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Abstract

We derive results in ergodic optimization, multifractal formalism and fractal
geometry.

We prove that the restricted variational principle holds for generic matrix co-
cycles over subshifts of finite type, i.e,

huop(E()) = inf{ Py, () — 4.7 7 € R"}
- Sup{hM(T) VIS M(X7 T) with X(:ua (i;A) = 62}»

where E(@) = {z € X; lim,_,o = log || (A")"(z)| = a;}.

We also show that for such cocycles over subshifts of finite type, the Lyapunov
spectrum is equal to the closure of the set where the entropy spectrum is positive.

We consider a topological dynamical system, and define a subadditive potential
®. We prove that for ¢ — oo any accumulation point of a family of equilibrium
states of t® is a maximizing measure. We show that the Lyapunov exponent and
entropy of equilibrium states for ¢® converge in the limit ¢ — oo to the maximum
Lyapunov exponent and entropy of maximizing measures. We use the latter result
to show the continuity of entropy spectrum at the boundary of Lyapunov spectrum
for generic matrix cocycles.

We extend the continuity result of the lower joint spectral radius that was
proven for locally constant cocycles by Bochi-Morris [BM]| to derivative cocycles
under an assumption that they admit a dominated splitting of index 1.

In the matrix cocycle case, we prove that the maximal Lyapunov exponent can
be approximated by Lyapunov exponents of periodic trajectories under certain
shadowing assumptions. Our approach differs considerably from the approach of
Kalinin [Kal, who proved a similar result.

We also study a class of solenoidal expanding attractors A for which the contrac-
tion is not conformal. Under an assumption of transversality and assumptions on
Lyapunov exponents for an appropriate Gibbs measure (stable Sinai-Ruelle-Bowen
measure) imposing thinness, assuming also there is an invariant C'' ™ strong stable
foliation, we prove that Hausdorff dimension dimy(A N W?#) is the same quantity
to for all W* and else dimpy(A) = to + 1.
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Streszczenie

W pracy zajmuje sie optymizacja ergodyczna, formalizmem multifraktalnym, i
geometrig fraktalna.

Dowodze dla typowych kocykli macierzowych nad subprzesunieciami skor-
czonego typu tak zwanag ograniczona zasada wariacyjna (restricted variational prin-
ciple), to znaczy

hiop(E(Q)) = inf{Pq;A (q) —a.q: € R}
= sup{hu(T) : p € M(X, T) with x(, D) = &},

gdzie E(@) = {z € X; lim,_,o * log || (A")"(z)| = a;}. Pokazuj¢ réwniez, ze dla
takich kocykli widmo wyktadnikéw Lapunowa jest dodatnie na gestym podzbiorze.

Dla subaddytywnego potencjatu & zadanego na topologicznym uktadzie dy-
namicznym pokazuje, ze dowolna *staba granica stanow réownowagi dla t® przy t —
0 jest miarg maksymalizujacg wykladnik Lapunowa; zachodzi réwniez zbieznosé
wyktadnika Lapunowa i entropii. Ten wynik uzywam nastepnie do pokazania ciagltosci
entropii na granicy widma Lapunowa dla typowych kocykli macierzowych.

Ciaglosc tak zwanego "lower joint spectral radius" zostata pokazana dla lokalnie
statych kocykli macierzowych przez Bochi’ego i Morrisa w |[BM], rozszerzam ten
wynik do kocykli z rozbiciem zdominowanym indeksu 1.

W klasie kocykli macierzowych dowodze, ze przy pewnych zatozeniach o aproksy-
macji trajektoriami okresowymi, maksymalny wyktadnik Lapunowa przybliza sie
wyktadnikami Lapunowa trajektorii okresowych. Podobny wynik zostal uzyskany
innymi metodami przez Kalinina w [Kal.

W pracy badam réwniez klase solenoidalnych rozciagajacych atraktorow A
z niekonforemng kontrakcja w kierunku stabilnym. Zaktadajac transwersalnosé,
warunki na wykladniki Lapunowa pewnej miary Gibbsa (stabilnej miary Sinai’a-
Ruelle’a-Bowena) implikujace "cienkos¢" atraktora, jak rowniez istnienie 14+-holderowskiej
foliacji w kierunku silnie stabilnym, dowodze, ze wymiar Hausdorffa przeciecia
atraktora z kazdym lisciem foliacji stabilnej przyjmuje te sama wartosé ty. Dla
calego solenoidu mamy dimg(A) = ¢y + 1.

Stowa kluczowe:



granica w zerowej temperaturze, maksymalny wykltadnik Lapunowa, formalizm ter-
modynamiczny, potencjaly subaddytywne, widmo Lapunowa, kocykle macierzowe,
warunek dominacji, entropia topologiczna, solenoid, wymiar Hausdorffa.
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Chapter 1

Introduction

1.1 Motivation

The goal of this thesis is to present results on the subadditive thermodynamic
formalism and their applications in different areas of dynamical systems. In par-
ticular, I will investigate

e restricted variational principle for matrix cocycles,
e continuity of the spectrum on the boundary (zero temperature limits),

e continuity properties of the equilibrium states,

Moreover, I will investigate the solenoids, a class of dynamical systems where the
thermodynamic formalism will be used to obtain results on the geometric proper-
ties of the attractor. The thermodynamic formalism alone will not be enough, I will
also use the smooth dynamical systems theory, in particular the properties of hy-
perbolic expanding attractors and the holonomy functions defined by projections
along the one-dimensional unstable leaves.

1.1.1 Structure of thesis

The first chapter is the detailed introduction and presentation of results, basic
definitions and theorems relevant to the work are given in chapter 2| and results
are presented in chapters [3] to [4l



1.2 Presentation of results

In this thesis (X, T") denotes a topological dynamical system (TDS), that is, X
is a compact metric space that is endowed by the metric d and T : X — X is a
continuous map.

We denote by M(X,T) the space of all T-invariant Borel probability measures
on X. This space is a nonempty convex set and is compact with respect to the
weak-* topology. Also let £(X,T) € M(X,T) be the subset formed by ergodic
measures, which are exactly the extremal points of M(X,T).

Let f: X — R be a continuous function. We denote S, f(x) := Y4, f(T*(x))
and call this a Birkhoff sum and we call lim,,_, %Snf(x) a Birkhoff average.

By Birkhoff ergodic theorem, for every u € M(X,T) and p-almost every x €
X, the Birkhoff average is well-defined. The infimum and the supremum of the
Birkhoff average over x € X will be denoted by a(f) and 5(f), respectively; we
call these numbers the minimal and mazimal ergodic averages of f.

We say that ¢ := {log ¢, }°° , is a subadditive potential if each ¢,, is a continuous
positive-valued function on X such that

0 < Ppim() < Op(2) (T (x)) YV € X, m,n € N.

Furthermore, ® = {log ¢,,}°° , is said to be an almost additive potential if there
exists a constant C' > 1 such that for any m,n € N, x € X, we have

C™0n(2)om(T") (@) < Gnim(7) < Cp(2)pm (T (2)).
We also say that ® = {log ¢,,}>°, is an additive potential if
Pntm () = O (@) (T (2)) Vo € X,m,n € N;

in this case, ¢, (z) = enle®1(@),

We denote by Ps(t) the topological pressure for a potential t®. We will give
the definition in the next chapter.

As we mentioned above, the Birkhoff average does not exist for all points. So,
one may ask about the size of the set of points

1
Ef(a) ={r € X : =S, f(x) > o as n — o0},
n
which we call a-level set of Birkhoff spectrum, for a given value « from the set

1
L={aeR:3x € X and lim -5, f(z) = a},

n—oo N

which we call Birkhoff spectrum.



That size is usually calculated in terms of topological entropy. Let Z C X,
we denote by hy,(T, Z) topological entropy of 1" restricted to Z or, simply, the
topological entropy of Z, denote hyy,(Z), when there is no confusion about 7T'. In
particular we write Ay, (1) for hy, (T, X).

We investigate the end points of Birkhoff spectrum, i.e., a(f) and S(f). Since
a(f) = —B(—f), let us focus the discussion on the quantity 5. It can also be
characterized as

B(f) = sup /fdu-
HEM(X,T)

Compactness of M(X,T) implies the following attainability property: there
exists at least one measure p € M(X,T) for which (f) = [ fdu; such measures
will be called maximizing measures.

We study the behavior of the equilibrium measures (y;) for a potential t®
when t — oo. In the thermodynamic interpretation of the parameter ¢, it is the
inverse temperature. The limits t — oo are called zero temperature limits, and the
accumulation points of the measure (u;) as t — oo are called ground states.

The topic of ergodic optimization of Birkhoff averages or Lyapunov exponents
revolves around realizing invariant measures which maximize the Lyapunov ex-
ponents. Zero temperature limits laws are also related to ergodic optimization,
because for ¢ — oo any accumulation point of the equilibrium measures (p;) will
be a maximizing measure . We refer the reader to [BG| and [J].

The behavior of the equilibrium measure () as t — oo has also been analyzed.
In particular, the continuities of zero temperature limit (£4;);— in the sense,

/fdﬂzt%/fdut, (1.2.1)

and
h,(T) = lim h, (T), (1.2.2)

t—o00

have been investigated by many authors [DUZ], [IY], [J], [IMU], [M1], [WZ], |Z].

In the non-compact space setting, and were proved by Jenkinson,
Mauldin and Urbanski [JMU], and Morris [M1] on the additive potential ¢ : X —
R. Moreover, this kind of result is known for almost subadditive potentials by Zhao
|Z] under the specification property, upper semi-continuity of entropy and finite
topological entropy assumptions.

Note that even though we know the existence of an accumulation point for the
sequence (f;), this does not imply that the lim; .. p; exists. In fact, Chazottes
and Hochman [CH| constructed an example on compact sub-shifts of finite type
and Holder potentials, where there is no convergence. For more information about
zero temperature limits see [J].



It is well known (see, e.g. [Ol], [Fengl], [FEFW]) when (X,T) is a transitive
subshift of finite type and f is an additive potential, then

Bfla) 20 0= { [ fdu:p e MX T,
and
ron(Bf(@)) = f{Py(t) —at : 1 € B}
— sup{h(T) : € M(X,T) with / fdp=a} Yae Q.  (1.2.3)

In the almost additive potentials case, was proven by Feng and Huang
[FH] under certain assumptions. In the subadditve potentials case, Feng and Huang
[EH| proved a similar result for ¢ > 0 under the upper semi continuity entropy
assumption.

The natural example of subadditive potentials is matrix cocycles. More pre-
cisely, given a measurable map A : X — GL(k,R) taking values into the space
k x k invertible matrices. We consider the products

A'(z) = A(T" Hz))... A(T(z))A(x).

The pair (T,.A) is called a linear cocycle. It induces a skew-product dynamics
Fon X x R* by (z,v) = X x R, whose n-th iterate is therefore

(x,v) = (T™(z), A™(x)v).

If T is invertible then so is F. Moreover, F~"(x) = (T "(x), A~™(x)v) for each
n > 1, where

A" (@) == AT " () VAT (@) AT (@)

More generally, we could replace X x R* by any vector bundle over X and then
consider bundle endomorphisms that fiber over T': X — X.

A simple class of linear cocycles is locally constant cocycles which is defined
as follows. Assume that X = {1,...,¢}% is a symbolic space. Suppose that T :
X — X is a shift map, i.e. T(x;); = (2741);. Given a finite set of matrices A =
{A1,..., A,} € GL(k,R), we define the function A : X — GL(k,R) by A(x) =
A,,. In this case, we say that(7,.A) is a locally constant cocycle.

By Kingman’s subadditive ergodic theorem, for any p € M(X,T') and p almost
every x € X such that log’ ||A]| € L'(u), the following limit, called the top
Lyapunov exponent at x, exists:



(o, A) = lim log | A4"(2)]| (129

where || A|| the Euclidean operator norm of a matrix A (i.e. the largest singular
value of A), that is subadditive i.e.,

0 < A (@) < A" @)[IA™T™ ()| Vo € X,m,n eN.

Let us denote x (i, A) = [ x(., A)dp. If the measure y is ergodic then y(z, A) =
x(u, A) for p-almost every z € X.

Similarly to what we did for the Birkhoff average, we can either minimize or
maximize number (1.2.4); the corresponding quantities will be denoted by a(A)
and (A). However, this time the maximization and the minimization problems are
totally different. While 3(.A) is always attained by at least one measure (which will
be called a Lyapunov mazimizing measure, we denote by M,.x(A) the set of such
measures), that is not necessarily the case for a(A). In fact, in the locally constant
cocycles case, Bochi and Morris [BM] investigated the continuity properties of the
minimal Lyapunov exponent. They showed that «(A) is Lipschitz continuous at
A under 1—domination assumption. Breuillard and Sert |BS| extended the Bochi
and Morris’s result to the joint spectrum under domination condition. In this case
the x(u,.A) depends continuously on the measure .

Feng [Fengl] proved for continuous positive matrix-valued functions on
the one side shift. He (see [IF], [FH])also proved that the first part for locally
constant cocycles under the irreducibility assumption.

The linear cocycles generated by a diffemorphism map 7': X — X on a closed
Riemannian manifold X and a family of maps A(x) := D, T : T, X — Ty X are
called derivative cocycles. Moreover, when T : X — X is an Anosov diffemophism
(or expanding map), Bowen |B| showed that there exists a symbolic coding of T by
a subshift of finite type. From such a coding, the derivative cocycle of a uniformly
hyperbolic map can effectively be regarded as a linear cocycle over a subshift of
finite type.

The main objects of interest in this thesis are linear cocycles A over two-
sided subshifts of finite type (3,7 generated by GL(k,R)-valued functions A
on Y. In particular, we study the thermodynamic formalism of such cocycles. In
general, we know much more about locally constant cocycles that about the more
general derivative cocycles, but here are some of the results known in the derivative
cocycles situation.

We denote by L the set of admissible words . We define for A : ¥ — GL(k,R)
and [ € L

IAMD] = max A (). (1.2.5)

z€e(l



We define a positive continuous function {4, }neny on X such that

pan(®) = [|A"(@)].

We denote by ® 4 the subbadditive potential {log @4, }72 ;.
We say that A is quasi-multiplicative if there exist C' > 0 and m € N such that
for every I,J € L, there exists K € £ with |K| < m such that IKJ € £ and

AWK )| = CILAMDIA)]-

We always assume that T : ¥ — X is a topologically mixing subshift of finite
type. We denote by H"(X, GL(k,R)) the space of all r—Hélder continuous func-
tions. We also denote by H; (X, GL(k,R)) the space of all r—Holder continuous
and fiber bunched functions, which says that the cocycles are nearly conformal.
We define the typical cocycles among H" (X, GL(k,R)). That is

W :={Ae€ H](X,GL(k,R)) : A is pinching and twisting}.

We denote E(a) = Eg(a) when there is no confusion about ®. B
The interior and topological closure of a set A is denoted by A and A. The
results of this thesis are as follows:

Theorem 1.2.1. Let A € W. Then,

L ={a, hip(E(a)) >0},
Furthermore, a — hyop(E(v)) is concave for o € L.

We also prove ([1.2.3) for generic cocycles. Park [P| showed that every A € W
is quasi-multiplicative. That implies that Py ,(q) is convex for ¢ € R.

Theorem 1.2.2. Assume that T : X — X is a topologically miring subshift of
finite type. Suppose that A : Y — GL(k,R) belongs to typical functions V. Then,

hiop(E(a)) = sup{h,(T) : p € M(Z,T), x(p, A) = a}
=inf{Ps,(¢) —a.q: ¢ € R} Va €.

We also extend the zero temperature limit and the continuity results for sub-
additive potentials.

Theorem 1.2.3. Let (X,T) be a TDS such that the entropy map p +— h,(T)
is upper semi-continuous and topological entropy hi,y(T) < oco. Suppose that & =
{log ¢, }°2_; is a subadditive potential on the compact metric on X. Then a family of
equilibrium measures (ug) for potentials t®, where t > 0, has a weak™ accumulation
point ast — 0o. Any such accumulation point u is a Lyapunov maximizing measure
for ®. Moreover,



(11) h,(T) = limy, o0 Py, (T) = max{h,(T),v € Mupax(P)}.
In particular, (®) can be approximated by Lyapunov exponents of equilibrium
measures of a subadditive potential 1.

Theorem 1.2.4. Suppose A;, A € W with A, — A, and t;,,t € R, such that

/

ty — t. Assume oy, = P&,Al (t1) and oy = Py (t). Then,

lim hoop(E(c,)) = heop(Elar)).

l—o0

Moreover,
hiop(E () = hiop(E(5(P4)) when t — .

We also investigate the continuity of minimal Lyapunov exponents for general
cocycles. We prove the continuity of the minimal Lyapunov exponent under a cone
condition. Moreover, our result implies the continuity of the minimal Lyapunov
exponent under 1-domination assumption.

Theorem 1.2.5. Let A,, A € Hj(X,GL(k,R)). Assume that A, and A satisfy
1—domination. Then, a(A,) — a(A), when A, — A.

We define the singular value function ¢* : GL(k,R) — [0, 00) with the param-
eter 0 < s < k as follows.

¢*(A) = 01(A)-.om(A)ay, [1(A),

where m = |s| and o; is the i th singular value. We make the convention 0° = 1.
For completeness, if s > k, the we also define

*(A) = (det(A))7.

It is well known that ® is submultiplicative for all s > 0. That means, for any
A, B € GL(k,R)
¢*(AB) < ¢*(A)p*(DB).
The function (s, A) — ¢°(A) is continuous in both A and s where A €
GL(k,R).
We define % on L as follows, for any n € N and I € £(n),
(1) == (A" )
() = max p*(A"(z))
Note that this definition is similar to how we define ||.A(I)]| in (1.2.5)). From the
submultiplicativity of ¢®, it follows that ¢?% is also submultiplicative. We denote

by ®.4 := {log ©*(A™)}.



Feng and Shmerkin [F'S| showed the continuity of the topological pressure for
locally constant cocycles. Moreover, this kind of result is known for typical cocycles
by Park. Recently, Cao, Pesin, and Zhao |[CPZ] showed that the map (s,.4) —
Py, (s) is continuous on [0,00) x H"(X, GL(k,R)), and Theorem is implied
by their result. However, the methods of proof are different.

We show that one can prove the continuity of the topological pressure for
H}(¥,GL(2,R)) without assumption pinching, and twisting.

Theorem 1.2.6. The map (s, A) = Py ,(s) is continuous on [0, 00) x
Hj(X,GL(2,R)).

We considered the linear cocycles as abstract objects but now we will investigate
a natural example of geometric appearance of matrix cocycles: solenoid.

Let M = S' x D be the solid torus, where D = {v € R?||v| < 1} carries the
product distance d = d; X dy and suppose f : M — M such that

(x,y,2) = (n(z,y,2z) mod 2w, A(z,y, z) +u(x),v(x,y, 2) + v(zx)) (1.2.6)

is a C invective map, where \(z,0,0) = v(x,0,0) = 0.

Bothe [Bot| was the first who obtained results on the dimension of the attractor
of a thin linear solenoid under transversality condition, which we will introduce in
the last chapter. He also proved that this transversality condition holds generically
when the contractions are strong enough. Simon [Simon| use Bothe’s result to show
that the Hausdroff dimension of all stable slices are equal. Barriera, Pesin and
Schemeling [BPS| established a dimension product structure of invariant measures
in the course of proving the following conjecture.

Conjecture. The fractal dimension of a hyperbolic set is (at least generically or
under mild hypotheses) the sum of those of its stable and unstable slices, where
fractal can mean either Hausdorff or upper box dimension.

There are difficulties due to possible low regularity of the holonomies, indeed,
Schmeling [Sch| found that while the solenoids often lack regular holonomies, under
natural assumptions there exist bounds on the size of the set of non-Lipschitz points
for the holonomy map. We will provide the details of this result later.. Hasselblat
and Schmeling [HS| proved the conjecture for a class of thin linear solenoids. We
prove the conjecture for a class of thin nonlinear solenoids of map . Precisely,

Theorem 1.2.7. Under transversality and x(p,, V) < X(tg, N) < —X(ttg, 1)
assumptions, we show that Hausdorff dimension of the conditional measures on
W*NS* of the geometric equilibrium measure i, for f~' and the potential tolog \
(or stable slices), where X is the weaker contraction rate function, is ty. Then, we
show that the Hausdorff dimension of solenoid attractor is 1 4+ tg.



