 ) Va7 —4

.. > ((z-l—\/:v?—4)2"+2—($—\/:c2—4)2”+2) dimg(a)2—4
S hm 15-1f ( ( di di 2_4)2n+2_(dj di 2_4 2n+2)m
T—2 0 (dimg (o) ++/dimg(a)2—4) —(dimg (o) — img(c)2—4) T2—

n—=

N—
D=

)2 < 0.499.
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Similarly, we get S, < 0.499 using (5.20) and (5.17).
We have shown max(Ss.a, Sa,3) < 3. Consequently, (5.15) gives us

Z (cilmrr;w %S +Z Z max(Sa.a; Sas)’

yelrr (UF) peN do,...,0p€{a, B}

=1+ Z 2P max(S, 4, Sap)? < +00.
p=1

]

Remark. Calculations in the proof of Proposition 5.25 are far from optimal, however it is
. 1
clear that there are non-Kac type quantum unitary groups U with ZWEIH(U;) (ddi‘mm—%) 2 =
q

+00. Indeed, assume that min(cﬁﬁfa), iﬁf& Bﬁ))) . Then

Soe,oz = Sﬂ,ﬁ Z %7 SOMB - Sﬁ,a Z 2
and consequently
dim(y) 1 +1
> (Gmy): =1 +22p min (S0, Sa,5)" = +00.
’yGIrr(U;) p=1

It follows from the rule (5.11) and Lemma 5.24 that non-trivial irreducible representa-
tions v of U have p, # 1. Using Theorems 5.9 and 5.12 we get the following corollary.

Corollary 5.26. Assume that dm;((cg) < &. Then the inclusion Gy C L (U{) is quasi-

split and the relative commutant CK’+ N L°°(U+) is not contained in %7+

Proof. By [30, Theorem 33] L>(U}) is a type III factor. Therefore Proposition 5.4 applies
and we know that (5’+ NL>®(U}) is a type IIT algebra, hence cannot be contained in %UJr,

which is a finite von Neumann algebra.

An alternative argument can go as follows. By [4, Théoréme 1 (iii)] the character of
the fundamental representation of U} has the same disribution (with respect to the Haar
integral) as a circular variable®?, so we can conclude that %U; is isomorphic to the free

group factor L(Fy), in particular it is a factor. If the relative commutant ‘5[’]; NL>®(U}) were
contained in €+ then the center of L*>°(U;) would be contained in G+, 50 L>®(U}) has to
be a factor. Moreover, if " +ﬂL°°(U+) C %+ then 6] +ﬁLOO(UJr) %W N, NLZ(Uf) =
C1, i.e. the inclusion is irreduc'lble By [25, Corollary 1] a quasi-split 1nclus10§1 of factors is
actually split and it is easy to check that a proper split inclusion cannot be irreducible. [

32Recall that x is circular if © = s1 + is9, where s; and s, are freely independent semicircular variables.
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6 Approximation properties of quantum groups and op-
erator algebras

In this section we will look at approximation properties of a (mostly discrete) quantum
group G and the associated operator algebras CO(@),LOO(@)7 and see how these two
are related. We will focus on amenability (on the quantum group side) and nuclear-
ity /injectivity (on the operator algebraic side), however similar problems can be studied
also for weaker properties: Haagerup property [28, 11, 12, 13, 30, 67] or weak amenabil-

ity/CBAP [13, 40, 41].

Amenability of a quantum group is defined via the existence of an invariant mean.

Definition 6.1. A locally compact quantum group G is amenable if there exists a state
m € L*(G)* (called a mean) such that

m((w®id)A(z)) = m((id ® w)A(x)) = m(z)w(l) (z € L®(G),w € LY(G)).

On the operator algebraic side we have nucleatity as the appropriate property of a
C*-algebra. Rather then nuclearity per se, we will use an equivalent property — completely
positive approximation property (CPAP).

Definition 6.2. A C*-algebra A has a CPAP if there exists a net (®,),ez of finite rank CP
maps ¢,: A — A such that ¢, (x) —u for all z € A.
Le

For von Neumann algebras we will consider injectivity:

Definition 6.3. A von Neumann algebra M C B(H) is injective if there exists a conditional
expectation B(H) — M, i.e. a UCP map E: B(H) — M such that*® E(z) = z and E(zTy) =
zE(T)y for all z,y € M,T € B(H).

By a fundamental result of Connes [23, Theorem 6] injectivity is equivalent to the weak*
completely positive approximation property (w*-CPAP).

Definition 6.4. A von Neumann algebra M has a w*-CPAP if there exists a net (®,),ez
of finite rank normal UCP maps ®,: M — M such that ®,(x) iz—> x for all x € M.
Le

We refer the reader to the sources [13, 8] and [14] (as well as references therein) for an
introduction to these notions and equivalent properties.

Amenability of G and CPAP of Cy(G) (injectivity of L>(G)) are closely related, in some
cases even equivalent. As a rule of thumb, it is typically easier to derive the implication
(quantum group approximation property) = (operator algebraic approximation property),
hence this is where we will start.