Chapter 2

Preliminaries

2.1 Ergodic theory

We introduce some basic notions from dynamical systems and ergodic the-
ory. Let the triple (X, B, ) denote the space X equipped with a g-algebra B of
measurable subsets of X and a probability measure u. Let T: X — X be a trans-
formation. Then, we say that (X, T) is a dynamical system. Given a point x € X
we say that {x, Tz, T%x,...} is the orbit of x under T. For a subset A C X denote
T71(A) = {x € X : T(x) € A}. We say that T is measurable if for all A € B,
T~1(A) € B. We say that a set A C X is forward invariant set if T(A) C A.
If T is an invertible, then we say that a set A C X is backward invariant set if
T (A) C A. A set A C X is invariant set if it is forward and backward invariant
set. We say that T is measure preserving if u(7T1(A)) = u(A) for all A € B, and
in this case we may also say that p is T-invariant (or just invariant, whenever the
choice of map is clear).

Assume that (X, B, u,T) is a measure preserving transformation. 7 : X — X
is said to be ergodic if for any set A € B which satisfies T~'(A) = A then either
w(A) =0 or u(A) = 1. That is equivalent, if v» € L'(u) is T-invariant, i.e. o T =
Y p-a.e., then ¢ is constant p-a.e. . Although 7' can have many ergodic measures,
distinct ergodic measures p; and py are mutually singular, meaning that there
exists A € B for which p1(A) = u2(X\A) = 1. Given an ergodic transformation,
we can deduce various statistical properties of T'. The most well-known of these is
the Birkhoff ergodic theorem, which connects the average of a potential f along
the orbit of a u-typical point with the space average of f.

Theorem 2.1.1 (Birkhoff Ergodic Theorem). Let T : (X,B,u) — (X,B,pn) be
an ergodic measure preserving transformation such that u(X) = 1. Let f € L'(u).

9



Then

for p a.e. v € X.

Theorem 2.1.2 (|King, Kingman’s subadditive theorem|). Let (X,B,u) be a
probability space and T : X — X be a measure-preserving transformation. Let
o+ X = [—00,00) be a subadditive sequence of measurable functions such that
fi € LYp), ie. fopm(x) < folx)fn(T™(x)) for all z € X, and n,m € N.
Then, lim,, s In(2) converges —almost every where to some invariant function
f: X = [—00,00). Moreover, the positive part f* is integrable and

1 1
/fdu = lim —/fndu:inf—/fndu € [—00,00).
n—oo N, n 7

Let (X, 7,u) be a Borel probability space, and 7" : X — X be a measure
preserving transformation.

A partition of (X, 7, ) is a subfamily of 7 consisting of mutually disjoint ele-
ments whose union is X. We denote by « and 3 the countable partition of X.

Let a = {A;,i > 1}, where A; € 7 . We define

Hy(a) = =) u(A)log u(A)

Aca

to be the entropy of o (with the convention Olog0 = 0).
We denote by a V 3 the joint partition {ANB| A € a, B € 5}.
Let T'(a) = {T'(A) | A € a}. We define

n—1

hi,0) = tim ~H,(\/ T (a))

n—oo N,
=0

to be the entropy of T relative to « ﬂ
Then the metric entropy of p is defined as

ha(T) = sup h(p, @),

where the supremum is taken over all countable partitions o with H,(a) < oo.
By a well-known theorem of Kolmogorov and Sinai (e.g. [W1, Theorem 4.1.7]),
h,(T) = h(p, ) for any partition o such that H,(«) < oo and \/;.:é T ' (a) > B
as n — o0o.

'Limits exist by subadditivity.
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Take into account that p +— h,(T) is concave on M(X,T) (c.f [PU, Chapter
2]). We also have the following important theorem which gives an alternative char-

acterization for the entropy when 7T is ergodic (see for instance the remark below
Corollary 4.14.4 in [WT1]).

Theorem 2.1.3 (Shannon-McMillan-Breiman Theorem). Let T : (X, B,u) —
(X, B, ) be an ergodic measure-preserving transformation of a probability space

and. let « be a finite partition of X. Let B,(z) denote the unique member of
\/"Zo T~ (a) to which x belongs. Then,

=

— lim ~log p(Ba(x)) = hy(T)

n—oo N

for p-almost every x.

2.1.1 Topological entropy

Assume that (X,d) is a topological dynamical systems. For any n € N we
define a new metric d,, on X as follows

dp(x,y) = max{d(T"(x), T"(y)) : k= 0,...,n — 1},

and for any € > 0 , one can define Bowen ball B,(x,c) that is an open ball of
radius € > 0 in the metric d,, around z. That is,

Bn(z,e) ={y € X : d,(z,y) < €}.

Let Y C X and assume that Y C |J,; B,,(x;,¢) for some at most countable col-
lection of Bowen balls Y = (B, (x;,€));. Consider N()) = min;n;. Let s > 0
and

S(Y,s,N,e) = iane‘sm,

where the infinum is taken over all collections Y = {B,,(x;,¢)}; covering Y such

that n())) > N. The quantity S(Y, s, N, e) does not decrease with N, consequently

S(Y,s,e) = ]\;im S(Y,s,N,e).

There is a critical value of the parameter s, which we denote by hy,(T,Y, ¢) such
that ( )

0, 5> hp(T,Y,€),
S, 5,€) = { 00, 8§ < hiop(T,Y,¢).

Since hyop(T,Y, €) does not decrease with e, the following limit exists,

hiop(T,Y) = lim(T, Y e).

11



We call hy,,(T,Y) the topological entropy of T restricted to Y or the topological
entropy of Y (we denote hy,(Y)), as there is no confusion about 7. We denote
hiop(X,T) = hiop(T'). Various such definition has been given by Bowen |[BI| and
Pesin and Pitskel [PP].

2.2 Symbolic dynamic

We discuss symbolic dynamics, in particular topological Markov shifts which
plays as an important model throughout this thesis.

Let @ = (gq;j) be a k x k with ¢;; € {0,1}. The one side subshift of finite
type associated to the matrix @ is a left shift map T': ¥, — X, meaning that,
T(2n)neny = (Tnt1)neng, Where 225 is a set of sequences

Yo = {r = (@i)ien, 1w € {1,...,k} and Q,4,,, = 1 for alli € Ny},
Similarly, one defines two sided subshift of finite type T": X — X, where
Yo ={r = (2;)iez : v; € {1,...,k} and Qy, 5,,, = 1 for alli € Z}.

When the matrix () has entries all equal to 1 we say this is the full shift. For
simplicity, we assume that ¥ = X% and g = ¥,

We say that i;...i;, is an admissible word if @Q;,;,., = 1forall 1 <n <k — 1.
We denote by L the set of collection of admissible words. We denote by |I| the
length of I € L. Denote by L£(n) the admissible words of length n. That is, a word
i0, - in—1 With i; € {1,...,k} such that Qg .., = 1. One can define n-th level
cylinder [I] as follows:

[[] = [io...@nnfl] = {fL’ € ZT; :ij VO S] <n-— 1},

for any ig...i,—1 € L(n).

Observe that the partition of X (or ¥3) into first level cylinders is generating,
for this reason the partition into first level cylinders is the partition canonically
used in symbolic dynamics to calculate the metric entropy.

In the two-sided dynamics, we define the local stable set

Wite(2) = {(n)nez : @n = g for all 0> 0}
and the local unstable set

We(2) = {(Yn)nez : Tn = yn for all n < 0}.

Furthermore, the global stable and unstable manifolds of z,

W* () = UpZo T (Wiee (T (2))) and W*(x) := UpZoT" (Wi (T (2)))

12



are smoothly immersed submanifolds of X and they are characterized by

We(x) = {y € X : lim d(T"(x),T"(y)) = 0},

n—oo

Wz)={ye X: lim d(T"(z),T"(y)) = 0}.
n——o00
Definition 2.2.1. The matrix () is called primitive when there exist n such that
all the entries of Q" are positive.

It is well known that a subshift of a finite type associated with a primitive
matrix @ is topologically mizing T. That is, for every open nonempty U,V C X,
there is N such that for every n > N, T"(U)NV = (). We say that T is topological
transitive if there is a point with dense orbit.

We will introduce two important classes of shift-invariant measures.

2.2.1 Bernoulli measures

Let (3, 0) be the full shift on the alphabet A, where A = {1,....,k}. Let p =
(p1,p2,--.,pk) be a probability vector, that is, p; > 0 with Zlepi =1.

By the Kolmogorov extension theorem, to define a Borel measure on X it is
sufficient to define a measure on the cylinder sets. We define the measure p7 on
the cylinder sets of o by

pp(lin, - is]) = piy - i,

and say that pz is a Bernoulli measure for p. Then, (0,3, uz) is an ergodic measure
preserving system. Bernoulli measure can be defined both for one-sided and for
two-sided full shift.

2.2.2 Gibbs measures

A probability measure p on X, where is the one-sided symbolic dynamics, is
said to be a Gibbs state (measure) for the continuous function ¢ : ¥ — R (it is
called potential) if there exist P € R and C' > 1 such that for all n > 1, and
I € L,, we have

e o

— 65n¢(1‘) —-nP —

for any x € I. If in addition p is T-invariant, we call ;1 an invariant Gibbs state
(measure).

For systems like hyperbolic systems which there is a Markov coding for them,
one can also define a Gibbs measure as above (see for more information |[PUL
Chapter 5]).
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Gibbs measures were translated from statistical mechanics to the setting of
dynamical systems by Ruelle and Sinai beginning with [Sil], providing a class of
invariant measures whose properties were closely connected with the properties of
the Gibbs potential.

2.3 Convex functions

We first give some notation and basic facts in convex analysis. For details, one
is referred to [HL].
Let z,y € R™, the line segment connecting = and y is the set [z, y] formally
given by
[z,y] = {Bz+ (1 - By 5<0,1]}.

We say that a set X C R" is convex when for any two points z,y € X, the line
segment [z, y| also belongs to the set X i.e., Sz + (1 — )y € X for any =,y € X
and 3 € (0,1). Let C be a convex subset of R". A point « € C'is called an extreme
point of C if whenever z = Sy + (1 — )z for some y,z € C and 0 < § < 1, then
xr =y = z. The set of extreme points of C' is denoted by ext(C).

A function f : R — R is a convex if its domain dom(f) is a convex set and
for all x y € dom(f) and 5 € (0,1), the following relation holds

f(Bz+ (1= B)y)) < Bf(x)+ (1 —B)f(y).

In other words, a function f : R" — R is convex when for every segment [z, 3], as
the vector xg = fx; + (1 — B)xy varies within the line segment [z, 22|, the points
(g, f(xg)) on the graph {(z, f(z))|x € R"} lie below the segment connecting
(x1, f(z1)) and (x2, f(z2)), as illustrated in Figure

Let U be an open convex subset of R” and f be a real continuous convex function
on U. We say a vector a € R" is a subgradient of f at x if for all z € U,

f(2) = f@) +a'(z — z),

where the right hand side is the scalar product.
For each = € R" set the subdifferential of f at the point = to be

Of(z) :={a: ais a subgradient for f at x}.
For x € U, the subdifferential 0f(z) is always a nonempty convex compact set.
Define 0°f(x) := ext{0f(x)}. In case n = 1, 0°f(x) = {0°f(x_),0°f(x1)}, where

0°f (x_) (resp. 0°f (x4)) denotes the left (resp. right) derivative. We say that f
is differentiable at x when 0°f(x) = {a}.

14



Figure 1: Convex line

We define
Of(U) = UpepOf(x) and 0°f(U) = Upep0° f (). (2.3.1)

In the case n = 1, Lebesgue’s theorem for the differentiability of monotone
functions said 0°f is differentiable almost everywhere. The case n = 2 was proven
by H. Busemann and W. Feller [BE]. The general case was settled by A. D. Alexan-
drov [A]. The following result is well known(cf. [[S], Theorem 7.9] ).

Theorem 2.3.1. Let f be a continuous function defined on an open interval that
has a derivative at each point of R except on a countable set, and f < 0 a.e., then
f s a nonincreasing function.

2.4 Lyapunov exponents

Lyapunov exponents are named after Aleksandr Mikhailovich Lyapunov |[lya],
because of his fundamental work on the stability of solutions of differential equa-
tions in the late 19th century. Consider a quasi-linear differential equation

© = L(t)x + R(t,z), (2.4.1)

where L(t) : R? — R? is linear and R(¢, ) is a perturbation of order bigger than
1:



Let ¢y be fixed. The Lyapunov exponent function v — x(v) is defined by

X(v) = Timsup + log [.(1)] (2.4.2)

t—o00

where (3, denotes the solution of the linear equation
= L(t)x (2.4.3)

with initial condition f3,(to) = v. It does not depend on the choice of .

It is clear that the solution f(y(t) = 0 of the linear equation ({2.4.3) is expo-
nentially stable if x < 0. The stability theorem of Lyapunov states that the zero
solution remains exponentially stable for the non-linear equation (2.4.1)), under
an additional condition called Lyapunov regularity. See for more information of
Barreira, Pesin [BP07|, which contains a detailed presentation of this topic.

Furstenberg and Kesten [FKI| proved in 1960 that the limit in exists
for almost every x, relative to any probability measure invariant under the flow.
A few years later, in 1968, Oseledets [Ose| proved that Lyapunov regularity also
holds for almost every point. These two results brought the subject of Lyapunov
exponents firmly to the camp of ergodic theory, where it has prospered since. To
give their precise statements, we need the notion of linear cocycle.

The work of Furstenberg, Ledrappier, Guivarc’h, Raugi, Gol’dsheid, Margulis,
Mané, Viana, Bonatti, Avila, Bochi and other mathematicians, built the study
of Lyapunov characteristic exponents into a very active research field in its own
right, and one with an unusually vast array of interactions with other areas of
Mathematics and Physics, such as stochastic processes (random matrices and, more
generally, random walks on groups), spectral theory (Schrodinger-type operators)
and smooth dynamics (non-uniform hyperbolicity), to mention just a few.

2.4.1 Theorem of Oseledets

This is a refinement of Furstenberg and Kesten’s theorem [FKI| in that the
conclusion is formulated in terms of the norms of the images ||A"(x)v||, for every
non-zero v € R? rather than the norm || A"(z)|| of the matrix itself. That is, while
Furstenberg and Kesten’s theorem is concerned with the matrices A"(x), the next
statement is about their individual column vectors.

Theorem 2.4.1 ([Osel, Oseledets|). Assume that log" || A|| is integrable with re-
spect to . Then at p-almost every x € X there exist an integer k(x) > 1, a flag

R = V> o> VI > {0}, and real numbers xi(x, A), ..., Xk (2, A) such
that for anyi=1,... k(z),

1) the functions x — k(z), xi(x, A), Vi are measurable;

16



2) k(z) = k(T(x)), xi(x, A) = xi(T(2), A) and A(z)V} = Vzi“(q;) for almost every

T,
3) limp o0 3 log A" ()| = xi(z, A) for every v € VI\ VL

If the system (T, p) is ergodic then the functions x v+ k(z), xi(z,A),dim V! are
constant p-almost everywhere.

The conclusion of this theorem may be sharpened considerably when the map
T is invertible, as long as we also assume that log™ || A|| is integrable with respect
to p. Indeed, in this case instead of a flag one has a direct sum decomposition
Ri=Ela®... ®E with

. ) 1 )
A(w)E} = By, lim 105 | A"(@)]) = (. A) for every v € L\ {0},

The flag and the decomposition are related through V! = EL& V! This invertible
version of the Oseledets theorem also asserts that

1 ,
lirf —log ||det A" (z)|| = Eixi(z, A) dim E., for u — almost every x.  (2.4.1.1)
n—+oo N

The identity in (2.4.1.1)) is precisely the Lyapunov regularity condition for x.

The Oseledets theorem was first proven in [Ose]. Alternative arguments fol-
lowed, by Raghunathan [Ragh|, Ruelle |[Ruell] and others. Dynamical systems
proofs can be found in Walters [Walt] and Viana [V] Sections 4.2-4.3].

The numbers x;(z, A) and x(p, A) = [ x(., A)dp are called the Lyapunov ez-
ponents and Lyapunov exponents of measures of the linear cocycle, respectively.
The number m; = dim V* — dim V**!(= dim E* in the invertible case) is called
the multiplicity of the corresponding Lyapunov exponent x;(x, A). The Lyapunov
spectrum is the set of Lyapunov exponents counted with multiplicity, that is, the
ordered list x1(.,./4) > ... > xq(., A) where each exponent x;(.,.A) is repeated m;
times.

Kingman’s subadditive theorem and the following lemma show the Lyapunov
exponents of measures are upper semi continuous on M(X,T).

Lemma 2.4.2 ([Morl3l Lemma A.4]). If g : X — R U {co} is an upper semi-
continuous, then the map from M(X,T) to RU {—oo} given by u — [ gdp is
upper semi-continuous. If (f,) is a subadditive sequence of upper semi-continuous
functions from X to RU{—oc}, then the map from M(X,T) - RU{—o0} given
by p— inf,>1 [ frdp is also upper semi-continuous.
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2.5 Thermodynamic formalism

In this section we will introduce the main tools in this thesis which comes from
thermodynamic formalism.

Ergodic theory has its origins in statistical mechanics and the study of the long
term behavior of systems of large numbers of particles. In such systems precise
computation of the behavior of each particle may be unfeasible, but through the
ergodic theorems one is able to gain an understanding of the long term of a typical
point and link the macroscopic behavior of the system with the microscopic laws
governing individual particles. When we refer here to a typical point, we mean
almost every point with respect to some suitable measure invariant under the
transformation, but this leads to the question, with respect to which measure
should one use the ergodic theorem? The empirical data available to physicists led
them to the conclusion that the Gibbs measure is the most suitable such measure.
The subsequent body of work that followed connecting Gibbs measures with other
analogues of notions from statistical mechanics such as pressure, equilibrium states
and entropy all in one beautiful and interwoven theory is now called thermodynamic
formalism.

The connections established by this theory have proved to be powerful tools in
many areas of dynamical systems including its dimension theory, rates of mixing
and statistical properties of dynamical systems. The monographs of Bowen |[Bow]
and Ruelle [Ru| provide classical expositions of thermodynamic formalism in the
original settings in which it was developed.

2.5.1 Additive thermodynamic formalism

Let (X, T) be a topological dynamical system. A continuous function ¢ : X —
R is a potential.
For any n € N, one can define a new metric d,, on X by

dp(2,y) = max{d(T*(z), T"(y)) : k= 0,...,n — 1}.

Forany e > Oaset £ C X issaid to be a (n, £)-separated subset of X if d,,(z,y) > ¢
for any two different points z,y € F.

Using (n,€)-separated subsets, we can define a thermodynamic object called
the pressure P(1) of ¢ as follows:

1
P()) = lim lim sup — log sup{ E eSn @) . Fig (n, ¢)-separated subset of X}.
€20 pnsoo N
zel

When ¢ = 0, the pressure P(0) is topological entropy h,,(1"), which measures
the complexity of the system (X, 7).
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The pressure satisfies the variational principle:
P(¢) = sup{h,(T) + /fdu cpe M(X,T)}.

Any invariant measure p € M(X,T') achieving the supremum in the variational
principle is called an equilibrium state of 1. If the entropy map p — h,(7T') is
upper semi-continuous, then any potential has an equilibrium state. However, the
existence, the finiteness, or the uniqueness of the equilibrium state for a given
potential is a subtle question that depends on the system (X,7") as well as the
potential ¢» . On the other hand, there are specific settings where such questions
have an affirmative answer. When (X, T) is a mixing hyperbolic system, and the
potential ¢ is a Holder continuous, then the result of Bowen [B2] states that there
exists a unique equilibrium state p,;, which has the Gibbs property.

The topological pressure function P : C'(X) — R is convex and ¢ — P(qv) is
uniformly Lipschitz continuous.

Assume that v is a Holder continuous function. A(t) := P(tv) is differentiable
in ¢, and A'(t) := [ 1bdu,, where p, is the unique equilibrium state for ¢ (which
also has Gibbs properties). Using convexity properties of A one can argue that
A'(t) takes all values in the interior of { [ dpu; |y is invariant}. In particular,
there is ¢ such that A'(t) = a such that h,, (T) = sup{h,(T) | [du = a}. See
for more information [PU, Chapter 3-5| and [E7, Chapter 11].

2.5.2 Subadditive thermodynamic formalism

The additive theory of thermodynamic formalism extends to the subadditive
theory with suitable generalizations. A natural example of a subadditive potential
is the singular value potential of a continuous GL(k, R)-cocycle A over 3.