33By a famous result of Tomiyama (|14, Theorem 1.5.10]), linear map E: B(H) — M is a conditional
expectation if and only if it is a contraction and satisfies E(z) = x for all x € M.
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Theorem 6.5 (|8, Theorem 3.3|). If G is an amenable locally compact quantum group,
then the C*-algebra Co(G) is nuclear and the von Neumann algebra L=°(G) is injective.

~

Sketch of a partial proof. Let V € L=(G)'® L>(G) be the unitary operator implementing
comultiplication via
Ag(z) =V(z®@1)V" (z € L™(G))

(see equation (2.5)). Next, define a linear map E: B(L*(G)) — B(L*(G)) by

W(E(T)) =m((w@id)(V(T @ 1)V*)) (T € B(L(G)),w € B(L*(G)).),

~

where m is a fixed mean on L>°(G). Clearly this map is well defined and has norm < 1. It

is not difficult to see that E(B(L*(G))) C L>(G) and E(x) = z for x € L®(G) (see [8] or
[13] for details). O

It is natural to wonder, whether the converse of Theorem 6.5 holds, i.e. whether injec-

tivity of L>(G) implies amenability of G. Such an implication is not true, even for classical
locally compact groups.

Proposition 6.6 ([23, Corollary 7|, [14, Remark 2.6.10]). If G is a connected, separable
locally compact group then CHG) = Co(G) is nuclear and L(G) = L>=(G) is injective.
However, such a group G need not be amenable. An example is given by SL(n,R) for
n > 2.

The above result tells us that if we want to obtain some sort of a converse to Theorem
6.5, we need to restrict our attention to a smaller class of quantum groups or impose more
conditions on the operator algebraic assumption.

First we will take the former approach and assume that G is a unimodular discrete
quantum group (equivalently G is compact and of Kac type).

~

Theorem 6.7 (|13, Theorem 6.6]). If G is a unimodular discrete quantum group and C(G)
is nuclear or L=(G) is injective then G is amenable.

~

Sketch of a proof. Since L*°(G) is injective it has w*-CPAP and there exists a net (®,),e7 of

normal UCP maps L®(G) — L™(G) of finite rank such that ®,(z) W—I> zforall z € L=(G).
Le

Next, there exists a normal UCP map (|13, Section 7.1])

AL: L®(G)RL™(G) 3 UY @ Uy, 22958 € L™(G).

dimg(a) ~ 4l
Using these maps we define
U,: L(G) 3 2 AL(D, ®id)Ag(z) € L¥(G) (1€ T).

These maps are still normal, UCP and converge to the identity map in the point-w* topol-
ogy, but they also take into account the structure of subspaces V, = span{Uﬁj li,j €
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{1,...,dim(a)}}, ie. ¥, (V,) C V,(a € Irr(G)). One way to proceed from here is as
follows: a direct calculation shows that

(T, @id)WE = (1 ® a)WE (1€ 1),

where a, € (*°(G) is given by

= (h@id)((®, ® id)(WOHWE) (L e 1.

One can check that a, belong to the Fourier algebra A(G) = )\@(LOO((CA})) and form a
bounded approximate identity. This implies amenability of G. The C*-algebraic version of
this result can be proved analogously (for details see [13]). O

Remark. One is tempted to try proving an extension of Theorem 6.7 to discrete quantum
groups which are possibly non-unimodular. One immediate problem that appears (when
using a similar strategy as presented above) stems from the fact that if (®,),c7 converges
to the identity, then (V,),c7 will converge to A% o Az which acts via

ALoAg: L®(G) 3 Uy m 520U € T2(G) (o € Iie(G),4,j € {1,...,dim(a)}),

dim

hence it does not converge to the identity [13, Section 7.1]. One could try remedy this
situation by composing with an inverse to A% o Ag as follows. First, using the fact that
injectivity of LOO(((A}) implies an existence of normal UCP maps (®,),cz as above which
factors through matrix algebras, we can assume that the i image of ®, is contained in POI(G)
(use [14, Proposition 1.5.12] and w*-density of Pol(G) in LOO(G)) Next, define “corrected”
maps

U, L2(G) 3 2 AL((AL 0 Ag) '@, ®id)Ag(x) € L¥(G) (1€ 1),

These maps are well defined: even though (A(% o Az)~! is an unbounded map, the above

composition makes sense because the image of @, is a finite dimensional subspace in Pol(@).
(0,),ez will converge to the identity (on elements of Pol(G)) in the point-w* topology.
However, now it is not clear why ¥, would be CP or even uniformly bounded in the CB
norm. R

As far as we know, it is an open question whether nuclearity of C(G) or injectivity of
Loo(@) implies amenability of G for a discrete quantum group G.

We can obtain a partial converse to Theorem 6.5 by imposing stronger assumptions on
the operator algebraic side. One result of this kind was obtained by Sottan and Viselter in
[76].

Theorem 6.8 (|76, Theorem 3|). Let G be a locally compact quantum group. The following
conditions are equivalent:

1) G is amenable,
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2) there is a conditional expectation of B(L*(G)) onto L®(G) that maps L=(G) to C1,

3) there is a conditional expectation of B(L*(G)) onto L(G) that maps L¥(G) to
Z(L3(G)).