Let (X, T) be a topological dynamical system. We define the subadditive pres-
sure of a subadditive potential ® = {log ¢, }2, as

1
P(T,®) =limlimsup — P, (T, ®, ¢)

€20 pso M

= sup{z on(x) : Eis a (n, )-separated subset of X}

zelR

where the existence of the limit is guaranteed from the subadditivity of ®. One
also observe that hy,,(T) :== P(T,1). For t € Ry, we denote Py(t) = P(T,tP).

Cao, Feng and Huang |[CEFH| extend the additive theory of the variational
principle to the subadditive theory.
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Theorem 2.5.1 (|CFH|, Theorem 1.1). Let (X,T) be a topological dynamical
system such that hy,(T) < oco. Suppose that & = {log¢,}r>, is a subadditive
potential on a compact metric space (X, T). Then fort >0

Py (t) = sup{h,(T) + tx(p, ®)

tp € M(X,T), x(p, @) # —oo}.

2.5.3 Almost additive thermodynamic formalism

In this subsection, we state a theorem that shows that we have the Bowen’s
result for almost additive sequences.

We say that a subadditive sequences ® := {log ¢,,}°°, over (X,T") has bounded
distortion: there exists C' > 1 such that for any n € N and I € £(n), we have

S

n(7)
n(Y) =¢

Ccl<

S

for any z,y € [I].

Lemma 2.5.2 (|P, Lemma 3.10]). Let A be a Holder continuous and fiber-bunched
GL(k,R)-cocycle over (X,T). Then ® 4 has bounded distortion.

Theorem 2.5.3 (|Bar, Theorem 10.1.9]). Let & = {log ¢, }32, be an almost ad-
ditive sequence over a topologically mizing subshift of finite type (3,T). Assume
that ® has bounded distortion. Then:

1. There 1s a unique equilibrium measure for ®,
2. there is a unique invariant Gibbs measure for ®,

3. the two measures coincide and are ergodic.

2.6 Fractal dimensions

Assume that (X, d) is a metric space. We define covers and packings of a set
F C X at some scale § > 0. A collection {U, };e; of subsets of X will be called
a o-cover of F if each of the sets U; is open and has diameter less than or equal
to d, and F' is contained in the union |JU;e;. Similarly, a collection {U;};e; of
subsets of X will be called a centered §-packing of I if each of the sets {U; };cr are
disjoint closed balls with radius less than or equal to ¢ and centers in F'. Analyzing
the behavior of such covers and packings as ¢ converges to zero will be crucial in
developing the theory of dimension.
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Hausdorff dimension, named after Felix Hausdorff, who introduced the notion
in 1918 [Haul|, is intrinsically linked with packing dimension, named due to its
use of packings rather than the covers used to define Hausdorff dimension, which
was introduced many years later in 1982 by Claude Tricot [Tricot]. These two
dimensions have probably received the most attention in the literature on fractals
and have found their way into various different fields. They both have a convenient
definition in terms of measures, which leads to a mathematically beautiful theory
but can often make them very difficult to compute directly.

Let F be a subset of X. For s > 0, and 6 > 0 we define the §— approximates-
dimensional Hausdorff measure of F' by

H3(F) = inf{z \Ui|® : {U;}ier is a countable § — cover of F'}

el

and the s—dimensional Hausdorff (outer) measure of F by H*(F) = lims_,o Hi(F).
The Hausdorff dimension of F' is

dimy F =inf{s > 0: H*(F) =0} =sup{s > 0: H*(F) = oo}.

The reader surely observed how similar the definitions of Hausdorff dimension
and topological entropy are. Indeed, they are both just special cases of a more
general construction of Caratheodory, see [Carath)].

If F'is compact, then we may define the Hausdorff measure of F' in terms of
finite covers. The following is a list of basic properties which Hausdorff dimension
satisfy:

Monotonicity: dimpg is said to be monotone if £ C F, then dimy FF < dimyg F
forall £, F C X.

Finite stability: dimpy is said to be finitely stable if dimy(E U F) =
max{dimg F,dimg F'} for all £, F C X.

Countable stability: dimy is said to be countably stable if dimy U; E; = sup, dimy E;
for all countable collections of sets {E;} in X.

Stability under (bi-)Lipschitz maps: dimy is said to be stable under Lipschitz
maps if dimy f(E) < (=)dimy E for all £ CX and all (bi-)Lipschitz maps f on
X.

Open set property: dimpy is said to satisfy the open set property if for any
bounded open set U C R", dimy U = n.

Packing measure, defined in terms of packings, is a natural dual to Hausdorff
measure, which was defined in terms of covers. For s > 0 and § > 0 we define the
d-approximates-dimensional packing pre-measure of F' by

Ps(F) = sup{z |U:|° : {U;}ier s a countable centered § — packing of F'}

i€l
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and the s-dimensional packing pre-measure of F' by P§(F) = lims_o P5(F). To
ensure countable stability, the packing (outer) measure of F' is defined by

PY(F) =inf{) _Py(F) : FCUF}
iel
and the packing dimension of F' is
dimp F' = inf{s > 0: P*(F) =0} = sup{s > 0: P*(F) = oo}.

Packing dimension satisfy Monotonicity, Finite stability, Countable stability,
Stability under (bi-)Lipschitz maps and Open set property.
The lower and upper box dimensions of a set F' C X are defined by

log Ns(F' _ log Ns(F'
dimp(F) := h{&%lfofTég((;) and dimg(F) := lil?jélpO%Tég(é)

respectively, where Ns(F) is the smallest number of sets required for a J-cover of
F. If dimp(F) = dimp(F), then we call the common value the box dimension of
F and denote it by dimpg F'. It is useful to note that we can replace Ns with a
myriad of different definitions all based on covering or packing the set at scale ¢,
see [F8, Section 3.1]. For example, Ns(F') can be taken as the maximal size of a
centered o-packing of F. If defining box dimension in a non-compact space, then
usually one restricts totally bounded sets in order to preclude the situation where
Ng(F) = OQ.

Box dimension satisfy Monotonicity, Stability under (bi-)Lipschitz maps and
Open set property.

One could try to redefine box dimension by breaking the setup into countably
many bits, taking the supremum of the box dimension of the bits and then taking
the infimum over the different ways of splitting the set up. Amazingly, this new
definition simply returns the packing dimension. We obtain

dimp ' = inf{sup dimp F; : F C UjerFi}

where the infimum is taken over all countable partitions {F;};c; of F, see [ES8|
Section 3.4]. This alternative definition for packing dimension has the following
very useful consequence.

Lemma 2.6.1. Let F' C X be a compact set such that for every open set U C X
which intersects F, we have dimg(F NU) = dimg F. Then, dimp F = dimgF'.

Assume that (X, dx) and (Y, dy) are two metric spaces. We have
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See [Matl, Theorem 8.10].
For a Borel probability measure p the Hausdorff dimension is defined as

dimy g = inf{dimy A : A Borel set such that pu(A) = 1}.

The upper and lower local dimensions of a Borel probability measure u at a
point x in its support are defined by

- 1 B ] B
dimiec(p, ) = limsup log p(B(x, 1)) and dim, (g, z) := lim infw.
n—r00 logr n—00 logr

If the upper and lower local dimensions coincide, we call the common value
the local dimension and denote it by dimye.(u, ). This describes the rate at which
the measure of a small ball about a p-typical point scales as the radius of the
ball is decreased. This notion is particularly important because if there exists a
constant « such that the local dimension exists and equals v at p almost all points
then we say the measure p is exact dimensional and in particular, if p is exact
dimensional then all the definitions of the dimension of a measure coincide with
the exact dimension a.

One can also define the Hausdorff dimension of measure in the following way:

dimy p = sup{s : dim, (i, z) > s for almost all z }.

See for more information [E7, Section 10.1].

If dimyo.(p, z) > 0 for a set of points of positive measure, then dimg pu > 6;
this is known as Frostman’s Lemma. Assume that U := {U, };cs cover a set F. Let
i be a mass distribution E] on I and suppose that for some s there are numbers
C > 0 and 6 > 0 such that

uU) = Clup

for all sets U with |U| < §. Then s < dimpy(F) < dimg(F) < dimg(F). See [F8,
Mass distribution principle 4.2].

We now present some results from measure theory which might be used in the
thesis. If a measure pu is absolutely continuous with respect to a measure v, we
write p < v. The following proposition (e.g. [MMR] Lemma 2.4]) is useful to verify
exact-dimensionality whenever we have a measure which is absolutely continuous
with respect to an exact-dimensional measure

Lemma 2.6.2. Assume v is a non-null finite Borel measure on R? with ezact
dimension o. Let i be any non-null finite Borel measure 1 on R? with u < v.
Then, 1 1s exact dimensional with exact dimension a.

2A mass distribution on F is a measure with support contained in F' such that 0 < u(F) < oo
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2.7 Self affine IFS

We say that f : R — RY is a contraction if there exists a contraction ratio
0 < C < 1 such that for all z,y € R?

[f(z) = f(y)] < Clo —yl.

One of the most important ways of constructing fractals is via iterated func-
tion systems. An iterated function system (IFS) is a finite collection {f;}ic; of
contracting self-maps. It is a fundamental result in fractal geometry, dating back
to Hutchinson’s seminal 1981 paper [Hut], that for every IFS there exists a unique
non-empty compact set A, called the attractor, which satisfies

A= fi®).

el

2.7.1 Symbolic coding of IF'S and attractors

Typically, attractors of iterated function systems are studied by building a
symbolic space from the index set Z, since the geometry of the symbolic space is
more convenient to work with than the more complex geometry of the attractor.
Let F = {fi}iez be an iterated function system on compact metric space X.
We will now briefly describe this technique and fix some notation which will be
used throughout the thesis whenever a fixed IFS or a system with markov partition
indexed by T is present. Let 7* = (), -, T* and denote the set of all finite sequences
with entries in Z and for -

i= (Zl,,Zk) S

and write
fi=fuorero fi

We denote by ZV the set of all infinite Z-valued strings and for i € ZV or T
with [ > k write i|k € Z* to denote the restriction of i to its first k entries.
Then, we define a natural projection

p: IV — A
from the symbolic space to the geometric space by

p(i) = ﬂ fur(X).

keN

Self-affine sets are attractors of IFS’s where all of the maps are contracting
affine self-maps on some Euclidean space. An affine map is the map T : X — Y,
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X and Y vector spaces, of the form T'(z) = Az + v, where A € Lin(X,Y) and
v € Y. Self-affine sets are notoriously difficult to handle in comparison with self-
similar, meaning that IFS consists solely of similarity transformation sets, and
there are still many fascinating open problems in the area.

The singular values of a linear map, A : R™ — R", are the positive square roots
of the eigenvalues of AT A. Viewed geometrically, these numbers are the lengths
of the semi-axes of the image of the unit ball under A. Thus, roughly speaking,
the singular values correspond to how much the map contracts (or expands) in
different directions. For s € [0,n]| define the singular value function ¢*(A) by

P*(A) = 010y ..o aof ;T (2.7.1.1)

where o; > --- > o, are the singular values of A. This function has played a
important role in the study of self-affine sets over the past 25 years. Let {A; : i € T}
be a finite collection of contracting linear self-maps on R™, write m = |Z| and let

d=d(4; i€ A;) =inf{s: i Zaps(Ail LA < ool (2.7.1.2)

k=1 Tk

This number is called the affinity dimension of F and is always an upper bound for
the upper box dimension of F', see [Fal|. Moreover, by considering a natural cover
of F. Falconer proved that for ‘typical’ translations it was equal to the Hausdorff
dimension of the set.

Theorem 2.7.1. Let {A;}F_, be a collection of n X n matrices where each A,
satisfies the bound on its matriz norm o1(4;) < % Then for Lebesgue almost all
translations (t1, ..., t,) € RE" the attractor F of the self-affine IFS F = {A; +1; :
i=1,...,k} satisfies

dimy F' = min{n, d}.

In fact, initially the above result was proved in [Fal| with the stronger assump-
tion that all the norms o1(A;) < 3, but in [So], Solomyak weakened the condition
to the current form. Moreover, an upper bound of 1/2 was proved to be sharp by
an example of Przytycki and Urbanski in [PUI].

2.8 Smooth dynamics

We recall some basic definitions, properties of Anosov diffeomorphisms and
partially hyperbolic dynamics which are going to be useful throughout this thesis.
During this section we use [KH, Section 6.4] and [CP.
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Definition 2.8.1. Let X be a connected smooth manifold. A diffeomorphism
f: X — X is called an Anosov diffeomorphism or uniformly hyperbolic if there is
an invariant decomposition of the tangent bundle T'X as a direct sum of continuous
D f-invariant sub bundles £ and E¥ such that, for some appropriate Riemannian
metric,

IDf ()| < CAM[o*]| and [|Df" ()] < CA™[Jo"l,

for all x € X and for any pair of unit vectors v* € E;,v" € EY, where 0 < A < 1
and C' > 0 are both constants.

For example, a diffeomorphism 7' : T? — T? induced by the matrix [ ? } 1 is

an Anosov diffeomorphism.
We proceed to show a basic proposition about the dependence of ES and EY
on .

Proposition 2.8.2. Let f : X — X be an Anosov diffeomorphism. Then, the
subspaces ES and E} depend continuously on x.

We state fundamental result about stable and unstable manifolds for an Anosov
diffeomorphism. Let d be the Riemannian distance function.

Theorem 2.8.3 (Stable Manifold Theorem). Let f : X — X be an Anosov
diffeomorphism of class C*. Then there exist ¢ > 0 and 0 < X\ < 1 such that for
each 0 < € < g9 € X, the local stable manifold

Wige(r) ={y € X = d(f"(x), f"(y)) < € for alln > 0},
and the local unstable manifold
Wiko(@) = {y € X+ d(f (), f () < & for alln > 0},

are C* embedded disks tangent at x to ES and E* respectively. In addition,

o F(Wie(@)) C Wio(F(@) and f= (Wit (2)) € Wit (f 7 (@));

o d(f(x), f(y)) < Ad(z,y) for all y € Wi, (2);

o d(f~H(x), [ (y) < Ad(z,y) for all y € Wi (2);

o W (x) and W (z) vary continuously with the point x in the C* topology.
Furthermore, the global stable and unstable manifolds of x,

W2 (z) = UpZo /7" (Wige (" (2)) and W*(z) = UiZof" (Wige (S 7" (2)),

are smoothly immersed submanifolds of X.
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A well-known property of Anosov dynamics is their local product structure.
More precisely, there is a constant 9; > 0 such that for every =,y € X which satisfy
d(z,y) < d; the intersection W () N W (y) consists of a unique point denoted
by [z, y]. In fact, for € small enough the local stable manifold W7?(x) and the local
unstable manifold W#(z) have transversal intersection at = and these manifolds
vary C''—continuously respect to x. As a result, we get the local product structure.

2.8.1 Closing property

Another well-known property of Anosov dynamics is closing property.

A sequence x4, ..., 1, = o of points is called a periodic e-pseudo-orbit if
d(f(zg), Try1) < € for all k =1,...,n. A homeomorphism f : X — X satisfies the
closing property if there exist two positive constants C, §g such that for ¢ < §y any
periodic e—pseudo-orbit zg, 1, ...,x, = xo, there is a periodic point p such that
f™(p) = p and d(f*p, x1) < Ce, for every k € {0,1,...,n}.

We say that f satisfies the closing property if there exist C', gg, 8 > 0 such that
if z € X satisfies d(f"(2),z) < g then there exists a periodic point p € X such
that f"(p) = p and

d(f7(2), f(p)) < Cre P™Un=idd(f7(2), 2)
for every j =0,1,...,n.

Theorem 2.8.4 (Anosov closing lemma). Every Anosov diffeomorphism f : X —
X satisfies the closing property.

Note that shifts of finite type, Axiom A diffeomorphism, and hyperbolic home-
omorphism are particular systems satisfying the Anosov closing property.

2.8.2 Partially hyperbolic dynamics

Partial hyperbolicity is a relaxed form of uniform hyperbolicity which intends
to address larger families of dynamics. A main goal of their study consists in
understanding how the properties of uniformly hyperbolic systems extends.

We consider M a closed connected d-dimensional Riemannian manifold and
let TM its tangent bundle. We also consider f in the space Diff” M) of C"-
diffeomorphisms endowed with the C"-topology, r > 1.

Definition 2.8.5. A partially hyperbolic set for f is a compact f-invariant set K
whose tangent bundle admits a splitting into three continuous vector subbundles
TpeM = E* @ E° @ E° which satisfy:

e the splitting is dominated,
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e [° is uniformly contracted, F* is uniformly expanded, one of them is non-
trivial.

A splitting Txe M = E1 P ... P Ey is a dominated splitting if and only if:
e Invariance: The bundles are D f -invariant. This means that for every z € K

and 1 <i <k one has D, f(FE;(z)) = E;(f(x)).

¢ Domination: There exists constants C' > 0 and A € (0,1) such that, for
every 1 < i < k — 1, for every z € K and vectors u € E;(z) \ {0} and
u € Eii1(x) \ {0} one has:

D"l _ D™
] o]

Domination can be also expressed by saying that forany r € K and 1 <i<k—1
one has that || D, f"ul| < CN'[[(Dg,.. @) f™) I

Vn > 0. (2.8.2.1)

Remark 2.8.6. a) If k = 1 we say that the splitting is trivial. Sometimes,
when one says that an f -invariant subset admits a dominated splitting one
implicitly assumes that it is not trivial.

b) One can replace condition by asking for the existence of n > 0 such
that for any v € K and vectors u € E;(x) \ {0} and v € E;1(x) \ {0} one
has:

IDef™ull _ 11Duf™]
I —— ]
In any case, in such a situation one says that E; 1 dominates F; and one
someone denotes this as By G- ... D Ey to emphasize the order of the dom-
mation.

o [f one replaces the bundles E;, E; 1 by their direct sum E; ® E; 1 the splitting
remains dominated.

2.8.3 Convex cone

We adopt the convention that if V' is a vector space, a convex cone C in V is
a subset such that there exists non-degenerate quadratic form ()¢ such that

C={veV:Qc(v) >0}

The interior of a convex cone is interior C' = {v € V : Q¢(v) > 0} U {0}.

A cone-field C on K C M is then a choice of a convex cone C, C T, M for
each point in M such that in local charts the quadratic forms can be chosen in a
continuous way and have the same signature (d_,d, ).

Equivalently, a cone-field C' in K is given by:
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e a (not necessarily invariant) splitting Tk M = E & F into continuous sub-
bundles whose fibers have dimension d_ and d, respectively,

e a continuous family of Riemannian norms || - || defined on Tx M (not neces-
sarily the ones given by the underlying Riemannian metric).

In this setting, for x € K, one associates
e the convex cone C, = {v =0z +vs € T, M, |vp] > ||vzll},
e the dual convex cone C¥ = {v =vy +vp € T, M, ||vs] > ||vell}-

The dimension dim C of the cone-field C is the dimension d, of the bundle F.
We say that a cone-field C' defined in K is D f-contracted if there exists N > 0
such that for every x € KN ...N f~(K) one has that

D, fN(C,) C interior(Cn ()
(Equivalently, the dual cone field C is D f~!-contracted).

Theorem 2.8.7 (|CP| Theorem 2.6]). Assume that f € Diff"(M). Let K be an
invariant compact set and fix do > 1. Then K is endowed with a Df -contracted

cone-field C'" with dimension dy if and only if there exists a dominated splitting
TkM = E®. F with dy = dim(F).

2.9 Hilbert metric

Let V' be a vector space over the reals.

Definition 2.9.1. Fix a convex cone C' C V. Given v,w € C, let
a(v,w) =sup{\ > 0w — Iv € C}, B(v,w)=inf{u > 0lpv —w € C}, (2.9.1)

with a = 0 and/or = oo if the corresponding set is empty. The cone distance
between v and w is
Bv,w)

o) (2.9.2)

d.(v,w) = log
The distance d, is called Hilbert projective (pseudo) metric.

Several remarks are now in order. First we observe that although V may be
infinite-dimensional, the distance d.(v,w) is completely determined in terms of
the two-dimensional subspace spanned by v and w, and in particular by the points
shown in Figure [2] the lines 0A and 0B are the boundary of this two-dimensional
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cross-section of C'. The lines 0.X and wY are parallel, as are the lines 04 and w.X;
then we have

Y] 10X

o= , .
|0v| |0v|
An alternate description of do is available in terms of this more geometric
description. Let J be the line through v and w and let A, B be the points where
this line intersects the boundary of C'. We see from Figure [2| that the triangles
BYw and BOv are similar, so

Furthermore, v0A and vXw, are similar so

Figure 2: Determining the cone distance between v and w

|0X| v X| |wol | Aw|

b= v 00] ' Au|  [Au|

Thus d¢ can be given in terms of the cross-ratio of the points v,w, A, B :

B _ |Aw[|Bo| _

_ — (v,w; A, B).
o = [Av B~ WA B)

We have
de(v,w) = log(v,w; A, B).

Note that it is possible that the line J does not intersect the boundary of C' twice;
this corresponds to the the case when either o = 0 or § = oo (or both) in and in
this case deo(v, w) = 0.
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Moreover, when o = ( (that is, when v = cw, they are colinear), the Hilbert
metric then gives 0. Because of this phenomenon, d¢ is not a true metric (it is a
pseudometric metric). However, d¢ is a projective metric on C'// ~ (the equivalence
classes of C for the relation  ~ y if x = Ay where A € R,).

An important property of the Hilbert metric is the following theorem, due to
Birkhoff, which states that a linear map from one convex cone to another is a
contraction whenever its image has finite diameter (see for more information [IJ).

Theorem 2.9.2. Let Cy C Vi and Cy C V4 be convex cones, and L : Vi — V5 be a
linear map such that L(Cy1) C C3. Assume that A := sup, jcr o, doy(0,0). Then
for all v,w € Cy, we have

A
de, (Lv, Lw) < tamh(z)dc1 (v, w),

where we use the convention that tanh oo = 1.
We are also going to use the following lemma.

Lemma 2.9.3. Let V be a finite dimensional vector space. Suppose that Ci and
Cy are two convex cones in V' such that Cy C C§ and d¢, is the Hilbert metric on
Cy. Then Cy is bounded in metric dc,.

Proof. Let us denote d as the usual distance on the projective space. Since C; C (Y,
d(Cy,0C3) > 0. Hence, for every v,w € C) the distances d(A,v),d(B,w) are
uniformly bounded from below by ¢; = d(C1, 9C5), where A, B are the intersections
of the line 7w with AC, (see Figure [2). On the other hand, d(v,w) is uniformly
bounded from above by ¢; = diamy(Cy). Thus, de, (v, w) < log((c1 + ¢2)/c1).

]
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Chapter 3

Multifractal formalism

We recall that we are interested in the linear cocycles generated by a topolog-
ically mixing subshift of finite type 7' : ¥ — ¥ and a Holder continuous function
A:3¥— GL(E,R).

3.1 Multilinear algebra

We recall some basic facts about the exterior algebra. We use them for studying
the singular value function.

We denote by o7, ...,0, the singular values of the matrix A, which are the
square roots of the eigenvalues of the positive semi definite matrix A*A listed in
decreasing order according to multiplicity.

Assume that {e;, .., e;} is the standard orthogonal basis of R* and define

ARF = {e, Neg Ao Negy -1 < e, <epy < .. < ey <k}

foralll € {1,...,k} with the convention that A°R* = R. It is called the I-th exterior
power of RF.

We are interested in the invertible matrices GL(k,R). We consider induced
topology R¥ for it. For A € GL(k,R), we define an invertible linear map A :
ARF — ARF as follows

(AM(eil A\ €iqy VANV eil)) = Aeil N A@iQ VANPAN Aeil.

A'RF is represented by a (%) x (V) whose entries are the [ x [ minors of A. It

l !
can also show that
(AB)/\l — A/\ZB/\Z.

The singular values of A" are the product o;,(A)...0;,(A). In addition,
| AN = o1(A)...o(A).
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3.2 The maximal and minimal Lyapunov exponent
We recall for A: ¥ — GL(k,R) and I € L

LA = max A" (z)]].

z€[I]

We define a positive continuous function {¢ .4, nen on X such that

pan(r) = [|A"(@)]]

We denote by ® 4 the subbadditive potential {log @A} .
We recall the definition of the maximal Lyapunov exponent of linear cocycles

1
B(A) := lim —logsup [|A"(2)].

n zeX

Morris [Morl0| showed that the maximal Lyapunov exponent is equal to the
supremum of the Lyapunov exponents of measure over invariant measures. That
means,

B(A) = sup  x(u,A). (3.2.1)

HEM(X,T)

Feng and Huang [FH| gave a different proof of it.
Let us recall the set of maximizing measures of A to be the set of measures on
X given by
MmaX(A) = {:u € M(X7 T)7 B<A> = X(M?A)}
We also recall the definition of the minimal Lyapunov exponents of linear co-

cycles as follows
1
a(A) := lim —log inf ||A™(x)].

n—o00 1, zeX

Similarly, the set of minimizing measures is defined as follows
MmiH(A) = {M S M(X7 T)v O[(A) = X(MaA)}

We remark that supremum (3.2.1)) is attained, so M., is non-empty set. But,
Min 1s N0t necessarily non-empty.

Similarly, one can define the above definitions for subadditive potentials.

We define sum of top [ Lyapunov exponents as follows

1
Xi(A) := lim —logp (),

n—oo M,

if the limit exists.
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Similarly, we define sum of top [ Lyapunov exponents of measure as follows

o1
xi(p, A) = lim — [ log @ ant () dpu(),

for p e M(X,T).
We are mainly concerned with the distribution of the Lyapunov exponents of
A. More precisely, for any o € R, define

Eala) = {z € X, x1(A) = o},

which is called the a-level set of x;(.A).
We also define the higher dimensional of level set of all of Lyapunov exponents
as follows

EA(O?) = {ZE - X, Xl(-A) = ozl},

for 1 <[l <k
We denote E(a) = E4(a), when there is no confusion about .A.
We denote

Dy = ({logpan}ey, {108 0an2.n 1221, ooy {log @ ank n }20,).

We say that ® 4 is (simultaneously) quasi-multiplicative if there exist C' > 0
and m € N such that for every I, J € L, there exists K € £ with |K| < m such
that IKJ € L and

IAMTE )| = ClAM DAY,

for 1 <¢<k.

3.3 Thermodynamic Formalism

3.3.1 Legendre transform

Assume that f: R¥ — R U {400} is a convex function that is not identically
equal to —oo. The Legendre transform of f is the function f* of a new variable ¢,
defined by

t s —f*(—t) ;== inf{f(2) — to : x € RF},

where right hand side is scalar product.

It is easy to show that f* is a convex function and not identically equal to —oo.
Let f** be the Legendre transform of f*. The following result is well known (cf.
[Roc, Theorem 12.2]).
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Theorem 3.3.1. Assume that f : R¥ — R U {oo} is convex and not identically
equal to —oo. Let x € R*. Suppose that f is lower semi continuous at x, i.e.,

liminf, ,, f(y) > f(z). Then f**(x) = f(z).

Feng and Huang |[FH| Corollary 2.5] proved the following corollary as an ap-
plication the above theorem.

Corollary 3.3.2. Assume that A is a non-empty, closed and convex set in R* and
let g: A — R be a concave function. Set

W(z) =sup{g(a) +ar:a € A}, zcR*

and

G(a) = inf{W(z) —az:x € R*}, ac A

Finally, if g is upper semi continuous at a € A, then G(a) = g(a).

3.3.2 Thermodynamic Formalism for subadditive potentials

Assume that (X, T') is a topological dynamical systems.

Let ¢= (q1,...,qr) € RE, and @ = (Py,..., ®y) = ({log b1 }52 1, ...,
{log ¢k }22,). Assume that ¢.& = 3% | ¢;®; is a subadditive potential {g; log ¢, }2 ;.
We can write topological pressure, maximal Lyapunov exponent, and minimal Lya-
punov exponent of @, respectively

Ps(@) = P(T,3®), B(@) = 3> 0, a@(®) =a(> a,).

i=1 =1

For € M(X,T), we write

—

X(1s @) = (x (s 1), ooy X (15 Pe)),
where x(u, ;) = lim, oo £ [log ¢pi(z)dp(z) for i =1, ..., k.

Theorem 3.3.3 ([FH, Theorem 1.2]). Let (X, T) be a topological dynamical sys-
tems such that hyop(T) < oco. Assume that © is a subadditive potential on the
compact metric space X. Then the pressure function Pq;(f) 15 a continuous real

convez function on (0,00). Furthermore, Pé)(oo) = limy 00 PE’T@ = B(®).

We recall the definition of topological pressure by the following variational
principle.
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Theorem 3.3.4 (|[CFH, Theorem 1. 1]) Let (X,T) be a topological dynamical
systems such that hyp(T) < oo. For t € R’j, suppose that ® is a subadditive
potential on the compact metric space X. Then

Py(#) = sup{hu(T) + £.x(p, ®)
YRS M(‘X? T)?X(:uu (]3) 7A _OO}‘

Let £ € R’i, we denote by Eq(<f>, f) the collection of invariant measures p such
that

h(T) + Tx(p, ) = Py(#).
If Eq( <I> 1) # 0, then each element Eq(q; t) is called an equilibrium state for
t.o.
In the remaining part of this section, we recall some theorems about multifractal
formalism for subadditive potentials.

Theorem 3.3.5 ([FH, Proposition 3.2]). Assume that hyp(T) < co. Then, Pg(.)
is a real continuous convex function on RE and

OP(R%) C (=00, B(®1)] X ... x (—o00, B(Py)].

Theorem 3.3.6 (|[FH, Theorem 1.1]). Let (X, T) be a topological dynamical system
such that the topological entropy hiop(T) is finite. Then E(B(®)) # 0 . Moreover,

heop (T, E(B(®))) = sup{h(T) : p € M(X,T), x(p, ®) = B(®)}
=sup{h,(T): p e EX,T), x(1, ®) = 5(P)}.

The topological pressure is related to Lyapunov exponents in the following way.

Proposition 3.3.7 ([FH, Theorem 3.3]). Let (X,T) be a topological dynami-
cal system such that the entropy map p — h,(T) is upper semi-continuous and

hiop(T) < 00. Fort € ]Rﬁ, suppose that £.® is a subadditive potential on the com-
pact metric space X. Then,

OP5(I) = {x(n; ®) : p € Eq(®, 1)} (3.3.2.1)

Moreover, Eq( (I> f} 1s a non-empty compact convexr subset of ./\/l(X T), for any
NS Rk Furthermore, the above results hold for t € RF when ® is an almost
addztwe

The following lemma shows that we can always approximate the Lyapunov
exponent of the equilibrium measure by the Lyapunov exponent of the ergodic
measure.
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Lemma 3.3.8 ([FH, Lemma 4.7]). Suppose that hp(T) < 0o, and t € RE. Let
a e 8P§(f}. Then for any € > 0, there is a v € E(X,T') such that

Ix(v,®) — @| <&, and|h,(T) — (Pg(t) — a.i)| <e.

Theorem 3.3.9 ([FH, Theorem 4.8]). Keep the assumption of Theorem (3.3.6)),
we also assume that the entropy map p — h,(T) is upper semi-continuous on
M(X,T). If t € RE such that £.® has a unique equilibrium state pp € M(X,T),
then iz is ergodic, V Pg(1) = X(pz, ®), E(VPg(I)) # 0 and huop(T, E(VPg(f))) =
b, (T).

We denote by M(X) the space of all Borel probability measure on X with
weak® topology.

Theorem 3.3.10 ([CI'H, Lemma 2.3]). Suppose {v,}22, is a sequence in M(X)
and ® = {log ¢, }°°, is a subadditive potential on the compact metric space X. We
form the new sequence {1, 152, by p, = %Z?;ol v,oT". Assume that ., converges
to win M(X) for some subsequence {n;} of natural numbers. Then u € M(X,T)
and |
lim sup — /log On, (z)dvi(x) < x (1, D). (3.3.2.2)
isoo T4
Given an almost additive potential ® = {log¢,}>> . Feng and Huang [FH,
Lemma A.4| proved the following lemma:

Lemma 3.3.11. Let p € M(X,T). Then, the map u — x(u, ®) is continuous on
M(X,T).

3.4 Generic cocycles

3.4.1 Fiber bunched cocycles

We recall that T : 3 — X is a topologically mixing subshift of finite type. We
say that A : 3 — GL(k,R) is a r-Holder continuous function, if there exists C' > 0
such that

|A(z) — A(y)|| < Cd(z,y)" Vz,y € X. (3.4.1.1)

We denote by H"(X, GL(k,R)) the set of r-Hdlder continuous functions. We also
show by H"(X), when there is no confusion about GL(k,R).

We denote by h,.(A) the smallest constant C'in (3.4.1.1]). We equip the H" (2, GL(k,R))
with the distance

D,(A,B) =sup||A— B|| + h,(A— B).
X
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It is clear the locally constant functions are co-Hélder i.e., they are r-Hélder
for every r > 0, with bounded h,.(A).

Definition 3.4.1. A local stable holonomy for the linear cocycles (T, A) is a family
of matrices H?, , € GL(k,R) defined for all z € ¥ with y € W _(x) such that

Yy<—x

a) H:, = Idand HS_  oHS, _ = H?

T2 zy Y 24—

for any z,y € W (z).
b) A(z)o H;,_, = Hiayery) © Aly).
¢) (z,y,v) — Hy,(v) is continuous.

Moreover, if y € Wi (), then there are analogous properties for H, .

According (b) in the above definition, one can extend the definition to the
global stable holonomy Hy, , for y € W*(x) not necessarily in W (z) :

Hy = A"Y) ™ 0 Hingy o) 0 A" (2),

where n € N is large enough such that 7" (y) € W (T"(x)). One can extend the
definition the global unstable holonomy similarly.

Definition 3.4.2. A r—Hdlder continuous function A is called fiber bunched if for
any r € X,
@A) o < 1, (3.4.1.2)

where w is the hyperbolicity constant defining the metric on the base X..

We say that the linear cocycle (T, .A) is fiber-bunched if its generator A is
fiber-bunched. We denoted by Hy (3, GL(k,R))) the family of r-Hélder-continuous
and fiber bunched functions.

The geometric interpretation of the fiber bunching condition is as follows. Let
A € Hj(¥,GL(k,R)). The projection cocycle associated to A and T is the map
PF : ¥ x PR* — ¥ x PR* given by

A(z)v
PF(z,v) i= (T(x), 2%,
[ A(z)vl]

We denote by DA, the derivative of the action PR* — PR on projective space

at all points v € PR*. Taking derivative

IDAJ| < [AA7H] and [ DA < [ AJIAT

for all v € PR*. Therefore, the fiber bunching condition implies that rate of ex-
pansion (respectively, contraction) the projective cocycle PF at every point z € ¥
is bounded above by (%)T( respectively, below by w").
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The Holder continuity and the fiber bunched assumption A € H} (X, GL(k,R))
imply the convergence of the canonical holonomy H* ™ (see [BGMV], [KS]). That
means, for any y € W/ “(z),

loc
H o= lim A"(y) A" (x) and HY, = lim A"(y)"A"(x).

In addition, when the linear cocycle is fiber bunched, the canonical holonomies vary
r—Hblder continuisly (see [K9)]), i.e., there exists C' > 0 such that for y € W *(z),

loc

|HE " — 1| < Cd(z,y)".

Ty

In this chapter, we will always work with the canonical holonomies for fiber
bunched cocycles.

Remark 3.4.3. Even though the locally constant cocycles are not necessary fiber
bunched, the canonical holonomies always exist. Indeed, for every y € W*(x) there
exist m such that x, =y, for all n > m. Then,

Hy = A" () A" (@) TA™ () - Aly).

In particular HS, = Id, for all v € W (y). Similarly, we get the existence of

Ty
the unstable holonomy.

Remark 3.4.4. If a linear cocycle is not fiber bunched, then it might admit multiple
holonomies (see [KS1)]).

3.4.2 Typical cocycles

We are going to discuss typical cocycles. For details, one is referred to [AV],
IBV1] and [V].

Suppose that p € X is a periodic point of T, we say the p # 2z € ¥ is a
homoclinic point associated to p if it is the intersection of the stable and unstable
manifold of p. That is, = € W*(p) N W"(p) (see figure §)). The set of homoclinic
points of any periodic point is dense in X for hyperbolic systems.

We define the holonomy loop

2/1; = Hjep © H;%z'
Definition 3.4.5. Suppose that A : 3 — GL(k,R) belongs H] (3, GL(k,R)). We
say that A is I-typical if there exists a periodic point p and a homoclinic point z
associated to p such that:

(i) The eigenvalues of AP"®)(p) have multiplicity 1 and distinct norms. Let
{v;}¥_, be the eigenvectors of P := AP®)(p).
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Figure 3: Homoclinic point.

(ii) ¥Z(v;) does not lie in any hyperplane W; spanned by all eigenvectors of P
other than v; for any 1 <14,j < k.

For k = 2 this second condition means that v7(v;) does not intersect other
lines. See Figure (10| for a 1-typical cocycle in the 2 dimensional case.

We refer to (i) as the (pinching) properties and to (ii) as the (twisting) prop-
erties.

The cocycles generated by A™, 1 < t < k also admit stable and unstable
holonomies, namely (H* )",

Definition 3.4.6. Assume that A is 1-typical. We say A is ¢-typical for 2 <t <
k — 1, if the points p, z € X from Definition satisfy

(I) P™ satisfies the analogous statement to (i) from Definition for all t.
Let {v;, A ... Avy, }1<iy<..<i,<k be the eigenvectors of P,

(II) The induced map (¢2)" on (R¥)" satisfies the analogous statement to (ii)
from Definition B.Z5

We say that A is typical if A is t—typical for all 1 <t < k — 1. We denote by
W C Hj (¥, GL(k,R)) the set of all typical functions.

Remark 3.4.7. Above definition for typical cocycles comes from [P] that is a
slightly weaker form typical cocycles which was first introduced by Bonatti and
Viana [BV1)]; Park [P] considered a weaker twisting assumption. We also remark
that the difference in the settings of [BV1)] and [P] does not make any problems in
translating the relevant statements and results from [BV1|] to this thesis.

Remark 3.4.8. Avila and Viana in [AV] improved the Bonatti and Viana’s result
by weakening the assumptions: they allowed the number of symbols of 3 to be count-
ably infinite and proved analogous results to [BV1]. They call 1-typical cocycles of
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Figure 4: 7 (v;) # vo

[BV1|] by simple cocycles. In comparison to simple cocycles of [AV], our typicality
assumption has a weaker twisting assumption, but we still require t-typicality for
each 1 <t <k-—1.

Despite slight variations in the definition of typicality, in all cases, WV is open
and dense in H] (X, GL(k,R)), and its complement has infinite codimension.

Park [P] proved quasi-multiplicativity for typical cocycles W. The approach
has its roots in previous work of Feng [El Proposition 2.8] who showed quasi-
multiplicativity for locally constant cocycles under a certain assumption.

Theorem 3.4.9 (|P, Theorem F|). Assume that A € W. Then A is quasi-
multiplicative. Moreover, ® 4 is (simultaneously) quasi-multiplicative.

3.4.3 The continuity of Lyapunov exponents

Throught, PF : ¥ x PR* — ¥+ x PR* is the projective cocycle associated
with linear cocycle F: ¥ x R¥ — ¥+ x RF that is generated by (T, A).

We say that a matrix cocycle is strongly irreducible when there is no finite
family of proper subspaces invariant by A(z) for p-almost every x. Furstenberg
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[V Theorem 6.8 showed that the Lyapunov exponent x(u,.A) of F' coincides with
the integral of the function ¢ : ¥ x PR* — R,
(a5 v) = log PAD
o]
for locally constant cocycles under the strong irreducibility assumption. In other
words, he showed that

(i1, A) = / (e x 1),

for any stationary measure 7 of the associated projective cocycle PF. Therefore,
one can easily show that we have the continuity of Lyapunov exponents with
respect to (A, 1) ([V, Corollary 6.10]) under the strong irreducibility assumption.

Remark 3.4.10. Bonatti and Viana [BV1)], [BGMYV] extended the Furstenberg’s
formula to 1-typical cocycles. Therefore, we have the continuity of Lyapunov expo-
nents for typical cocycles with respect to (A, ), as well.

Even though discontinuity of Lyapunov exponents is a common features (see
[Ba], [Bocll), there are some results for the continuity of Lyapunov exponents. For
instance, Bocker and Viana |[BV] proved the continuity of Lyapunov exponents of
2—dimensional locally constant cocycles under a certain assumption. In order to
state the result of Bocker and Viana, we denote by Ay the collection of strictly
positive probability vectors in R* for £ > 2. We denote by X the full shift space
over k symbols. For p = (p1, ..., px) € Ak, let u be the associated Bernoulli product
measure on X.

Theorem 3.4.11 (|BV] Theorem B|). For every ¢ > 0 there exist 6 > 0 and
a weak® neighborhood V' of u in the space of probability measures on GL(2,R)
such that for every probability measure 11 € V whose support is contained in the
d-neighborhood of the support of u, we have

|X(IM7A> - X(M/7A/)| <é.