~

Conditions 2. and 3. from the above result are strenghtening of the injectivity of L>°(G),
which also take into consideration algebra L*(G). We will now present a result of similar

kind: we will show that amenability is equivalent to a strenghtening of w*-CPAP of L*(G)
for discrete quantum groups G. First we need to introduce two definitions.

Recall the following easy observation: if M is a von Neumann algebra with a faithful
normal weight ¢, and ® is a UCP map M — M such that po® < ¢, then there exists a L*-
implementation of ®, i.e. a bounded map Ty € B(H,,) satisfying ToA,(z) = Ay (P(2)) (2 €
N,).

Definition 6.9. Let M be a von Neumann algebra with a n.s.f weight . We say that (M, ¢)
has a w*-CPAP relative to (a von Neumann algebra) N C B(H,,) if there exists a net (®,),ez

of finite rank, normal, UCP maps M — M such that ¢ o &, < ¢, ¥ () W—I> x (r € M) and
LEe
the L2-implementations of ®, belong to N.

Whenever it is clear from the context which weight on M we consider, we will simply
say that M has a w*-CPAP relative to N. Observe that M has a w*-CPAP relative to
B(H,) if and only if M has a w*-CPAP.

A discrete quantum group G is amenable if, and only if there exists a bounded left

approximate identity (a,),er = (X(wb))Lez of the Fourier algebra A(G) in c.(G) consisting

of completely positive definite functions, i.e. the maps L>°(G) — L*(G) associated with
a, are completely positive3?,

sup ||a,||a@) = sup [Jw.| < 400 and limaa=a (a€ A(G)).
S S =

Looking at amenability from this point of view, it is natural to introduce a central
version of amenability3:

Definition 6.10 ([13, Definition 7.1], [41]). A discrete quantum group G is centrally

o~

amenable if there exists a bounded approximate identity (a,),ez = (AMw,)).ez of A(G) in
¢.(G) such that w, > 0 and a, € Z20~(G) for all . € .

34 Equivalently w, > 0 — see [29, Theorem 15]. Furthermore, it is not difficult to see that here the
condition a, € c.(G) is superfluous.

35Equivalence of amenability and the existence of a bounded left approximate identity in A(G) consisting
of completely positive definite functions uses the coamenability of G (I8, Theorem 3.1]). Arguably, it would
therefore be more natural to introduce this condition as central coamenability — we will stick to the central
amenability because amenability of G is equivalent to coamenability of G for discrete quantum groups by
a famous result of Tomatsu [86].
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Now we can state the advertised result which asserts the equivalence of a (central)
amenability of G and a strenghtening of w*-CPAP of L>(G).

Theorem 6.11. Let G be a discrete quantum group and h the Haar integral on G. Consider
the following conditions

1a) G is centrally amenable,

1b) (L™(G), h) has a w*-CPAP relative to Z(=(G),
2a) G is amenable,

2b) (LOO(@), h) has a w*-CPAP relative to (>°(G),
2¢) (L®(G), h) has a w*-CPAP relative to (>(G)'.
We have la) < 1b) = 2a) < 2b) < 2c).

Remark. Let us note that there are discrete quantum groups which are amenable but not

—

centrally amenable, e.g. SU,(2) for ¢ € |—1,1[\ {0} [41]. In fact, we do not know any
example of a non-unimodular, centrally amenable discrete quantum group.

It will be useful to prove first an auxiliary result, which we believe to be interesting on
its own.

Proposition 6.12. Let G be a locally compact quantum group with the left Haar integral

¢ and P: L>(G) — L=(G) a normal UCP map satisfying ® o p < ¢. Let ®,: L(G) —
LY(G) be the predual of ® and T: L*(G) — L*(G) the L? implementation of ®. We have
1) T € L®(G) if and only if ®.(w*v) = &,(w) v for all w,v € L'(G),
2) T € L®(G) if and only if ®,(wv) = w*®,(v) for all w,v € L'(G),
3) T € Z(L™(G)) if and only if P, (wxv) = D, (w) xv = wx P, (v) for all w,v € LY(G).

Proof. Using the biduality G = G and |93, Definition 4.6] (see also Section 2.2), we deduce
that the subspace

N = {Aw) |w € LYG): Fgerr(e) Voem, (Aa(@) | €) = w(z™)}
is a core for A, and for X(w) € N we have A, (X(w)) = . Now, let us argue that
T A (A@)) = A (A(@.(@))  (\w) € N). (6.1)
For x € 915 we have

(Ag(2) | T* A (A@))) = (TAg(2) | Ap(A(w))) = (As(@(z)) [ A (A)))
= w(®(2)") = w(®(z")) = Pu(w)(2") = (Ap(@) | Ap(A(Pu(w)))),



which proves equation (6.1).

If T € L™(G) then (6.1) implies T*X(w) = X(CI)*(w)) for all w € Ll(@) such that
AMw) € N and by density of such w (Lemma 7.10) this equation holds for all w € L'(G).
Consequently

NP, (w* 1)) = T ANw * v) = TANw)AW) = AP (w))A(V) = N(®, (w) * V)

and @, (w*v) = ¢, (w)*v for all w, v € LY(G).