Avila, Eskin and Viana [AEV]| announced recently that Bocker and Viana’s
result remains true in arbitrary dimensions.

It was conjectured by Viana [V] that Lyapunov exponents are always continu-
ous among H(X, GL(2,R))-cocycles, and that has been proved by Backes, Brown
and Butler [BBB]. In fact, they prove Lyapunov exponents vary continuously on
any family of GL(2,R)-cocycles with continuous invariant holonomies i.e.,

x(z, An) = x(z, A),
when (A,, H>", H*") — (A, H*, H").

We state the main result of Backes, Brown, and Butler as follows.
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Theorem 3.4.12 ([BBB| Theorem 2.8]). Suppose that {A,}nen is a sequence of
2-dimensional linear cocycles over T converging uniformly with holonomies to a
cocycle A and {pin}nen a sequence of fully supported, ergodic, T-invariant proba-
bility measures converging to an ergodic, T-invariant measure p with local product
structure and full support. Then

Xty An) = x (1, A),

and,
X (s ALY = x(p, A7),

That improves Bocker and Viana’s result [BV]. Furthermore, Butler [Bu| showed
in the following example that the fiber-bunching condition is sharp.

Example 3.4.13. Assume that T : {0,1}% — {0,1}Z is a shift map. We define a
locally constant cocycle (T, A) such that

o 0 ol 0
AO_{O al}’Al_{ 0 a]’

where o is a positive constant greater than 1. We define probability measure v,
in order to 1,([0]) = p,1([1]) = 1 — p, and then Bernoulli measure j, = v”. By
definition the cocycle (T, A) is fiber bunched if and only if 02 < 2*[]

Butler[Bu] shows that for above example if o%7~2 > 2% for p € (3,1), then for
each neighborhood U € H*({0,1}%,SL(2,R)) of A and every € (0, (2p—1) log 7],
there is a locally constant cocycle B € U such that y(x,B) = k. In particular,
A is a discontinuity point for Lyapunov exponents in H%({0,1}%, SL(2,R)). So,
this example shows that we have discontinuity of Lyapunov exponents near fiber
bunched cocycles.

The inequality =2 > 2% comes from the following observation

Tim log([[ 4" (@) 4" (@) 1) = (x(stp: A) — X1 A™)) = (4 — 2) log o,

for u, almost every x € {0, 1}7.
Lyapunov exponents are T-invariant maps, thus when p is ergodic they are
constant p-almost everywhere. In that case, we denote them as x;(A) fori =1, .., k.
For a € R, the Lyapunov spectrum of linear cocycles is defined as:

L:={a, Jz € ¥ such that x;1(A) = a}. (3.4.3.1)

1%} is equipped by a norm d that is, for all z # y, d(z,y) = 2= V@Y where N(z,y) =
min{n, z, # yn}.
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For @ € R¥, we also define the Lyapunpv spectrum of a vector as follows:
L:={a, 3z €Y such that y,(A) = a},
for 1 <<k

Theorem 3.4.14 ([P, Theorem D]). Let A € W. Then L C R and L C R* are
convexr and closed.

We use Theorem [3.4.12f to show that the Lyapunov spectrum of fiber bunched
cocycles is a closed and convex set.

Corollary 3.4.15. Let A € HJ(X,GL(2,R))). Then L is a convez and closed
subset of R2.

Proof. Since W is open and dense, for every A € H](X,GL(2,R))) there is a
A, € W such that A, — A.

By Theorem [3.4.12]
Xi(Ar) = xi(A)
for ¢+ = 1,2. By Theorem |3.4.14] L is a closed and convex subset of R2. O]

3.4.4 Thermodynamic formalism for linear cocycles

In this subsection we will present what is known for linear cocycles.

Feng and Ké&enmiki [FK] extended the Bowen’s result, who proved the unique-
ness of equilibrium state for additive potentials under certain assumptions, for
subadditive potentials t® on a locally constant cocycle under the assumption that
the matrices in A do not preserve a common proper subspace of R* (i.e. (T, .A) is
irreducible).

Consider Theorem [3.4.9] the following theorem shows that we have the Feng
and Kéenmaiki’s result for typical cocycles.

Theorem 3.4.16. Let A € W be typical. Assume that ® 4 is (simultaneously)
quasi-multiplicative and t € R’j. Then Pq;A(f) has a unique equilibrium state py for

the subadditive potential ECISA. Furthermore, pp has the following Gibbs property:
There exists C > 1 such that for any n € N, [J] € L(n), we have

o1 < 1l <c (3.4.4.1)

e—an;A(f)+E Sp(x) —

for any x € [J]. Furthermore, Py (.) is differentiable on RY and VP@A(f) =
X(:ufv q).A)
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Proof. 1t is easily follows from Lemma and [P, Proposition 3.9]. O

Park [P] uses the quasi-multiplicative property A € W to show the continuity
of the topological pressure which it states in the following theorem. We remark
that we prove that for A € H{'(3,GL(2,R)) in the next section.

Theorem 3.4.17 ([P, Theorem BJ). The map (s, A) — P3 () is continuous on
[0,00) x W.

Theorem 3.4.18. Assume that hyop(T) < o0, and a(A) < oco. If A € W, then
Py ,() is a real continuous conver function on R. Moreover, a(A) exists and it

. ’ . Py , (t . . .
15 equal Pq,A(—oo) = limy_, —'Z‘(—) Similarly, P<I3A 15 a real continuous conver
function on R*. Furthermore,

@(A) == min{oy, @ € L}
Pz (t
= lim @+O.
ts—0co t
Proof. See |, Lemmas 2.2 and 2.3]. We remark that although [F, Lemmas 2.2 and
2.3] only deal with locally constant cocycles, the proof given there works for our
theorem under slightly modification. Indeed, Feng uses the quasi-multiplicative

properties to prove the lemmas. Since A € W, d A is (simultaneously) quasi-
multiplicative by Theorem [3.4.9] O

3.5 The results

3.5.1 The proof of Theorem [1.2.2

In this subection we discuss multifractal formalism of typical cocycles. Our
motivation for studying of the multifractal formalism associated to certain iterated
function systems with overlaps. For instance, the Hausdorff dimension of level
sets has been calculated for 2-dimension-planar affine iterated function systems
satisfying strong irreducibility and the strong open set condition by B. Barany, T.
Jordan, A. Kdenméki, and M. Rams [BJKR]. In the additive potential setting, the
Lyapunov exponents are equal the Birkhoff averages. In this case, the restricted
varitional principle, topological entropy, and Hausdorff dimension level set has
been studied by a lot of authors (see [C]).

Theorem 3.5.1. Let A € W. Suppose that Py () € R for each ¢ € RE. Then for
aelL,
hiop(T, B(@)) = inf{Pg (§) — @.§: 7€ R'}. (3.5.1.1)
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Proof. One can find the proof in [['H, Theorem 4.10| and [E), Theorem 1.1]. We
remark that although Feng only deals with the locally constant cocycles, the proof
given there works under slightly modification. O

Theorem 3.5.2. Assume thatT : X — X is a topologically mizing subshift of finite
type on the compact metric space 3. Suppose that A : X — GL(k,R) belongs to
typical functions W. Assume that w is the range of the map from M(X,T) to RF

o= (xa (s A), xa (i A), s X, A)).
We define
h(a) := sup{h,(T) : p € M(E,T), xi(n, A) = ai},
where & € w. Then,
W@) = inf{Pg (q) — @.¢: € R"}.
Proof. Fix d = (ay, ..., ) € w. For p € M(X,T), we define
Va() == Oalp, A) — ax, oo xa(ps A) — o).

It is easy to see that there is ' € M(X,T) such that V(') = 0.
We write
A={Va(p) : p e M(E,T)}.

Vz(.) is a continuous affine function on M(X, T') (see remark|3.4.10)). Therefore,
A is a convex compact set in R”.
We define g : A — R by

9(t) = sup{h(T) : p € M(Z,T), = t}.

It is easy to see that ¢ is a concave and upper semi continuous function on A. We
have h(@) = ¢g(0). We define

W(q) == sup{g(t) + ¢ : £ € R*},
for all ¢ € A. Then, we have

g(t) = inf{W(q) — gt : 7 € R¥}
for all £ € A, by Corollary m Hence, we have

h(d@) = g(0) = mf{W(9) : 7 € R"}.
By Theorem 3.4.18 Py (q) is a convex function on RE. Then, by variational prin-

ciple
W(q) = Pg (4) — a.q.
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Figure 5: Py ,(.) is a convex function for ¢ € R. The blue line is tangent to Pp ,(.)
at ¢ with slope o = P&,A(q').

Remark 3.5.3. In the locally constant cocycles case, Theorem|3.5.21s true under
the strong irreducibility assumption, which means we do not need the pinching
assumption in this case.

3.5.2 The proof of Theorem [1.2.1

In this subsection, we are going to show that the closure of the set where the
entropy spectrum is positive is equal the Lyapunov spectrum for typical cocycles.
This result is first attempt to characterize Lyapunov spectrum as a set of positive
entropy spectrum. The main input of our argument will be the fact that the topo-
logical pressure is convex for typical cocycles. Then, we can show the concavity of
the entropy spectrum of Lyapunov exponents by Theorem [1.2.2]

We recall that T : > — 3 is a topologically mixing subshift of finite type and
A ¥ — GL(k,R) is a Holder continuous function. We always assume hop(77) > 0.

Lemma 3.5.4. Let A € W. Then, hiop(E(q)) is concave on the convex set .
“See (3.4.3.1).
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Proof. The topological pressure Py, (.) is convex by Theorem |3.4.18 and L is con-
vex by Theorem |3.4.141 Moreover, by Theorems [3.5.1| and [3.5.2] we have

Prop(2(0)) = Inf (P, (1) ~ o}
=sup{h,(T): pe M(E,T), x(p, A) =a}.

Since the Legendre transform of the convex function is concave (cf. [HL, Theorem
1.1.2]), hiop(E(v)) is concave. O

Lemma 3.5.5. Assume that a nonnegative function f defined on a conver domain
D is concave and achieves a positive value at some point x € D. Then f(y) >0
forally e D.

Proof. Let x be in D such that f(z) > 0. For any point y in the interior of D, we
can always choose a point z € D such that:

(1=XNz+Az=y,
for some A € (0,1). Hence,

(L= f(z)+Af(2) < f(y).
Therefore, f(y) > 0 for all y € D. O
Theorem 3.5.6. For a € L, hiop(E(cr)) > 0.

Proof. By Lemma hiop(E()) is concave. Moreover, by Theorems and

B.5.2
hiop(E(a)) = sup{h,(T): pe M((E,T), x(p, A) = a}.

Since the measure-theoretic entropy is non-negative, hyop(E(ar)) > 0.

We claim that there is a such that hyop(E(a)) > 0. Let us assume hyop(E(r)) =
0 for all o € L. Then, as by Oseledets Theorem or every ergodic measure [
supported on (X,7) there exist a common value of Lyapunov exponent shared
p-almost everywhere, we must have h(u) = 0 for every ergodic measure p. Thus,
by variational principle, hio, (1) = sup, h(u) = 0, which is a contradiction. Con-
sequently, by Lemma , hiop(E(a)) > 0 for all a € L. ]

Remark 3.5.7. Entropy spectrum at boundary of Lyapunov spectrum is not nec-
essarily positive. In fact, there is a conjecture, which is known as Meta conjecture,
that says that under generic assumptions the entropy spectrum at boundary of Lya-
punov spectrum is zero (which would mean that hie,(E(B(A)) = hop(E(a(A)) =
0); this phenomenon is often referred to as ergodic optimization of Lyapunov ex-
ponents, see for example [Bof. In the additive potential case, instead, this phe-
nomenon is often referred to as ergodic optimization of Birkhoff averages, see for
example [J].
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A

Qmin Omax

Theorem 3.5.8. {a € R, hiop((E(r)) >0} = L.
Proof. That is direct consequence Theorem [3.5.6] O

Park [P] proved Theorem [3.4.14| for higher dimensional case. That means, L
is closed and convex. Therefore, we can obtain the following generalization of
Theorem to the Lyapunov spectrum of of all Lyapunov exponents.

Theorem 3.5.9. {d € R¥, hyp(E(d)) > 0} = L.

3.5.3 The proof of Theorem [1.2.3

Suppose that ® = {log¢,}>2, is a subadditive potential over a topological
dynamical system (X, T'). We define

B(P) := limsup 1 log sup ¢, (z)
n—oo T z€X
and call it the maximal Lyapunov exponent.
Morris [Morl3, Theorem A.3] showed that one can define the maxinal Lyapunov
exponent as the supremum of the Lyapunov exponents of measure over invariant
measures, i.e.,

B(®)= sup x(pP), (3.5.3.1)

HEM(X,T)

where .

n—oo M,

3See Theorem m
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This limits exists by Kingman subadditive theorem (see Theorem[2.1.2)). In (3.5.3.1)),
the supremum is always attained by an ergodic measure— this follows from upper
semi continuity of x(., (I))H, with respect to the weak™ topology, and the fact that
M(X,T) is a compact convex set whose extreme points are exactly the ergodic
measure.

We recall that the set of maximizing measures of ® is the set of measures on
X given by

Mupax(®) = {p € M(X,T),8(®) = x(1, ®)},

which is a non-empty set.
In this subsection, we always assume that the entropy map p +— h,(T) is upper
semi-continuous and hyep(1) < 00.

Theorem 3.5.10. For each t > 0, consider the family of equilibrium measures
Eq(®,t) for the subaddititve potential t®. Then one can choose a weak® convergent
sequence py, € Eq(®,t;), as t; — oo. Fvery measure p which is a limit of such
sequence 1s a Lyapunov maximizing measure for ®. Moreover,

Xk, @) = lim x (g, @).

In particular, the maximal Lyapunov exponent can be approzimated by Lyapunov
exponents of equilibrium measures.

Proof. Since Eq(®,t) is a non-empty compact convex subset of M(X,T) (see
Theorem , the sequence (1) has at least one accumulation point, let us call
it p. More precisely, there is a subsequence p;, € Eq(®,t;) that converges to u
in weak* topology. By Theorem [3.3.3] Ps(t) is convex, then we have OPg(t) =
{x(pu, ®) : e € Eq(®@,¢)} by Proposition [3.3.7, Moreover, since Pg(t) is convex
for t > 0, t — x(p1, ®) is non-decreasing and bounded above’

It follows that

lim 0Ps(t) = tliglo X (e, @) exists and is finite.

t—o00

Since Lyapunov exponents are upper semi continuous (see Lemma [2.4.2)),

By the definition of Eq(®,t;),

hut;(T) > (1, ) + h#;?ﬂ). (3.5.3.3)

X (pe;, @) +

1See Lemma
>See Theorem [2.1.2
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Since the topological dynamical systems (X, T') has finite topological entropy,

so when t; — oo, (3.5.3.3)) implies

Jm (e, @) > x(p, @). (3.5.3.4)

Comparing (3.5.3.2) with (3.5.3.4), we get
dim x (e, @) = x(n, ®).

Now, we shall show that u is a Lyapunov maximizing measure.

By contradiction, let us assume that there exists v with x (v, ®) — x(u, ) =
k > 0. One can define the affine map 7, : Ry — R by T,(t;) = h,(T) + tix (v, D).
We know that t; — x(u,, ) is a function which increases to its limit x(u, ®), so

X(u, (I)) 2 X(,uti* y (I)) = 86P¢(ti*), where ti* = ti_ or ti_,

and T;(t,-) =x(,®) = x(p, ®) + kK > O°Pop(t;,) + k.
Consequently, h,(T) + t;x(v,®) > Pg(t;) for all sufficiently large ¢; > 0, that
contradicts by our assumption. So, p is a Lyapunov maximizing measure.

Moreover, our proof implies that 3(®) can be approximated by Lyapunov ex-
ponents of equilibrium measures of a subadditive potential t®. O

Denote P(t®) := Py(t), where t € Ry and ® = {log ¢,,}5°, is a subadditive
potential.

Lemma 3.5.11. The mapst— h,,(T) and t — P(t®—t5(P)) are non-increasing
and bounded below on the interval (0,00). Moreover, we have

lim h,, (T) = lim P(t® —t5(®)) > sup  h,(T).
t—o00 t—o0 VGMmax(‘I’)

Proof. The map t — P(t® — t5(P)) is convex. By definition of 5(®),
X(pe, @) < B(®) for all py € Eq(@,1).

By the definition of the topological pressure, P(t® — t3(P)) = P(t®) — t5(P).
Then,

Pt —t.0(P)) = O°P(t.P) — B(P) = X (pe., ®) — B(®) <0,

where t, =t_ or t,. Thus, P(t® —tf(®P)) is non-increasing by Theorem We
are going to show that ¢ — h,, (T) is non-increasing. Since y, is an equilibrium
measure,

hy, (T) = P(t) — t0°P(t,).
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For 0 < z < y we have

P(y) — P(x)
y—l’

0°P(z.) < < O°P(y.),

so P(y) — P(z) < yo°P(y.) — 20°P(y.) < yo°P(y.) — 20°P(x,), and then
P(y) —y0°P(y.) < P(z) — 20°P(x.).

Since t — h,,(T) and t — P(t® — tf(P)) > 0 are non-increasing and non-
negative, we conclude that lim, , h,, (7) and lim,_,., P(t® — t5(P)) both exist.
This implies that the limit

lim 10° P(t) — t(®) = lim (P(t% — t5(®)) — hy, (T))

exists. Then,
lim Ay, (T) = lim P(t® —t5(P)).
t—o0 t—o0

Last part follows from the variational principle. m

Lemma 3.5.12. M,.x(P) is compact, conver and nonempty, and its extreme
points are precisely its ergodic elements.

Proof. See [Morl3, Appendix A|. O

Theorem 3.5.13. h,(T) = limy, o0 hy,, (T') = max{h,(T), v € Mmumax(®)}.

Proof. By Theorem [3.5.10| and Lemmas [3.5.11] and [3.5.12]

hu(T) < max h,(T) < lim hy, (T),

VEMmaz (®) T ti—oo

the reverse inequality follows from upper semi continuity of entropy. n

Remark 3.5.14. Let (T, A) be a locally constant cocycle. Then, one can prove the
above results for Gibbs measures under the assumption that (T, A) is irreducible
(see |[FK|, Proposition 1.2]). Moreover, if T : X — X is a mizing subshift of
finite type and A : X — GL(k,R) is a Holder continuous function, then one can
prove the above results for Gibbs measures under the generic assumption (typical
cocycles).
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3.5.4 Approximation of the maximal Lyapunov exponent

In this subsection, we consider locally constant cocycles and we prove the max-
imal Lyapunov exponent can be approximated by Lyapunov exponents of periodic
trajectories.

Kalinin and Sadovskaya [KS19, Theorem 1.4] proved that if a homeomorphism
T satisfies the closing property, and A : X — GL(k,R) is a Holder continuous Ba-
nach cocycle, then the top Lyapunov exponent can be approximated by Lyapunov
exponents of measures supported on periodic orbits. In general, Kalinin [Kal, The-
orem 1.4] showed that for a Holder continuous map A : X — GL(k,R), Lyapunov
exponents can be approximated by Lyapunov exponents of measures supported on
periodic orbits under an assumption slightly stronger than the closing property.
Our approach differs from them. We use the continuity of Lyapunov exponents

(Theorem [3.4.11)) and the closing property.
For i € M(X,T), the set G, of u—generic points is defined by

n—1
1
G, = {x e X:— E Oriy — j in the weak * topology as n — oo}
n
=0

where 0, denotes the probability measure whose support is the single point y.

Theorem 3.5.15. Let (T, A) be a locally constant cocycle, where A : X —
GL(2,R), satisfying the closing property. Then the maximal Lyapunov exponent
can be approrimated by Lyapunov erponents of measures supported on periodic
orbits.

Proof. Denote ¢,,(x) = ||A™(z)||. Let u be an ergodic maximizing measure, that is
B(®) = x(u, ®). Let x be a generic point for p.

Since x is a generic point and the intersection of the support of measure with
the set of generic points has full measure, u(B(z, 7)) > 0 for every k € N, where
B(x, ;) is the ball of radius ; centered at x. By Poincaré’s Recurrence Theo-
rem [°| there exists a sequence (ny),.y of positive integers so that n, — +oo and
T (z) € B (, 1) for each k € N.

By the closing property, it follows that, for each k sufficiently large, there exists
a periodic point py of period ny so that

3(1(@), T () < Cre ™ Um=d (T7 (2), ) < Leomnims) - (35.41)

for every j =0,1,...,ns.