Using W€ = x(W®)* we get
) = (w®id)((id ® of)WE) = (id @ @)((0f @ id)(WE))*
@) (7 ® id)(WE) (1 ® 6"))* = (id @ @) ((id ® 7_¢)(WE)(1 & Sit))*A
W) (1 @67 (id @ 7_)(W)*) = (w @id)((6 " @ 1)(7— ® id)(W®))
)

for w € Ll(@),t € R (see also equation (2.14), |93, Theorem 3.10, Proposition 5.15| and
)

their proofs). If @, (w * ) = ®,(w) * v holds for all w, v € L'(G) then

(Aa(2) | T*TAw) oA (A@))) = (Ag() | T*Ap(A(1)0?, ,(A(@))))

= (TAs(2) | Ao\ * p))) = (v % p) (®(x ))f‘b (v xp)(a”) = (B () * p)(x7)

(Aa(@) [ ApN(@u(v) % p))) = (Ag(@) | Ap(A( @4 ()07, (A(w))))

(Aa(@) [ JAw) " JoT A p (A(v)))

for x € ‘ﬁ@,X(V) € N and w € Ll(@) such that X(w) € N and the map R > ¢ —
(o) o 7, € Ll(@) extends to an entire map C — Ll(@). We denote by p € Ll(@)
the value of the analitical continuation to t = —i/2. Density of appropriate vectors and

operators (Lemma 7.10) gives us T* € L>°(G)” = L*(G) and proves the first point. An
alternative proof can be given using [13, Proposition 4.5].

Assume now that 7' € L*(G)". By equation (6.1) we have
Ao @u(w 1)) = T" A, (A(w* 1)) = Mw)T* A (A()) = A, (Aw * (1)),

hence &, (w * v) = w * @, (v) for all functionals w, v such that /)\\(w),/):(y) belongs to N.
Lemma 7.10 gives us the claim. R
On the other hand, if ®,(w % V) = w* ®,(v) for all w,v € L'(G) then

M) T A, A@)) = Ap(Nw * Do (1))) = Ap(N(@u(w * 1)) = T AN w) A, (A1)

for all A(w), A(v) € N and consequently T € L®(G)'.
The last point follows from a combination of 1) and 2). O
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Proof of Theorem 6.11. First, assume that G is amenable and we have a bounded left
approximate identity (a,),ez = (A(w.)).ez of A(G) in ¢.(G) with w, > 0(¢ € Z). Define

' LYG)dwr w,+weLY(G) (1€T)

and correspondingly ®* = (®:)*. Clearly ®+° are normal, CP and Proposition 6.12 implies
that the L*-implementation of ® are in £>°(G) for all + € Z. As a, € c.(G), the image of
@' is of finite rank. We need to make sure that our functions map 1 to 1. To do that,
define

v P Pt
P=mr=om (€I

It is clear that (fi)L)LeZ converge in the point-w* topology to the identity, hence we have
proved the implication 2a) = 2b).
If G is centrally amenable, we know additionally that a, € Z(£>(G)), i.e. w,(UY;) =

0w, (Uf) forall L € T,a € Irr(G), 4, € {1,...,dim(c)}. Then

dim(a)

(W AHw) (U = Y wlUf)w(U) = wU)w(U) = w(Us)w Usy) = (wxw)(Ug)

k=1

and consequently Proposition 6.12 implies that the L%-implementation of ®* belongs to
Z(0>°(G)). This proves la) = 1b).

Assume that 2b) holds with maps (®*),ez. Set a, = T € (*(G), where T, is the
L2-implementation of ®. In the proof of Proposition 6.12 we have showed that aL)\(w) =
N@:(w)) for w € LY(G). As @ is of finite rank and T, € £°(G), we have a, € c.(G) € A(G).
Indeed, Proposition 6.12 implies @' (w * ) = % (w) * v for all w, v € L'(G) which gives us

(¢ ®id) o Ag = Ag o . This equation forces
®(span{Uy; | 1,5 € {1,...,dim(a)}}) C span{U7; |4, 5 € {1,...,dim(a)}}

for all a € Irr(@). Consequently each ®* annihilates all but a finite number of subspaces
span{Uf; |i,j € {1,...,dim(a)}}. We have |[a,[a@) = [|®(1)|| = 1. Clearly a, is com-
pletely definite positive (since ®* is CP), and (a,),er form a bounded left approximate
identity of A(G) consisting of elements in c.(G). This shows 2a).

If LOO(@) has a w*-CPAP relative to Z(¢*°(G)) then we additionally know that a, €
Z(l>=(G)), i.e. G is centrally amenable.