6See [PU, Theorem 2.2].
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Denote by

1 nk—l
=Y drs
T =0

the ergodic T-invariant measure supported on the orbit of p.

We claim that p, — p in weak™ topology.
Proof of the claim: To prove that u; — p in the weak® topology it is enough to
check that for every continuous function f : X — R we have [ fdu, — [ fdu. Let
us choose a continuous function f, note that f has compact domain and hence it
is uniformly continuous. Choose € > 0. Let 0 be so small that |f(z) — f(y)| < e
whenever d(z,y) < 6.

If £ is sufficiently large, the right-hand side of is small for every j and
d(T?(x), T (pr)) < & for every j € {0,...ny}. Given a continuous map f : X — R
take above ¢ associated to ¢ by the uniform continuity of f. Consequently,

[F(T7(2)) = F(T? ()] < &

for every j € {0,...ny}, which implies that

1 nge—1 ; 1 ngp—1 ;
!n—k ;O f(T(2)) - - 2. [T (p)) <e
Now, since x is a pu—generic,
1 nE—1 ;
o 2 1) [ fn
Thus,
1S
[ g [ awd = [ ran- > ST
1 ng—1 ;
g/wwﬁﬁ;y@wm
ng—1 ng—1

e Y ST @) ~ o 3 AT )] <2

Jj=

for every k sufficiently large. As £ can be choosen arbitrarily small, this proves
[ fdpx — [ fdp. As f was arbitrary, the weak* convergence of ju, to p follows.
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Moreover, supp(ji) is contained in a C%—neighbourhood of the trajectory of z,
which is contained in supp(u). Therefore, by Theorem [3.4.11} for every £ > 0,

X (1, @) = x(p, ®)| < e,
for k large enough. O

Remark 3.5.16. One can prove the above theorem for 2-dimensional fiber bunched
linear cocycles by using Theorem [3.4.12

Remark 3.5.17. Avila, Eskin and Viana [AEV|] announced recently that the The-
orem |3.4.11 remains true in arbitrary dimensions. By their result, the proof given
for Theorem works for arbitrary dimensions.

Remark 3.5.18. Morris [Moril, Theorem 1.2] showed that the speed of conver-
gence of Theorem 1s always superpolynomial for locally constant cocycles.
Moreover, Bochi and Garibaldi [BG), Theorem 7.2] showed that it is true for generic
matrixz cocycles under certain assumptions.

3.5.5 The proof of Theorem [1.2.4

In this subsection, we will discuss the continuity of the entropy spectrum of
Lyapunov exponents, that is, the topological entropy of level sets of points with a
common given Lyapunov exponent. In the locally constant cocycles case, Lemma
follows from Feng and Shmerkin’s paper [FS]; see [F'S, Proposition 5.3].

Lemma 3.5.19. Assume A, A € W with A, — A. For t,,t > 0, let t, — t.
Suppose that oy, and oy are the derivatives of P¢Ak() and Py () at t, and t,
respectively. Then,

kh—golo htop(EAk (atk)) = htOP(EA(at))'

Proof. According to Theorem [3.4.16| Py , () is differentiable for any ¢ > 0 and there
is a unique equilibrium measure u; for the subadditive potential ¢t® 4 . Therefore,
we have

htop(EA(at)) = h/lt (T)7

where P&,A (t) = au, by Theorem .

Taking into account the observation above, to prove the theorem it is enough
to show that h,, (T) — hy,(T) for proving the theorem.

By the definition of Eq(® 4, , ),

P(I)Ak <tk) = hﬂtk (T> + th(,utky Ak)

99



Notice that the Lyapunov exponents are upper semi-continuous. Moreover,
the topologically mixing subshift of finite type T : ¥ — ¥ implies upper semi-
continuity of the entropy map p — h,(T). Now, we conclude from above observa-

tions and Theorem (3.4.17
Py ,(t) = lim P, (t)
= kh_{go hutk (T) + th(:utk? Ak)
S h#t (T) + tX(:utv A)

This shows p; € Eq(®a,t) and g, — 1 [[] Moreover, we have equality in the
above, which gives the claim. Furthermore, it shows the continuity of Lyapunov
exponents of equilibrium measures. O]

We use Theorems [3.5.10] and [3.5.13| to prove the following theorem.
Theorem 3.5.20. Suppose that A€ W. If a, = P&,A(t) fort > 0. Then,
heop(E(0)) = hiop(E(B(A)) when t — oo.

Proof. Since A € W, Theorem [3.4.16] implies that there is a unique equilibrium
state i, for the subadditive potential t® 4 such that

X, A) = aw = Py (2).

By Theorem (3.3.9),
htOP(E(O‘t)) = hy, (T).

We know that
heop(E(B(A)) = sup{h,(T), pe€ M(E,T), x(p, A) = B(A)}
by Theorem Therefore, we only need to show that
hu(T') = sup{hu(T), p € M(E,T), x(n,A) = B(A)}.

That follows from Theorem B.5.13 O
Theorem 3.5.21. Suppose A;, A € W with A, — A, and t,,t € RY such that
ty — t. Assume az, = VPq;Al (t) and &, = VP, (t). Then,

i oo (B(67,)) = huop (B (i)
Moreover, L

hiop(E(&%)) = hiop(E(B(P4)) when t — oo.

Proof. The proof is similar to Theorems [3.5.20] and [3.5.13] and is omitted. O]

"By weak® compactness pi;, has a accumulation point, let us call p;. According the above
observation p; is an equilibrium measure for t¢® 4. Then uniqueness of equilibrium measure implies
the limit.

8We remind the reader that P(.) is differentiable for A € W according to Theorem
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3.5.6 The proof of Theorem [1.2.5

In this subsection, we are going to prove the continuity of the lower joint
spectral radius for derivative cocycles under certain assumptions. This kind of
result is known by Bochi and Morris [BM]| under 1-domination assumption for
locally constant cocycles. Breuillard and Sert [BS| extended their result to the joint
spectrum of locally constant cocycles. Moreover, they gave a counterexample [BS,
Example 4.13| that shows that we have discontinuity the lower joint spectral for
typical cocycles. Even though, we have a lot of results for the upper spectral radius,
we have few result about the lower spectral radius, which shows that working on
the later case is much harder than the former case.

Assume that T : X — X is a diffeomorphism on a compact invariant set X.
Let V & W be a splitting of the tangent bundle over X that is invariant by the
tangent map DT'. In this case, if vectors in V' are uniformly contracted by DT and
vectors in W are uniformly expanded, then the splitting is called hyperbolic. The
more general notion is the dominated splitting, if at each point all vectors in V' are
more contracted than all vectors in WW. Domination could also be called uniform
projective hyperbolicity. Indeed, domination is equivalent to V' being hyperbolic
repeller and W being hyperbolic attractor in the projective bundle.

In the linear cocycles case, we are interested in bundles of the form X x RF,
where the linear cocycles is generated by (7),.A). Bochi and Gourmelon [BGO]
showed that a cocycle admits a dominated splitting V & W with dim V' = k if and
only if when n — oo, the ratio between the k —th and (k+ 1) — th singular values
of the matrices of the n — th iterate increase uniformly exponentially. In fact, they
extended the Yoccoz's result [Y] that was proved for 2-dimensional vector bundles.

Definition 3.5.22. We say that A is i-dominated if there exist constants C' > 1,
0 <7 < 1 such that

oiy1(A"(z)) n
—ai(A”(x)) <Ct", VneN,x e X.

According to the multilinear algebra properties, where A is i—dominated if and
only if A" is 1—dominated.

Let (X,T) be a TDS. We say that A : X — GL(k,R) is almost multiplicative
if there is a constant C' > 0 such that

A" (@)]| = ClJA™ (@)||[|A™(T™ (2))]| Vo € X,m.n €N,
We note that since clearly || A" (z)|| < [|A™(2)|||]A*(T™(x))|| for all z €

X,m.n € N, the condition of almost multiplicativity of A is equivalent to the
statement that ® 4 is almost additive.
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Proposition 3.5.23. Let X be a compact manifold, and let A : X — GL(k,R)
be a matriz cocycle over a TDS (T, X). Let (Cy)zex be a cone field on X. Then,
there exists k > 0 such that for every m,n > 0 and for every x € X we have

A" (@)[] = &A™ (@)]] - [ A" (T ()]

Proof. Let us start from the notation. Denote by 7 the natural projection from R*
to the projective space PR and by d the natural metric on PR*. For a family of
convex cones (C}),cs, all contained in the interior C° of another convex cone C,
we define their convex hull as

conv(C,) ={v e C;n(v) = W(Z a;v;) for some a; > 0, Zai =1,v€C,}

The Hausdorff distance in metric d between C and conv(C,) equals the supremum
of Hausdorff distances between C' and C,. (to be absolutely precise, the Hausdorff
distance is defined for compact sets and the metric d is defined on the projective
space, so we mean here the Hausdorff distance between 7(C') and w(conv(C,))). If
this supremum is positive (for example, if the cones C, are continuous as a function
of r and J is compact) then this supremum is positive, hence conv(C,) C C°.

For every x € X the set T~!(x) is compact. Thus, we can define

D, = conv({C,;y € T '(x)})

for x € T(X) and, by compactness, we have D, C C?9. We denote

Dr(zy = conv({A(y)(Cy);y € T~ (z)})

for x € T(X). We choose D, as any convex cone contained in C? for z € X \T(X),
we only demand that z — D, is a continuous map (this can be done because X
is compact, hence X \ T'(X) is open in X). One can check that, as D, C C9, we
have

A(2)D, C (A(x)C,)° C D

Hence, (D,) is another invariant cone field, strictly contained in (C.).
Let for each z € X d, be the Hilbert metric in C,. Let d be the usual metric
on PR*. We have the following properties:

e Each D, is bounded in d,. By compactness of X, there exists K; > 0 such
that diamg, (D,) < K; for all z € X.
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e In each D, the metric d, is equivalent to d. By compactness of X, there
exists Ky > 1 such that for every x € X for every v,w € D, we have
K2_1dx<7}7w) S d(U,lU) S K2dx(v7w)'

e Bach A(x) : D, — D) is a contraction. By compactness of X, there
exists A < 1 such that for every x € X for every v,w € D, we have

dr ) (A(z)v, A(z)w) < Mdg(v, w).

e For v € C, denote ~,(v) = log(|A(z)v|/|v|). The map v — 7, (v) is Lipschitz
(in metric d) on D,. By compactness of X, there exists K3 > 0 such that for
every € X the map ~, is K3-Lipschitz (in metric d) on D,.

e For every z € X the convex cone D, contains (for some v, € D, N PR* and
7. > 0) a ball B(v,,r,) = {w € PR*; d(v,,w) < r.}. By compactness of X,
there exists 7 > 0 such that for every 2 € X we have D, D B(v,,r) for some
v, € D, NPRE,

Choose some x € X and v,w € D,. Fix m > 0. Denote

Am
7y (v) = log ———— | Z Vri(a

Note three obvious properties of this function:

e 7, is a projective function, that is v,(v) = v,(av) for a > 0. Thus, we can
define v, on the projective space PR*. The same holds for .

o 7' (v) < log [[A™ ()],

o () = 7 (V) + V(g (A" (2)0).

We have
d(A"(x)v, A (z)w) < Kodrpi(y (A'(z)v, A'(z)w)
S KQ)\idx(v,w) S KQ}\iKl.
Hence,
7" (v) =™ (w)] < K3mz_:ld(v42( v, A'(z)w) < Ky = K1 Ky Ky !
- pr - 1—A

for every v,w € D,.
To finish the proof we need the following lemma.
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Lemma 3.5.24. Let A € GL(k,R). Let K,r > 0. Assume |y(v) — y(w)| < K
for some v € PR* and all w € B(v,r), where v(v) = log|Av|. Then there exists
a constant p = p(K,r), depending on K and r but not on A, such that v(v) >

log || Al = p(K, 7).

Before proving Lemma [3.5.24] let us observe that it indeed implies the assertion
of Proposition As D, contains some ball B(v,r) with v € D, NPR*, we can
apply the lemma to the matrix A™(z), obtaining log || A" (z)|| < p(Ky, )+~ (v).
Hence, for every w € D, we have

log [|A™(z)[| < p(K4, 1) + Ky + ;" (w).
Similarly, Drm(,) contains a ball of size r, hence for every u € Dyrm(,) we have
log [|A"(T™(2))|] < p(K4,7) + Ka + Ypm (g (w).

Thus, choosing u = A™(z)w we get

log || A™ (2)[] + log [[A™(T™ (2))|| < 2p(K, 1) + 2K, + 47" (w)
< 2p(K,7) + 2K, + log || A"+ (z)|

which is our assertion.

Now, let us come back and prove Lemma, |3.5.24)

Proof. We start by a decomposition A = O1D0,, where O1, Oy are orthogonal
matrices and D is a diagonal matrix with elements £(o;(.A)) (the singular values
of A). Tt is enough to prove the assertion for the matrix D.

So, let D be a diagonal matrix. Let e be the eigenvector corresponding to the
maximal eigenvalue: |De| = ||D||. Even when v.e = 0, the ball B(v,r) still must
contain a vector w such that |w.e| > 1/2 - sinr. We have w = (w.e)e + (1 —
(w.e)?)1/%e’, where e.e’ = 0. Hence,

1
v(w) =log | Dw| > log(|w.e| - |De|) = log |w.e| +log||D|| > 10g(§ sinr) + log || D]|.
Thus, for every u € B(v,r) we have

1
v(u) > y(w) — K > log||D|| + log(§ sinr) — K.

We are done. O
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One needs to be careful that quasi-multiplicativity is not equivalent of almost
additivity. For instance, let T : {0, 1}% — {0, 1}Z be a shift map. We define a linear
cocycle (T, A) such that

AO: |:(2] (l):|7 A1:R97
2
where 6 is an irrational angle. It is easy to see that the locally constant cocycle
(T, A) is strongly irreducible. Feng [E| Proposition 2.8 showed that the irreducible
matrix cocycles are quasi-multiplicative.
We define the upper joint spectral radius of A: X — GL(k,R) as follows

pA) := lim sup{|lA" ()] : @ € X},

It is easy to see that B(A) = logp(A). Similarly, we define the lower joint
spectral radius of A: X — GL(k,R) as follows

p(A) := lim inf{[|A™(z)||" : = € X}.
We have
log p(A) = min{oy, @ = (ay, g, ..., o) € L} = a(A).

Assume that f: X — X is a convex continuous function on a compact metric
space X. We have 0f(R) = 0f(R) U {f (00)}U{f (—o0)}, where Of(R) is defined

as in (2.3.1)).

Theorem 3.5.25. Let (X,T') be a TDS such that the entropy map p— h,(T) is
upper semi-continuous and hiyo,(T) < oco. Suppose that A : X — GL(k,R) is a
matriz cocycle over the TDS (X, T) and (Cy)rex is an invariant cone field on X.
Then a(A) can be approzimated by the Lyapunov exponents of the equilibrium mea-
sures for the almost additive potential t® 4, where t € R. Moreover, a minimizing
measure for A exists.

/

Proof. Let a == a(A) = Py, (—o0). We know that A is almost multiplicative by
Proposition (3.5.23]

According to convexity of Ps , (), there exists a sequence (t;) such that PCII)A (t;) =:
a; exists for every j € N and a; — « as j — oo. There exists p; € Eq(®4,t;)

such that x(u;, ) = «; for all j, by Proposition [3.3.7 Let p be an accumulation
ﬂpoint of sequence (u;) as j — co. By Lemma [3.3.11] we have

X(pg, A) = x(p, A) = a.

Furthermore, our proof shows that a minimizing measure exists.

9Eq(A,t) is compact in weak* topology.
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Now, we can show the continuity of the minimal Lyapunov exponent.

Theorem 3.5.26. Lel (X,T) be a topologically mizing subshift of finite type. Sup-
pose that A,, A : ¥ — GL(k,R) are matriz cocycles over (X,T), and ®4 has
bounded distortion. Assume that (Cy)zex s an invariant cone field on 3. Then,

a(A,) = a(A) when A, — A.

Proof. According to Theorem [3.5.25, a(A) can be approximated by Lyapunov
exponents of equilibrium measures for the almost additive potential ¢t® 4, where
t € R. Therfore, it is enough to show

X (fny An) = X (11, A), (3.5.6.1)

where pu, i1, are the equilibrium measures.
By Proposition [3.5.23] A is almost multiplicative. Hence, there exist a unique
equilibrium measure for the almost additive potential ¢® 4, where ¢t € R (see The-

orem [2.5.3). Thus, (3.5.6.1)) follows from the proof of Lemma [3.5.19] O

Domination can be characterized in terms of existence of invariant cone fields
for derivative cocycles (Theorem [2.8.7). This fact shows that 1-domination implies
that A is almost multiplicative. Therefore, one can prove Theorem for fiber
bunched cocycles (see Lemma under 1-domination assumption.

It is possible to obtain the generalization of Theorem to the joint spec-
trum of all Lyapunov exponents. One can also obtain the continuity of the lower
joint spectral radius for all Lyapunov exponents.

3.5.7 The proof of Theorem [1.2.6

In this subsection we are going to prove the continuity of the topological pres-
sure for H] (X, GL(2,R)). In the locally constant cocycles case, Feng and Shmerkin
|[E'S| proved that we have the continuity of the topological pressure. Recently, Park
[P] proved that we have the continuity of the topological pressure for typical co-
cycles. We recall that typical means that a linear cocycle is pinching, twisting and
fiber bunching. The techniques we use in the proof are inspired from result [FS].
The result shows that one can prove the continuity of the topological pressure
under weaker assumption that Park assumed. The main input our argument is the
continuity of Lyapunov expoents that was proved by Backes, Brown, and Butler
IBBB] for H; (X, GL(2,R)).

We use the our result to show that set of ®4-equilibrium states for upper
triangular matrices that belongs to H} (X, GL(2,R)) is equal set of equilibrium
states its diagonal.
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For s > 0, we define

Ml A, ) = Tim © [ log o (A" (@) du(z),

n—oo N
where ;1 € Eq(®4, s).
Theorem 3.5.27. The map (A, s) — Py (s) is continuous on [0, 00)x Hy (X, GL(2,R)).

Proof. Since the topological pressure is upper semi continuous, it is enough to
show that it is lower semi-continuous.

Assume that A, € H (X, GL(2,R)) and s € (1,2) . We can assume that there
is an ergodic measure u € Eq(Ci) A,S) by Lemma Then, by varitional principle

P@Ak(Sk) > hu(T) + Xe( Ay, si) (3.5.7.1)
=N (T) + (2 = si)Ae(Axy 1) + (s — DAe( Ay, 2).
Notice that ]
A(Ai2) = lim = [ log | det( A} (o)) [ du(z).
Therefore, when A, — A, we have
Ae( Ak, 2) = Ac(A, 2),
and
Ae(Ar, 1) = Ae(A 1),
by Theorem [3.4.12] Then, by (3.5.7.1),

liminf P; > hu(T) + Ae(A,5) = Pg , (s).
(Ak»lSIISLn(A,s) (I)Ak<8k)_ 'u< )+ (A 8) (I)A(S)

This proves the continuity of Pj (.) at (A, s). O

Remark 3.5.28. Recently, C. Freijo and K. Marin [FK2] extended the Backes,
Brown, and Butler’s result to non-uniformly fiber-bunched cocycles. According to
their result, one can prove the above theorem for non-uniformly fiber-bunched co-
cycles.