We are left to show the equivalence of 2b) and 2c). Let (®'),ez be a net given by w*-
CPAP of L™(G) relative to £°(G), i.e. 2b). Define U* = RCo®' o RC: L®(G) — L™(G). It
is not difficult to see that these maps are also normal, UCP, of finite rank and converge to id
in the point-w* topology (to see that W* is CP, one can use the Stinespring representation).
Furthermore, the L*-implementation of ¥’ is in EOO(((A}). Indeed, take w,v € Ll(@) and
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2 € L™(G). Then using Proposition 6.12 and equation (2.8)
(WL (e 0), 2) = W@ v, Ag(V'(2)) = (w v, Ag 0 RS 0 B (R ()
= (v @ w, (18 & 1) 0 Ag 0 @ (R¥(1)) = (@((v 0 F) » (w0 %)), (x)
=

(v 0 RE) # (wo RY), RE(2)) = (v o R®) ® (w0 RP), (®* @id)Ag(R%(x)))
— (W@, (id @ V)As(x) = (w* BL(v),z)

which thanks to Proposition 6.12 proves that the L2%-implementation of U belongs to
EOO(G) Implication 2¢) = 2b) can be showed analogously. O

Remark. Roughly speaking, if one replaces the conditions of being finite rank (orin A(G)N
ce(G)) in the definitions w*-CPAP (or amenability) by having compact L? implementations
(or belonging to co(@)), one obtains the Haagerup property (see [13, Section 5.1] and
[28, 19]). One can define the relative Haagerup property of a von Neumann algebra in a
similar spirit to Definition 6.9 and prove an analog of Theorem 6.11 using pretty much the
same reasoning.

Let us end this section with another result of the type (operator algebraic approximation
property + additional condition) = (quantum group approximation property). This time
we work in the C*-algebraic setting.

Theorem 6.13. Let G be a discrete quantum group such that the reduced C*-algebra C(([A})
s nuclear and admits a tracial state. Then G is amenable.

We are not aware of this implication being recorded in a literature before. However, let
us mention here a couple of results in a similar spirit.

» First, Caspers and Skalski [20, Proposition 2.5] proved that a discrete quantum group
G is amenable provided there exists a finite dimensional representation of C(G).

» In a classical setting, Ng proved (|65, Theorem 8|) a similar result for locally compact
groups.

m For a locally compact quantum groups G, it is known that nuclearity of Cg(@) and
existence of a tracial state in Cy(G)
group is trivial |66, Theorem 3.2|.

* implies amenability of G, provided the scaling

Proof. Our proof will use the notion of Kac quotient @KAC introduced by Sottan in [74].
Define an ideal

J = {a € C(G)|7(a*a) = 0V tracial state 7 € C(G)*}.

Clearly J # C(G), hence A = C(G)/J is a non-zero unital C*-algebra. A is nuclear, as
quotients of nuclear C*-algebras are nuclear ([14, Theorem 10.1.4]). Let 7: C(G) — A be
the quotient mapping. Define

C(Grac) = A, Az, (n(z)) (z € C(G)).

Il
5)
X
2

>
)
=
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Then Grac = (C(@KAC)’A@KAC) is a compact quantum group of Kac type, see [74,
Proposition 5.1].

Since C(@KAC) is nuclear and @KAC is of Kac type, @KAC is coamenable (see Theorem
6.7 and [86]) — consequently C(Gxac) is universal and admits a character ¢ € C(GKAC)
[8, Theorem 3.1]. It follows that o 7 is a character on C(G) and consequently G is
coamenable |7, Theorem 2.8]. O

Remark. Even though, generally speaking, nuclear C*-algebras are “well behaved”, there
exist nuclear C*-algebras without tracial states. Examples are given by the Cuntz algebras

O, (n > 2) ([10, IV.3.5.3]).
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7 Appendix

7.1 Direct integrals

This subsection is devoted to a brief introduction to the technical tool of direct integrals.
We advise the reader to think of them as a continuous (or rather measurable) version of
direct sums. For more details see e.g. |34, 33, 39).

Throughout this subsection, (2,90) is a measurable space, i.e. a set ) together with a
choice of a g-algebra of subsets 9 C P(£2). Sometimes we will additionally assume that
(Q,9M) is standard which means that there is a Polish topology on 2 (i.e. a topology which
is separable and completely metrizable) such that 9t is the corresponding family of Borel
sets. Measure p on (€2, 9) is standard if there exists a p-null set N C 2 such that Q\ N
(with the corresponding o-algebra) is a standard measurable space.

To begin with, we will introduce a measurable field of Hilbert spaces (K,).cq and
the associated Hilbert space féB K. du(z). Roughly speaking, this space should be the
set of (classes of) vector fields (&;),eq which are measurable and satisfy the integrability
condition [, ||€,]|* dpu(x) < +oco. However, because there is no way to compare &, with &,
for different x, 2’ € €, it is not clear what “measurable” means here. One way to resolve
this mistery, is to choose a family of vector fields ¢': Q 5 x +— €. € K, (i € N) which will
play a role of exemplary measurable fields, relative to which we define measurability of an
arbitrary field®® (&,).cq.

To avoid unnecessary technical difficulties, we will often make some separability as-
sumptions.

Definition 7.1. A measurable field of Hilbert spaces is a family of separable Hilbert spaces
(K.)zeq together with a countable family of vector fields {e’};cy such that

m for all 4,5 € N, the function Q2 3 z +— (e’ | eZ) € C is measurable,
m for each z € Q, the set {e’ |7 € N} is linearly dense in K,.
Vector fields {e'};en are called fundamental.

It is straightforward to check that if (K,).eq, (Ls)zcq are measurable fields of Hilbert
spaces with fundamental vector fields {e'};en, {f?}jen, then (Ky)zeq and (K, ® Ly )zeq also
are measurable when equipped with fundamental vector fields {ei};c and {e'® f7} i jyenxn
(¢l and ¢’ @ f7 are to be understood in the obvious manner).

Now we can say what it means for a vector field (£,).cq to be measurable:

Definition 7.2. Let (K,),cq be a measurable field of Hilbert spaces with fundamental
vector fields {e'};en. We say that a vector field (&;).cq is measurable if the function
Q2 z (e |€,) € C is measurable for all i € N.

36Whenever we say that (£;)zcq is a vector field, we mean that &, € K, for all z € 2. A similar note
applies also to different fields, e.g. the field of operators, etc.
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If it is clear from the context, we will often follow the usual convention of not mentioning
fundamental vector fields and saying simply that (K.).cq is a measurable field of Hilbert
spaces — though one should keep in mind that it is necessary to choose them, as for example
different choice of fundamental fields can give a different family of measurable vector fields!

It is easy to check that if (§,)zcq, (72)zcn are measurable vector fields, then the function
Q> (& |n.) € Cis also measurable. Using this observation we can finally define the
direct integral Hilbert space [ K, du(z):

Definition 7.3. Let (K,).cq be a measurable field of Hilbert spaces, assume moreover
that we have a measure p on . Let fga K. du(z) be the set of (classes of*") measurable
vector fields (&,)zcq satisfying [, [|&:]|? du(z) < +o0. It becomes a Hilbert space with the
inner product given by

@

(€)senr| (1e)sear) = / (€0 |m) dpi(x)  ((Ex)acer (2)scn € / K, dp(x)).

Q

If the measure p is standard, then féB K. du(x) is separable |33, Appendix A73|. Let
us mention here a couple of examples:

m if o is the counting measure on €2, then féB K. dp(x) is the direct sum @, ., K,

m if K, = C for all @ € Q, then [ K, du(z) = L3(Q, p),

m if A is a separable C*-algebra of type I, then its spectrum Irr(A) is a standard
measurable space when equipped with the Borel o-algebra (which is equal to the
Mackey Borel structure) |33, Proposition 4.6.1|. There exists a measurable field of
Hilbert spaces (Kg)gcmr(a), called the canonical measurable field of Hilbert spaces,
such that K, = C4™®) for all z € Trr(A) [33, Section 8.6.1].

Now we will introduce two classes of operators on féB K. dp(z) which respect the struc-
ture of direct integral.

Definition 7.4. Let (K, ).cq be a measurable field of Hilbert spaces and (7}),cq a field of
operators, i.e. for each z € Q we have T, € B(K,).

n We say that (7}).cq is measurable if for all measurable vector fields (&;).cq, the
vector field (T,€,)zcq is measurable.

» A measurable field of operators (1}).cq is essentially bounded if sup,cq ||T%| < +oo.
In such case we can define a bounded operator

/Q@Txdu(x)i/ Ko dp(a /fxdu »—>/ Tp&, dp(x /szu(m)_

Operators of this form are called decomposable. The set of decomposable operators
is denoted by Dec( [ K, du(z)).

3TWe identify two measurable vector fields (£,).cq and (1;)zeq if & = 1, for almost all z € Q.
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m A decomposable operator féB T, du(z) is diagonalisable if T, € Cly, for almost all
x € §2. The set of diagonalisable operators is denoted by Diag(féB K. du(z)).

It is easy to check that Dec( [ K, du(x)) and Diag( [ K, dju(x)) are von Neumann sub-

algebras of B( [, K, du(z)). Furthermore, we have Diag( [ K, du(z))'=Dec( [ K, du(z)).
In fact, these two are special cases of direct integrals of von Neumann algebras:

Definition 7.5. Let (K,).cq be a measurable field of Hilbert spaces and (M,).cq a field
of von Neumann algebras, i.e. for each z € ), M, is a von Neumann subalgebra of B(K,).

m We say that the field (M,).cq is measurable if there exists a countable collection
{(T?)zeq tien of measurable fields of operators, such that for almost all z € Q, M, is
the von Neumann algebra generated by {77 |i € N}.

» Assume that (M,),cq is measurable. We define féB M, du(x) as the set of decom-

posable operators fée T, dp(z) such that T, € M, for almost all x € . Tt is a von
Neumann algebra — von Neumann algebras arising from this construction are called
decomposable.

Examples of decomposable von Neumann algebras are given by Diag( féa Ky du(x)) and

Dec(fée K. du(x)) — in the first case we have M, = Clg, (x € ) and in the second
M, = B(K,) (z € Q). In general, whenever (M,),cq is a measurable field of von Neumann
algebras we have

@

Diag( [ Kudu() € [ Madute) € Dect [ Kedute)),

Furthermore, if the measure p is standard, then the field (M)),cq is also measurable and

(/j M, du(z))" = /j M’ dp(z).