3.5.7.1 Application of Theorem (3.5.27

In the locally constant cocycles case, Falconer and Miao [FM], Theorem 2.5]
showed that the set of ® 4-equilibrium states of upper triangular matrices is pre-
cisely the set of ® -equilibrium states its diagonal. Kdenmiki and Morris [KM,
Proposition 6.2] extended Falconer and Miao’s result for higher dimensional case.
One can use the Kédenméki and Morris’s proof and Theorem to obtain the
following result:
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Corollary 3.5.29. Let A € H"(X,GL(2,R)) be an upper triangular matrices :

Then the set of O 4-equilibrium states of upper triangular matrices A is precisely
the set of ® y-equilibrium states its diagonal :

A= 0 ]

Remark 3.5.30. Recently, Butler and Park [BP] proved some results in this di-
rection for 2-dimensional cocycles.
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Chapter 4

On Hausdorft dimension of thin
nonlinear solenoids

4.1 Introduction

In this chapter, we will be concerned with so-called "Smale-Solenoid", a very

natural example of a non-conformal map.
Let M = S' x D be the solid torus, where D = {v € R?||v| < 1} carries the
product distance d = d; X dy and suppose f : M — M such that

(x,y,2) = (n(z,y,2) mod 27, \(x,y, z) + u(z),v(x,y, z) + v(x)) (4.1.1)

is a O invective map, where A\(x,0,0) = v(z,0,0) = 0. Moreover, the component
functions n, A and v satisfy the following assumption :

1- n'(z,y,2) = %n(az,y,z) > 1
2- N(x,y,2) = aﬁy)\(x,y,z) <1

3- vz, 2) = %V(x,y, 2) < N(z,y,2),
at every z,y, z. In addition, the functions A, v and n(z,y, z) —d X z are 2mw-periodic
with respect to x, where d is degree of f. We always assume d > 2. In the linear
solenoid case, if 7 < 1/)\’, then such a solenoid can be called a uniformly thin
solenoidl

“In fact, our assumption guaranties hyperbolicity. For ¢ = 0, v N, let o, (p) =
[1=, 1 o (fi(p) for p € M (e.g. Au(p) = [T=2, 0 N (F1(0))-

We will modify assumption of function in the following subsections.

'For the definition of a thick linear solenoid, where '\ > 1, see e.g. [Tsul.
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Definition 4.1.1. Suppose that W is a differentiable manifold and X C W. A
family A of smoothly injectively immersed in W manifolds {N,}.cr (called the
leaves) is called a lamination on X if N, N Ng =0 when o # 5, X C U,N,, and
for each x € X there is a neighborhood U and a homemorphism h : U — R" such
that h maps every connected component V of N, N U to h(V) N (RF x {y}) C R"
for some y € R"*.

If X = W, this lamination is said to be a foliation.

We define hyperbolic attractor for map as A == Mpenf"(M). fia is
topologically transitive. We consider the dominated splitting Th (M) = E* @& E** &
E?%, where ss means strong stable ws weak stable and u stands for unstable.

Definition 4.1.2. For ¢ > 0 small enough, one defines at each p € M its
strong stable set,

W*(p) := {q € M,3C > 0,Yn > 0,d(f"(p), f"(q)) < Ce "D flyu(p)}. (4.1.2)

In other terms W*(p) is the set of points whose orbit converge to the orbit of p
faster than the contractions D f‘%m.

We define the natural projection 7 : p = (z,y,2) — x(p) := x. For any set
D C M,let p € D, := (mp) ' (). Thus, we define stable slice as A, := W3 (p)NA.

AfIJ
Figure 6: The Solenoid, whose expanding map is a doubling map.

We define 7, ) := (x,y, 2) — (x,y). Suppose that A has a transversal crossing
over the points (p,q)(q,p € A). That means,

(1) T (z,y) (p) = 7T(a:,y)(Q)J
(2) Tz (Wise(p)) is transversal to m, ) (Wi (q))-

Sometimes we say that A has a transversal crossing over ¢ = 7(p) = 7(q).
An unstable foliation for A is a foliation YW" of a neighborhood A such that
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Figure 7: A,.

a) For each p € A, W¥(p), the leaf W* containing p, is tanget to E},
b) for each p € A, f(W"(p)) D W"(f(p))-

We say that W is transitive (minimal), if W¥(x) = M for some (all) z € M.

4.1.1 Unstable Holonomies

Assume that A and B are two nearby embedded disks transverse to unstable
lamination W*" then there is a holonomy map defined on a subset of ANA to BNA
such that

p = Wi(p) N B.

In other words, we move along unstable leaves from AN A to BN A (see Figure

These holonomies are always Hoélder continuous, but they are not necessary
Lipschitz continuous. See for more information [Br].
4.1.1.1 TUnstable holonomies for solenoid

The holonomy mapping
MG Wy, ()NA =Wy (@)NA (2(p) — x(q)| < 2m)

is defined by
I () i= W

Note that there is a unique point the intersection on the right-hand side, by
local product structure.
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Holonomy from AN A

to BNA

at p is NOT Lipschitz
continuous at p iff

for all C > 1, Ag > C'Ap.

ANA

Figure 8: Holonomy

Pinto and Rand [[PR], [PRE]] show that the stable and unstable holonomies of
a hyperbolic set A of map (4.1.1)) have C'** extension for some «. More precisely,

Theorem 4.1.3 ([PR], [PRF]). Let f : M — M be C*** with a codimension 1
hyperbolic invariant set A which is topologically transitive and has a local product
structure. Suppose that the Hausdorff dimension of the unstable leaf segments is
one. Then, there is « such that all the holonomies are C1+2.

Due to the integrability of E* we get stable foliation W?* of M which is O,
By Theorem , under an appropriate C17 change of coordinates becomes the
foliation of M by discs xxID. That means, fixed p = (z,y, z). We consider the map
L : M — M such that

p=(z,y,2)— W(p)NS"y,z),

which will be used as a suitable change of coordinate.
We obtain a new map f = LofoL ! such that

(l’, Y, Z) — (l’, hl(x7 Y, Z) + U(I), hg(l’, Y, Z) + U(I))7
where h; s are distinct function for i = 1, 2.

The strong stable foliation W** is known to be C'*® in W, see [Br]. Hence,
one can find a locally C'*® change of coordinates which would make WW** consist
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of vertical intervals. In the new coordinates f would be locally C**® in each W,
but we do not know what would be its global smoothness.

Keep the assumption of map . According to the above observation, we
just assume the map f: M — M is a C'* and looks like

(#,y,2) = (n(x)  mod 2m, A(x,y) + u(x), v(2,y, 2) + v()). (4.1.1.1)
Take w € M, the differential of f at e € W?*(w) is
a 0 0] |z
Df= b b 0] |y]. (4.1.1.2)

Ci1 Cy C3 z

The mapping f in (4.1.1.1) is called triangular non-linear.

The leaves W* of the lamination W* of A project locally 1-to-1 to S, their
angle with all W* is bounded away from 0. Writing W*, we consider only a bounded
parts of W*, usually W[ggﬂ, which means the part which projects onto [0, 27] 1-to-1
(excepts the ends), in particular 1-to-1 to S*.

We will always consider f given by the formula (4.1.1.1)).

Under transversality and x (s, v') < x(pe, A') < —x(pe,n'), we show that Haus-
dorff dimension of the conditional measures on W*NS? of the geometric equilibrium
measure p; for f~' and the potential tolog ', where )" is the weaker contraction
rate function, is ¢5. Then, we show that the Hausdorff dimension of solenoid at-
tractor is 1 + ¢p.

4.2 Symbolic dynamics and Markov Partitions

It is well known that there is a Markov coding for Anosov diffeomorphisms (see
JAl). Markov partitions are a useful way of partitioning the space that a dynamical
system acts on by providing a useful tool for developing a "symbolic coding" of f.
So, we can partition S! into closed intervals I; = [a;,a;41) where {a;} = n~1(0).
We write I; .| i == ﬂ?:_nH n(_j_l)(fij). Further, we call Vi;, ;=1 ;, xD
n-vertical cylinder and H;_ ., i = ["(Mi_,.1,..io) D-horizontal cylinder, while
the set Cs,  iolir,...in = iol M Viir,...in- We consider H; . 01(P) ,Vjiy,...in (D)
and Cj, . olir,...in (D), respectively, n-horizontal cylinder, n-vertical cylinder and n-
rectangle contain p, respectively. Sometimes, we denote them by H,(p), V,(p) and
. (p).

We denote by H(n) and V(n) the sets of all horizontal, respectively vertical,
cylinder as above, of generation n. Using projection 7, ), we repeat all the above
definitions for coordinate plane (z,y), using the same notation with hat over the
symbols. That is,

T—mseeey

~

H; . o] = T(ay) © Hi

=

—nseniols V]it,ein = T(zy) © V|i1,--.,in7 )

69



~

y °Ci

—_—~
u u
ina"'7i0|i17"'7"ﬂ - tnye- 710|i17~~-»in’ W - ﬂ-(x»y) ° W ’

W?e = T(z,y) © Ws’ K = Wz,y(A)a f: g,y © f o (ﬂ-x,y>_1‘

To construct symbolic dynamics, we introduce symbolic space ¥ := {1,...,k}Z.
We consider the canonical coding p : ¥ — A, where

ﬂvzh,mﬂ i

n=1,2,... n=1,2,.

for any two side sequence i = (..., 5y, ..., %0]i1, s ln, ... ).
We denote by ¥ and X~ the sets of rlght sided and left-sided sequence on d
symbols which is obtained from the sequence . That is,

E+:{ZL‘:($1)Z€Z |Z>0},
and,

If a function ¢ : ¥ — R depends only on the coordinates ... ,i_,, ..., i, then
we will say ¢ depends only on the past. Similarly, if a function ¢ : ¥ — R depends
only on the coordinates iy,...,%,,..., then we will say ¢ depends only on the
future.

We also consider the following one side shift maps

ot YT s Yt and o YT = 2.

We can use the canonical splitting of our symbolic space ¥ = ¥~ x X1, where X~
specifies the local unstable manifold and X% the local stable manifold.

Definition 4.2.1. We say that the unstable foliation is transverse if the curves

Ty (P([ - i i21,%0]]) s Ty (P([ - J=n - - - J=1J0]]) such that iy # jo are trans-
verse. We denote the set of their intersection(crossing) point by I'. We call these

crossing Oorder crossing.

Definition 4.2.2. We call transversal intersection of the curves

W(x,y) (p([ .. i_n Ce i_1i|l1l2 R lm]) and W(m,y)(f)([ . 'j—n .. .j_lj’lllQ . lmD forall 1 S
i,j < k,i# j, where

gy (P i iaillily o 1)) O Ty (PG - Go1jllala - D)) =
T (S (0L - ia2)]) NV (P (AL - T - 5-131D) O itz € f™(D),

m-order crossing.

Standing Assumption: In throught this chapter, all intersection of this lines
(i.e. projections by m,, of unstable manifolds) with different i, are transversal.
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4.3 On Lipschitz property W"

In this section we will describe in more details the smoothness of holonomies
along unstable leaves.

The discussion here requires only the assumption described at the beginning of
previous section (see map [4.1.1.1]). It was shown by Anosov [A] for general Anosov
systems, the unstable and stable foliations are always a—Holder for some a de-
pending on the rates of expansion and contraction of the system . But, holonomies
are not necessary Lipschitz continuous. See for more information [Br].

In the solenoid case, Schmeling [Sch| found solenoids are often lack of regular
holonomies but the set of non Lipschitz for unstable foliation are small in the
measure sense. We are going to show that it is true in our case.

4.3.1 Strong Lipschitz

Suppose p € A, ¢ € W¥(p) are such that the holonomy from W#*(p) to W*(q)
is not Lipschitz at p, i.e., for all C' > 1 there is a p' € W (p) arbitrary near p
such that Aq := d(q,q) > Cd(p,p) = CAp, where ¢ is the image of p’ under
the holonomy. We denote by NL the set of non-Lipschitz points of the unstable
foliation.

Remark 4.3.1. Notice that by the transversality arqument of the sub-bundle E*
all the intersection angles are bounded away from 0, say by ag. Also by compactness
and continuity of E* on A there exists mo > 0 such that if for p,p € ANW? their
mutual Buclidean distance is 1 < ro and their ig are different then the distance of
their 7y ) projections from I', more precisely from the intersection W (p)NW(p)
which is in particular nonempty, is bounded by 2r/ tan ay.

Compactness and transversality imply that every p € NL has a subsequence
of preimages that accumulate exponentially fast to the set of crossing, which is
I'. That means, set of bad points naturally associated with transverse crossing.
Hence, we can define set of good points as follows :

Definition 4.3.2. A point p € A is said to be strong locally Lipschitz, if there is
L > 0 such that for all n big enough

dx(f7 (), T N WE L6 o))t 2nt L~y (T (0) = L(na(p)) ™", (4.3.1.1)

with the distance in W* measured between the proje(ﬁgis by m to R.
Equivalently we could replace here f—\”(p) by V.(f~"(p)). It would influence
the constant L only.
By the unstable transversality and transversality of intersection of stable and
unstable foliations, this is equivalent to the distance in the {(x, y) }-plane satisfying

71



d(ﬁ(ﬁ),wu(pl)) > Const(n,(p)) !, (4.3.1.2)

for all p’ having iy different from the iy for f="(p).
We call all points p, which are strong locally Lipschitz with the constant L such

that (4.3.1.1]) holds for all ¢ € W*(p) in place of p, strong locally bi-Lipschitz.
Notice that this definition allows to say that the whole W*(p) is strong locally
bi-Lipschitz and write

de(f7" (W (D) T O WE L o)1 2m L (o)) 11 (P)) = L(na(p))~" (4.3.1.3)

Figure 9: Strong Lipschitz.

We denote the set of all strong locally bi-Lipschitz points in A by L° and
L NW#(p) with z(p) = = by L. We call the set complementary to L® in A, weak
non-Lipschitz, and we denote it by NLYe*,

Remark 4.3.3. Note that if for L>0 strong locally Lipschitz condition
d,r(f "(p), FﬂW“(f "(p))) = L(n,(p)) " holds and q € W .2 (D) then dx (f "(p),T) >

(L — Const)(n,(q))"t. Therefore, (4 satisfied at p with L > 2Const strong
locally condition holds for all ¢ € W"(p), with L = % So, p is strong locally
bi-Lipschitz.

Let dp, := d(m(p), 7(q)). The following lemma shows that if two point be close
to each other, then their trajectories remain close each other.

Lemma 4.3.4 ([HS, Lemma 6]). For p € A, there is a Cy > 0 such that Z"Ezg <
1L+ Cidy, for g € W*(p) and n € N and some a > 0.

Since D carries the product distance d = d; X dy we can write Ap = Ap+ Dap
in a natural way, and likewise Aq = A 1q+ Aaq, hence Ap:=d(f™(p), ")) =
Dap+ Bop, Aq:=d(f(q), (@) = Dig+ Dag.
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Lemma 4.3.5. For every Ly > 0 there exists Ly > 0 such that for each p strong
locally (bi)Lipschitz with the constant L = Ly there exists n(p) such that for each
q € Won (p) the holonomy between Ay and Aygy, in Hyp)(p) A, is bi-Lipschitz
locally continuous at p with Lipschitz constant Lo, i.e, for every p € AuyNHyp ) (D)
we have

Ly d(p,p) < d(IL(3)(p), T3 (P)) < Lad(p,p),

where d 1s the euclidean distance in D.

Proof. We repeat (adjust) the calculations in [HS|. We consider ¢ € W*(p) and
p € W*(p) N A. We denote ¢ := Higg);@/)' Assume that p' € H,(p) \ Hni1(p),
where f~"(p), f~™(p') are in mutually different Hy'’s.

Local Lipschitz continuity of the holonomy Hzgg (p) at p would follow from the

existence of a uniform upper bound of
JANIJFAN (4.3.1.4)

for p’ close enough to p, i.e. n defined above large.
We shall do the estimates in the original coordinates using the triangular form

of the differential Df\{y’z} — { /c\z
)

Apn  Vp

3, } Due to ' < )\ we have Df"yy =

} where |a,| < Const A,. We estimate

DG = (q)21q + 180 (9)) D1q + 7n(q) Dag]
< A(P)Dip + |an(p) Dip + Dn(p) Dap| + A (p)A /()

for a constant A depending on the angle between W* and W*. Here \,,a, and
v, are averages of derivatives \,, a,, and v, respectively, on appropriate intervals,
namely integrals divided by the lengths of the intervals, horizontal along y for two
first integrals and vertical along z for the last one.

On the other hand,

To obtain an upper bound of (4.3.1.4) it is sufficient to assume the existence
of an upper bound of the ratio of the above quantities, namely

. A(Xn(p)/ni(p)) .
A (P)D1p + | (p)) D1p + Un(p) Dapl

We needed bars over \, v, a to reduce above a fraction to the summand 1. From
now on these bars (integrals) are not needed.

1+
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We conclude calculations with assuming the existence of an upper bound of

1

~N an A1p Un Nop
A1p+( (p) IAZin) () 2p)77n(p)

(4.3.1.5)

or to assume that the inverse

——  apDNip+ vn(p)Dap
ANy
(Aqp )

)1 (P)

is bounded away 0.
Thus, Lipschitz property follows from either of

anSip + vy (p) Dop
An (D)

( )1 (p) = Const > 0. (4.3.1.6)

or
Aqpn,(p) > Const > 0 (4.3.1.7)

The condition (4.3.1.6)), in the diagonal case a,, = 0, means that the contraction
in the space of stable leaves W* by f~", along the coordinate x, due to small
(n,)~! is strong enough to bound the twisting effect caused by v,(p)/ . (p), hence
implying the Lipschitz continuity of all the holonomies at p along unstable foliation
of a bounded length leaves (e.g. by 27). This is for Ap =~ 0 (hence Agp large).
Otherwise Lipschitz condition holds automatically.

The condition is equivalent to strong locally Lipschitz (4.3.1.1) in
Definition by transversality condition, see Remark [4.3.1] and (4.3.1.2)). This
implies that the distance between W*(f~"(p)) and W?*(f~"(q)) is bounded by
Const x A (p) hence A1q < ConstA;p. So, Ag < Const Ap, which means Lipschitz
property of Higg at p. Notice that Const above large enough we obtain strong bi-

Lipschitz property (see Remark [4.3.3).

]

Above lemma implies the following lemma.

Lemma 4.3.6. Hil(Lfc) = L, for all z,x € S' for the holonomy Hil along
unstable foliation. The holonomy is locally Lipschitz on L*.

The strong stable set restricts to n-horizontal cylinder is defined by
rf,sA(p) = (ANW*(p)) N (Uman;n) U {x},
where H;n = (Hi_m,...,i_1i0|\Hi,<m+1>i_m‘..i_1io|)-

Lemma 4.3.7. There exists n > 1 such that W%\ (p) = {p} for any p € L°.
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Proof. Suppose p belongs L*. That implies, there is a natural number n(p) such
that for every n > n(p), we have 7(,,)(f"(p)) NI = 0. Fix an arbitrary n > n(p).
Hence, HyNWg5 (f~"(p)) = @ such that f~"(p) ¢ H,. Therefore, H, NW:%\ (p) = 0
due to the f-invarince of A and f"(Wg5(p)) = W5 (f"(p)) for p € A. Hence,

aa(p) = {p}- O

4.4 (Geometric measure

In this subsection we introduce an interesting measure which shows that the
set of week Lipschitz is small.

Definition 4.4.1. Let g : X — X be a continuous on a compact metric space,
then two functions ¢; : X — R and ¢, : X — R are called cohomologous on X
with respect to g, if there exists a continuous ¢ : X — R such that

p1—p2=C—Cog onX.
Sometimes, we use 1 « py. Moreover, we say that ( — (o g is a coboundary.

Assume that o : ¥ — X is topologically mixing subshift of finite type. Note that
two functions being cohomologous is an equivalence relation. Also observe that if
two functions ¢; and @y are cohomologous then their Birkhoff sums coincide on
periodic orbits. Coboundaries are useful since adding a coboundary to a function
preserves thermodynamic quantities, as demonstrated by the following result, see
in [PU, Chapter 5].

Lemma 4.4.2. Two Hélder continuous functions @1 and oy have the same equi-
librium state if and only if ¢ «~ @9 + ¢, where ¢ = P, — P,,.

Theorem 4.4.3. Let ¢ be a Hélder continuous function on 3. Then, ¢ is coho-
mologous to a function @ on X~ that depends only on the past. Consequently, they
have the same topological pressure and equilibrium measure.

Let P(-) = P(f~',-) be topological pressure for the transformation f~! and let
¢ =1log X o f~! as potential. We choose t = t, that is the only zero of the pressure
function t — P(tlog\ o f~') (see Figure . We call ty, affinity dimension of
stable slices.

There is a unique ergodic equilibrium state p, for tg¢. Moreover, u;, has Gibbs
properties . We define h, := h,, (f).

We replace log A o f~! by a function having logarithm cohomologous to log X" o
f~' (denote it also by X'), not depending of future (|i1,...). In conformal case,
the quantity ¢ is Hausdorff and box dimensions, here in the non-conformal case is
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hy = hMtO (f)

Figure 10: Affinity dimension.

only the upper bound of the dimensions of W* N A, so-called affinity dimension [}
Our main goal is to prove that ¢, is in fact the Hausdorff dimension of all W* N A.
We define X(:uto?n/) = flOg n,d,uto? X(Ntm >‘/) = flOg Ald/vbto and X(:utmyl) =
[log v/ dpuy,.
We replace assumption (3) of the map by X (e, V') < X(peg, X'). In Test
of the chapter, we work with above assumption.