The above properties and definitions are taken mainly from [34, Part II|. We end this part
of the appendix with two notions: the direct integral of unbounded operators |58 and the
direct integral of weights [79].

Definition 7.6. Let (K, ).cq be a measurable field of Hilbert spaces and (7}.),cq a field of
closed, densely defined (unbounded) operators. We say that (7}),cq is measurable if

» for any measurable vector field (&, ),cq such that &, € Dom(T},) (z € ), vector field
(T:€:)zeq is also measurable,

m there is a countable collection {£'};cy of measurable vector fields such that for all
z € Q we have ¢! € Dom(T},) (i € N) and

{(&, T2¢,) |1 € N}
is total in Graph(7}).
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If ( x)xeg is measurable and p is a measure on €0, then we define an (unbounded)
operator fQ T, du(z) on [ K, du(z) with domain Dom( [y T, du(x)) consisting of those

[S & du(x) € [ K, du( ) for which &, € Dom(T}) for almost all z € Q and the integral
Jo 1762 |12 dp() is finite. For such [ &, du(z) we define

/Tdu /gxdu H/ T.¢, dula

As previously, operators of this form will be called decomposable. Such defined operator
fgﬁ T, du(z) is densely defined, closed and we have

@ (&)
([ Tedute) = [ 12 auta) (1)

If almost all T}, (z € Q) are self-adjoint and f: R — C is measurable, then

I /Q T, dpu(a / F(T) du(a (7.2)

(in particular, the direct integrals on the right hand side in equations (7.1), (7.2) are well
defined).

We also have the following useful result: a closed, densely defined operator 7' on
[ K, du(z) is decomposable if and only if it is affiliated with Dec( [, K, dpu(x)).

Definition 7.7. Let (K,).cq be a measurable field of Hilbert spaces, (M,),cq measurable
field of von Neumann algebras and for each x € €2, let ¢, be a weight on M,. Assume
furthermore that each M, (x € Q) has a separable predual. We say that the field of weights
(pz)zeq is weakly measurable if:

m there exists a sequence {a'};cy of measurable fields of operators such that for all
z € Q we have a, € N, (i € N) and {a’. |7 € N} is w*-dense in N,,_,

m whenever (a,).cq is a measurable field of operators with a, € MI for almost all
x € Q, then Q5 z — @,(a,) € Rso U {+0o0} is also measurable.

Whenever we have a weakly measurable field of weights (¢, )zcq, we can define its direct
integral weight via

/ o duls / M, du(z 9/§2®amdu(x)l—>/9<pw(am)du(x)ERZOU{+OO}.

If for all x € Q, ¢, is a n.s.f. weight on M,, then fg? ©r du(x) is also n.s.f.
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7.2 Lemmas
Lemma 7.8. Let H be a Hilbert space and let
J-HOH3 (@7~ nefe HRH.

Let (ay)ier and (by)ier be strongly continuous one-parameter groups of unitary operators on
H and assume that J(a; @b, ) = (a; @ b} )J for all t € R. Then for all t we have a; = b_;.

Proof. On one hand we have
J(a, @b/ )T =a, @b/, (7.3)

so for any r, s € R and any z € B(H)

(as @ b)) J(a; @b )J(z @ Ig)J (e @ bL,)J(a_s @ L)
= (a, ® b)) (a; @ b )(x @ 1) (e @b,)(a—s @ b)) (7.4)
= (@b )(a; @ b)) (& @ Ig)(a_y @b )(a; @D '
=J(a, ®@b])J(as @b )z @15)(a_, @b )J(a_  @b",)J.
On the other hand
Ja: @b )J=b,®a", (t€R), (7.5)

o (7.4) reads
(as @ b)) by ®a’,)(z @ 1) (b @ a/ )(a_s @D,
= (e ®@al,)(a; @b )(z @ 1) (a_s @b )(by @ a ).

Thus for any x and all s,¢ we have asb_;xbia_s = b_asxa_sby, i.e. a_sbiasb_; commutes
with all x € B(H).
Therefore there exists a continuous family {A; s} ser of complex numbers of absolute

value 1 such that
CL_Sthst_t = At,s]lH (t, S € R) (76)

Note now that in view of the canonical isomorphism B(H ® H) = B(HS(H)) given by
BHoH) sz®y' — (S > xSy) € B(HS(H))
equations (7.3) and (7.4) mean that
a;Sby = b_1Sa_; (t€R, S € HS(H))
which by strong density of HS(H) in B(H) gives
aby =b_a_y (t €R).

In particular for each ¢ the operator a;b; is self-adjoint, and taking adjoints of this for —¢
instead of ¢ we see that also b;a, is self-adjoint for all t.

Therefore inserting s = —t in (7.6) gives a;b; = A\, _;bia; and since a;by and ba, are
self-adjoint, ¢ — X\, _; is continuous and Agp = 1, we obtain )\, _, = 1 for all ¢.
Consequently a;b; = bay = (byay)* = a_4b_y, so that by, = a_o, for all t € R. O]
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Lemma 7.9. Let U be a unitary, finite dimensional representation of a compact quantum
group G on a Hilbert space Hy and let xy be its character. We have

span{Us, | £,n € Hy} = (Cxv) @ span{U¢, | £,n € Hy: € L p;'n}, (7.7)

where the above orthogonal direct sum corresponds to the scalar product induced by the
Haar integral.

Proof. Using orthogonality relations [64, Theorem 1.4.3| we have

dim(U) dim(U)
. o % _ Eleg &) &lm _ Eleg'm) _
h(XUUE,n) - Z h(Ugi,giU&n) - Z d[fmq(U) - diqu(U) =0
i=1 i=1

for all £,n € Hy such that € L p(}ln, hence we indeed have an orthogonal direct sum on
the right hand side of equation (7.7). Consequently, it is enough to show that

dim(span{Ug, |{,n € Hy: £ L p&ln}) = dim(U)* — 1. (7.8)

Let us show that
(Cly)* = span{|€)(n] |&,n € Hy: € L n} (7.9)

in HS(Hy). The inclusion D is clear, therefore we need to argue that
(Cly) + span{|€)(n] [§,n € Hy: € L n} = HS(Hy) = Hy @ Hy. (7.10)

Let {fi}?i:llw) be an orthonormal basis in Hy. Clearly for ¢ # j, the operator |&;) (¢l
belongs to the left hand side of (7.10). Furthermore,

dim(U)
€&l = mmm Z (16 = )& + &1 = 16 (&) + 1€ &l + 1€)(&51)
j=1
dim(U)
= @ v + @ Z (& = &) (& + &1 = 1&gl + 1€) (&)
i2j

which also belongs to the right hand side of (7.10). This shows equation (7.10) and
consequently (7.9). Consider now the linear map

T: HS(Hy) =Hy @ Hy 2 n ® € = Ue pn € Vi,
where Vs is the finite dimensional Hilbert space
Vi = span{U¢,, | &,n € Hy }.

As
Uﬁu&j = T(pl;lgj ® 52)
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for all 4,5 € {1,...,dim(U)}, T is a surjection. It is easy to see using the orthogonality
relations that 7 has trivial kernel, hence it is a vector space isomorphism (it is not, however,
an isometry). Using T we can show (7.8):

dim(span{U,, | £, 7 € Hy: € L py'n}) = dim T'(span{n © £|&,1 € Hy: € L n})
= dim(Cly)* = dim(U)* — 1,

which ends the proof. O]

Let G be a locally compact quantum group with the left Haar integral . Recall that
while defining the left Haar integral ® on G, one introduces

N = {Mw) |w € LX) : Feero () Vaem, (Mo(7) | €) = w(a*)}.

Then N is a (6-SOTxnorm) core for Az and Az(A(w)) = & (see Section 2.2, [93, Definition
4.6] and [57, Proposition 2.6]). In Section 6 we needed a refinment of this density result: it
was desirable to work with functionals having nice analytical properties. The next lemma
asserts density of such functionals.

Lemma 7.10. Let us introduce a subspace

7 ={w e LYG) | \w) € N,
R3¢t (w6 ™) o7, € L'(G) extends to an entire map C — L'(G)}

Then . is dense in L'(G), A\(F) is 0-SOT*-dense in LOO(@) and Az(A\(F)) is dense in
L*(G).

Proof. Since we already know that Z = {w € LY(G)|A(w) € N} is dense in LY(G),
ANZ) = N is 0-SOT*-dense in LOO(G) and Ag (N) is dense in L*(G) (see e.g. [93, Lemma
4.7]), it is enough to show that for each w € Z, we can find a sequence (w,,)nen in & such
that

on == w, Mwn) T2 AW),  Ap(Awn) — As(AW)

n—o0 n—oo n—oo

and for each n € N, the map R > ¢ > (w,6 ") o 7_, € L*(G) extends to an entire map
C — L'(G).
Fix w € 7 and define

_\f/ ws*)or,ds € LYG) (n€N)

(the above integral converges in the weak topology). First, let us show that w, € Z: take
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r € MN,. We have
nla) = 2 [ e ds = 2 [ o (m(@s ) as
-z / e (A (7:(2)07°) | A (A(w))) ds
-z /R e (0%, (570) T B PUA(x) | Ap(A(w))) ds
- JE /R e (S0 T, PPN () | Ap(A(w))) ds
= (A2 [ P T A W) ds)

hence w, € Z and As(A(wn)) = /2 [& e P 67 ] ,As(Mw)) ds (this integral con-
verges in the weak topology). Using the fact that L°(G) C B(L*(G)) is represented in the

o-sotT*

standard way, it is not difficult to show w, —— w and consequently A\(w,) —— A(w).
n—o0 n—oo
Equation Az(Awn)) = /2 [; e~ P ] 67 J,A5(\w)) ds implies that Ag(\(w,)) —
n—oo
As(A(w)). Furthermore we have
(wnd ™) 0 74 (w) = wn (0774 (2)) = /2 / e~ (0, I (1)) ds
R
= (2 [ ettt et sy o 7, ds, ),
R
hence R 3 ¢ — (w,,6~%) o 7_; € L'(G) extends to the entire map
Coz+ \/g/ e M) T2 ()57 o 1 ds € LY(G).
R
O
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