4.4.1 General description of measurable partition

We consider (X, 7,7) probability, complete and separable space. Suppose that
¢ ={C4,...,C,} is a finite partition of X into sets of positive measure 7, assume
that 7 = B((1) is the o-algebra which includes all unions of elements of ¢ , so that
71 contains 2" sets. One can get a finer partition (; and a larger o—algebra 7 =
B((2) whose elements are unions of some, none, or all of the C;; by partitioning
each C; into Cj4,...,C; . By iterating this procedure, we have a sequence of
partitions

Cl < Cg < ... (4411)

each of which is a refinement of the previous partition, and a sequence of o -algebras
n<To<... (4412)

We consider the limit (4.4.1.1)) ¢ = V22,(,. Each element of { corresponds to a
"funnel”
Ciy DCii, D ... (4.4.1.3)

of decreasing subsets within the sequence of partitions; the intersection of all the
sets in such a funnel is an element of (.

?In fact, to is s in the singular value function (see [2.7).
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The sequence (4.4.1.1) is a basis because it generates both the o—algebra 7
and the space X, as follows:

(1) the associated o-algebras 7, := B((,) from (4.4.1.2)) have the property that

U,>1 7o generates 7;

(2) it generates the space X; that is, every “funnel” C;, D C;,;, D ... as in
(4.4.1.3) has intersection containing at most one point (complete property).

Notice that the existence of an increasing sequence of finite or countable partitions
satisfying (1) is equivalent to separability of the o-algebra.

4.4.1.1 Dynamical systems setting

Assume that a map 7' is an automorphism, i.e., invertible with measure-preserving
system. Let ¢ be a finite partition of X into measurable sets, and define

(r=\/T"¢C = T}LH;QVT”C.

nez

The elements of this partition are given by (., T"C,, where C,, € (. Observe
that x € T"C,, if and only if T~"(z) € C,,, and so knowing which element of 7"(
the point z lies in corresponds to knowing in which element of ¢ the points T~ (x)
lies.

4.4.1.2 Solenoid setting

Fixed p € M. Taking into account to above observation, in the solenoid case
(or any general hyperbolic set), we can define for the measure p a system
stable conditional measure for the partition into A, [R].

Let us explain it in more details. Let W = {Jy,...,J,} be a finite partition
of S! into measurable sets. We consider n-Vertical cylinder Viir,.in around the
W3 (x)NA. Given aset £ C W#(p), we consider conditional measure (pyp))n(E) :=

p(EOVii, i) . %
ﬁ Rokhlin showed (py(p))n — Ha@p) (weak™ topology). They define for

p- a.e. p. We call (pig(p))w stable conditional measure. (They of course coincide for
p € Wp(p) when Wi(p) = W*(p)).

Similarly, we can define a system conditional measure for strong stable mani-
fold.
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4.4.2 Results
Recall that the map f : M — M is C'*® such that

(z,y,2) = (n(x) mod 2w, Az, y) + u(z),v(z,y, 2) + v(z)),
where A\(z,0) = v(z,0,0) = 0 and
-7 >1
2- N <1

3- X(:utovyl) < X(Mtov)‘/>'

Moreover, the functions A\, v and n—d x = are 2m-periodic with respect to x, where
d is degree of f. We always assume d > 2.
Now, we can state our main result.

Theorem 4.4.4. Consider a C'* map f : M — M as above, and assume that
n is constant as well as

1-sup X (p) < (n)"Hp) = 1/d (d the is degree of n') for p € A,

2- The unstable lines of the m,,(A) intersect each other transversal.

Then, dimg(A) = 1+ dimg(A,) = 1+t for every x € S*.

Hasselblatt and Schmeling stated in [HS| the following.

Conjecture. Hausdorff dimension of a hyperbolic set is sum of those its stable
and unstable slices.

In fact, we prove the conjecture for non linear solenoids. Moreover, we can
prove Theorem for much general case.

Theorem 4.4.5. Assume that n is not constant. Then Theorem [{.4.4] holds if
instead of sup N (p) < 1/d we assume x(pgg, X ) < X(fieg, —7').

Definition 4.4.6. A point p = p(...7_pn,...,00li1,..,0n,...) is said to be Birkhoff
(¢, e, N)-backward regular for an arbitrary € > 0 and for ¢ = /', A or 1, if for all
n>N

enOclie)=e) < o (p) < NP+, (4.4.2.1)

When we mean just we say (¢, €, n)-backward regular, omitting "Birkhoff".
Compare Shannon-McMillan-Breiman property in the proof of Lemma [4.5.7

By bounded distortion the property forp=p(. .0 p,... iglit, -+, in,...)
depends only on (i_p41,...,1), provided we insert constant factors before exp, so
it can be considered as a property of a horizontal cylinder H(n). Analogously
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for the forward regularity this is a property of vertical cylinders V(n). We call
these cylinders (¢, e, n)-forward or backward regular and all other points or n-th
generation cylinders irreqular.

According to Birkhoff Ergodic Theorem, we can immediately get following
corollary :

Corollary 4.4.7. ;. {p | pis backward regular} = 1.
Assume that f : A — A is a C'*® diffeomorphism on the compact locally

maximal hyperbolic set and ¢ : A — R is a Holder continuous function. For each
a € R, we consider the level set of Birkhoff averages

1
E (¢) ={x €A, lim =S,p(z) = a},

n——oo N,

1
Elf(p) ={z € A, lim ES,ﬂp(a:) = a}.

One can also define the irregular set for the Birkhoff averages

1 1
E'¢) = {z € A,a :=liminf —S,p(z) < b := limsup —S,p(z)}.
n n

n—oo n—o00

Theorem 4.4.8 (|[BV06]). Suppose that A is a compact locally mazimal hyperbolic
set for CY*¢ diffeomorphism on smooth surface. Then, for each o € R and % €
Ex(¢) we have

ANWe () C EX(p), ANW?*(x7) C E, (p).

And,
dimy By (¢) = dimu (B, (¢) N Wige(zT)) + s,

dimy E, () = dimg (E, (¢) N Wig(27)) + tu,

where t,, and t, are P(t;log df|ps(x)) = 0, P(t, log df|gu()) = 0.
Theorem 4.4.9. dimy E°(p) = min.cp, 5 dimpg Ee(¢).

Proof. See |GR), Theorem 1]. O

Thus our main result and above theorems imply that Hausdorff dimension of
irregular set is smaller than Hausdorff dimension regular sets.
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4.5 L has full support

In this section, we show that I' is small. Consequently, we will show that set
of NL“** is kind with respect to Hausdorff dimension. We prove the following
lemma for the case sup X (p) < 1/d.

Lemma 4.5.1. dimB(Fﬂ]:Q) <ty for any i = (...iy|), where to is affinity dimen-
ston of stable slices.

Proof Fixed W"(p(i )) for arbitrary point p(i). We consider n-Horizontal cylinders
io| With i # Zo so that HZ ni1,nio] iNtETSECES W“( (2)).

“We know P(tolog ') = 0. So, by the definition of topological pressure,

> > An(q)t < C < o0, (4.5.1)

A i, i) NT#D}

where ¢ is any point such that 7(;,(q) € /W“( (1)) NH,

i pitsniol» and for £ > tg. In-
deed, by transversality, length of intersection the n-Horizontal cylinders }AL»_
with I' is equal diameter n-Horizontal cylinder up to some constant.

We know SUPpeA N (p) < 1/d. For each sequence i := (...,i_y,49) and r € (0, 1),

we consider the unique integer n = n(7) such that

~

Length(H; .../ (4(0)) "W*(p(0)) < < Length(H,_, .. o/(a(1) N W*(p(3)),

Iwhere Ty (q(i) = W“( (1)) ﬂ/VI?“(p(z)) We can easily verify that for each fixed
r the sets

— ~

Consider in W“(p(g)) the ball (arc) J(g¢,7) = B(q/(z\) r). Choose a family
J(qx,7) of the arcs of the form J(g,r) covering I' N W“( (2)), having multiplic-
ity at most 2, namely that each point in W“( (7)) belongs to at most 2 arcs. Then
I(q(i),n,7) C J(qg,r) for all k. On the other hand by the definition of n(i) there
is a constant K such that K Lengthl(qx(i),n,r) > Length(J(qx,7)).

Finally notice that for two different g, and ¢,/ it may happen that n = n(k) =
n(k') and the n—th codings i_,,1,...,io are the same; in other words the n—th
horizontal cylinders coincide. Then however J(gx) and J(g,/) intersect so the co-
incidence of these codings may happen only for at most two different k and k.

3We mean here the length of the projection by 7 to R (of course we can alternatively consider
the lengths in W*(p) or W*(p)).
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It follows from (4.5.1]) that
S <261 Length(I(gu(i).n.r)
k

k

< 2Const K1 Z A(qr)!t < Const C < oo, (4.5.2)
n,k

Hence, as our estimates hold for every » > 0, we obtain

Definition 4.5.2. For each ¢ = (i_,,...1o|) define

1
hl (i) := 1 log #{(i1,...,in) :

n
H; VBV, .o Lina(r(p@) 0 | Hy o #0},

where L is the constant in Lemma . Define also

h, :=suph! (i), and h":=limsuph;,. (4.5.3)

n—oo

Definition 4.5.3. Let i = (...4g|). For H; = W*"(p), where p(i) = p, we define

1
hn(l) = n4+1 log#{(llv s Jln) :

H; NV, 0 B(U N H;, Ly, (7 (p(i))) # 0},
Compare (4.3.1.1]), and
hy :=sup hy,(2), and h := limsup h,,. (4.5.4)

n—o0

Proposition 4.5.4. h and h" are independent of Ly large enough. Moreover, h <
h". The opposite inequality holds if sup X" < 1/supn .

We use Lemma to prove the following lemma.

Lemma 4.5.5. Keep the assumption Theorem[{.4.4 Then, h < h..

31 thank Adam Abrams for drawing the picture.
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Figure 11: Projection to (z,y)—plane. H, = H; ,_;, H, = Hy i Vo
Proof. For an arability € > 0 and n large enough, we easily get
ha(i) < (dimp(H; NT) + ¢))(log sup 7)) (4.5.5)

for every i = (... 14p|).
By Lemma we have

-~ h
dimg(H; NT) <ty = ————~
- _X(:utm A )
h.
— —suplog X
h.
< —
log supn

Inequality (4.5.2) in Lemma is uniform, that is n for which it holds is inde-
pendent i. So, we can pass h,(i) to a uniform version with h,. Then it completes

the proof. O

We used the fact i is constant in Lemma to provide concerted scales for
dimp. In general case, the varying scales is obtaining from the partitions of S* into
arcs between consecutive " preimages of a fixed point cause difficulties. They will
be overcome by restricting defining h to regular points having m, ,—images in I'.
We will explain it in next section.

We denote i, = p, if there is no confusion.
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/

Remark 4.5.6. For p,p € L°, (Higz)))*(ﬂz(p)) = [u)-

We use above fact and h < h, to prove the following lemma.
Lemma 4.5.7. If h < h,, then n(NL"*™) = 0. Consequently, u(L*) = 1.
Proof. By applying Shannon-McMillan-Breiman Theorem for =1,

1
—log pu(Ha(p)) = h.
for 1 almost every p € A, so for every € > 0 and n large enough
efn(h*Jrs) < ,U(Hn(p)) < efn(h*fe)_ (4.5.6)

Given € > 0 and n, we denote by Y., the set where does not hold. Thus,

the set
Y = limsup Y, = ﬂ U Yo i (4.5.7)
n—o00 n k>n

has measure equal 0. Its e-regular complement lim inf,, o, X, . = |, (>, X, for
X.. = A\Y.;, has full measure for each e. -

By Gibbs property measure p and Birkhoff ergodic theorem for f~' and log A’
in place of Shannon-McMillan-Breiman:

Const ! ¢to+e)x(A) < Const (A, (p))

<p(Hn(p))
< Const(\,(p))*

< Const onto—e)x(A)

The number eV +nh« g roughly (that is up to €™ order of deviation) an
upper bound of the number of horizontal rectangles H @: 1) whose horizontal
extension to (—L2m, (L + 1)27) intersect f/"(?) and else which do not belong to
Yon.

“Indeed, the number ™ V%" comes from f"(H) for each H € H(n+1), whereas
the number €™ comes from the number of regular H € H(n + 1) whose some
H(2n +1) C f*(H) belong to X, 2,41 N X.,. Notice that H satisfying this, need
not exhaust all H satisfying . The measure i of each such H is lower bounded
for p € H by

(Azn1 (" (R)))"
(An(f™ (D))"

> (A )—3e)to

Const A\, (p)™ = Const

— ef(nJrl)h* 67(n+1)35t0

Y
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compare ({4.6.3)), and Gibbs property p (used already above to reformulate (4.5.6)
to the language of \').
Thus, for the union H.,, these cylinders

ZM(H) < @A) (hete) p(n+ 1) (A7 +e) +n(fctBtos)
H
< D) (A —h.)+(3n(14t0)+2)e

So, for arbitrary € > 0 small enough,

lim (| ) (Hen UYen)) =0,

N—oo
n>N

so p(NLYe*) = 0.

4.6 Proof of the main theorems

Fixed p € A. We denote the system of conditional measures of v with respect
to partition (°, (*%, respectively by Vatp) Vatp) and for any measurable set A C A
we have

7;(17) (4) = ’Y:Sv(p)<A N¢*(p)) and
Valp) (4) = 7;?p)<‘4 N¢*(p))-

We denote by d(p) , d(p) the lower and upper pointwise dimensions of v at p.
Since that functions are measurable and f—invariant they are constant y-almost
everywhere. We denote these constants by d and d, respectively.
Ledrappier-Young introduced the quantities
& (p) = lim 10g7x(p)(B (p, 7“))’ d*(p) := lim log’Vx(p)(B (p,7))
r—0 log r r—0 logr

, (4.6.1)

where B*(p,r) and B**(p,r) are balls in stable and strong stable manifolds , pro-
vided that corresponding limit exists at p € A.
Theorem 4.6.1. For each z € S*, dimy(A,) = —"=— = t,.
=X (1t A)
It is convenient to break up the proof of Theorem into several separate

statements. In particular, the theorem is obtained by combining Theorems
and [1.6.3 below.

Theorem 4.6.2. For each p € L®, dimy(Ayp)) > = to.

7X(/J't0 7/\/)
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Proof. Suppose that v is ergodic, hyperbolic measure and v(L®) = 1. Given p € L*.
To estimate the dimension of the set L®, we study first Hausdorff dimension of ~.
We consider v, as the conditional measure of .

We may apply the theory of Ledrappier-Young formula [LY2], h%(p)( f) =

—(d*—d**)x(y,\)=d**x (v, V") for y-a.e. p. According Lemma since W%\ (p) =
{p} for p € L*, we have d**(p) = 0. Therefore, h,  (f) = —d°x(7, \'). Moreover,

dimg (Va(p)) = _Zzsf))\,) by Frostman lemma.

Conclusion, use above arguments for v = p. Then dimpg (A ) > dimp (pap)) =
—he __— 1. O
=X (1t A)

Now, we prove the other direction.

Theorem 4.6.3. For each p € A, dimp(Ayp)) < vy = to-

Proof. Consider conditional measures fi,(,) in p— a.e. Ayp) for p € A. By the

o) Viig,..in W5 (D))
AL - Do) > Const . for
A (p)
every n € N. Consequently, dimpy (Agq)) < _XZ: = to for every x(p).

definition of yi,(,) (Gibbs property), we have

]
Now, we prove Theorem [4.4.4]

Proof. Fixed (z,y,2) = p € A. We introduce a map F where preserves x coordinate
and moves 1, z coordinates along holonomy. More precisely, for ¢ = (z',y', ),

Flz,y,2) = (2,112 (y, 2).

We consider B*(p, A,(p)) for p € L® inside stable slice A, ). The union images
of B*(p, A\u(p)) over all |2" — x| < 27 under I becomes Cartesian product. Because
the map is locally Lipschitz [[ hence, dimpg(A) > 1+ dimg(A,) = 1+ 1.

More precisely F'is locally Lipschitz, in the sense that there exists L > 0 such
that for every p € L*® there exists measurable r(p) > 0 such that for every r < r(p)
and g € B(p,r), dist(F(p), F(q)) < Ldist(p, ¢). This is sufficient to non increase
dimension by splitting the space into a countable number of pieces.

Now, we prove other direction. We introduce a measure

xr+21
- / 1od Leb(z), (4.6.2)

=)

that its support is in A.

*By Lemma all the holonomies Hgl for 0 < 2’ < 2 are locally bi-Lipschitz on L.
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Given p € A. We consider image B*(p, \,,(p)) under holonomy, i.e. we move
along unstable foliation. Therefore, we have,

(&'} x B(p, (C + 1)Au(p) D I (B*(p, M(p))):

where C' := tan <((E", E°) P, and 2" € B(z(p), Au(p)). Hence,

n{a'} x B (p, (C+ DAa(p)) > p(I17 (B*(p, An(p)))-

Then, for any p € A,

H(B(p, (C+ DAn(p))) = (1t (Hu(p) N Ay )d Leb(a)

Proof of Theorem [4.4.5] Now, we explain how to modify the proof of Theorem
such that it works for Theorem

The technical step involved are roughly as follows. For each n, we consider
H, +m(p) Horizontal cylinder for all p’s where they are (¢,p,n) and (g, ,n + m)
regular points. We come back n—step, i.e. consider f~"(p) and we look at all the
preimages which is around the intersection. We define entropy for those cylinders
contain the points as same as Definition [4.5.3], and then we show that it is smaller
than h,.

We know that ¢pm(p) = ¢n(p)em(f"(p)). So,

-n Son-&-m(p)
em(fT"(P) = — 4.6.3
(f7"(p)) o (0) (4.6.3)
Hence, for p being (p, ¢, k)—backward regular for & = n, and k = m+n, by (4.6.3)
and Definition [4.4.2.1) we have

o(n+m) (x(.¢) —¢) e(n+m) (x(.¢' ) +e)

< om(fT () < (4.6.4)

e(nx(u-¢")+e) e(nx(p-¢")—e)

Hence,
MO ) e +1)) < om(f(p)) < e x (g )+e(23:4+1)) (4.6.5)

For each m,n € N, we denote by X, the union of all H(n + m) Horizontal
cylinders of (g, e,n)—backward regular points in A for all ¢ = v/, X', 5" and yet
(X, &,n +m)-backward regular points. We call Yo nm = A\ X¢ pm trregular points

5 Angle between stable and unstable manifold is bounded (uniform hyperbolicity)
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which pu(Yz ) — 0 as n — oo. Now, as proof of Lemmal[4.5.7] the idea is to remove
for each n the irregular set Y., ,,, for m to be defined later on, and estimate the
number of remaining cylinders H(n+m) which are regular contaminated by other
regular cylinders in the sense below (4.6.6)).
We say that any point (or cylinder) p € H(n+m) regular is (I',7,,)-contaminated
if for p := f~"(p)
Toy(B) € BT, L (5), (4.6.6)

compare Definition @ B* denotes a ball in W“(ﬁ) The set '™ is defined as
I in Definition [4.2.1] but restricted to p being m,, image of ¢ = p(...,,%|) and
q = p(...,,i|) such that f*(¢q) and f"(q') are in X, .

As in Definition We can say equivalently that I7n(]5) is I -contaminated
if it does not satisfy (4.5.3)), with I" replaced by I}

n+m:*
We are looking for m > 0 as small as possible so that

A (7" (0)) < (ma(p) ™"

Taking into account that both f"(¢) and ¢ are in X, ,, ,,. By using (4.6.5)),

oA )+ 225 41)  pn(—x(nn)—e).

It follows that for € > 0 small it is sufficient

m _ x(wn)
o AT, 1.6.7
n =x(p,\') (4.67)

with ¢ > 0 also small.

Now, we do similar to what we did in section We briefly explain it. First,
for given H, (p) with p = f*(p) € Xc.m, we define b := n+r1 log Z,, where Z,, of
the number of contaminated vertical cylinder V (n) in H,,,(5) by dual H,,(§) (they
are different at zero level).

The number Z,, is bounded by a constant times the number of H(m) above,
taking in account L in (4.3.1.1)) and the observation that regular H,,, as thinner
than V(m) can intersect at most two (neighbor) V(m)’s. So, €™ < Const .e™*,

hence using (4.6.7)),

’

x(usm)
h™9 < h(——<) +¢€.
(—X(M,A ))

The argument in the previous theorem now give the analogous statement.
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