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Abstract

We derive results in ergodic optimization, multifractal formalism and fractal
geometry.

We prove that the restricted variational principle holds for generic matrix co-
cycles over subshifts of �nite type, i.e,

htop(E(~α)) = inf{P ~ΦA
(~q)− ~α.~q : ~q ∈ Rd}

= sup{hµ(T ) : µ ∈M(X,T ) with χ(µ, ~ΦA) = ~α},

where E(~α) = {x ∈ X; limn→∞
1
n

log ‖(A∧i)n(x)‖ = αi}.
We also show that for such cocycles over subshifts of �nite type, the Lyapunov

spectrum is equal to the closure of the set where the entropy spectrum is positive.

We consider a topological dynamical system, and de�ne a subadditive potential
Φ. We prove that for t → ∞ any accumulation point of a family of equilibrium
states of tΦ is a maximizing measure. We show that the Lyapunov exponent and
entropy of equilibrium states for tΦ converge in the limit t→∞ to the maximum
Lyapunov exponent and entropy of maximizing measures. We use the latter result
to show the continuity of entropy spectrum at the boundary of Lyapunov spectrum
for generic matrix cocycles.

We extend the continuity result of the lower joint spectral radius that was
proven for locally constant cocycles by Bochi-Morris [BM] to derivative cocycles
under an assumption that they admit a dominated splitting of index 1.

In the matrix cocycle case, we prove that the maximal Lyapunov exponent can
be approximated by Lyapunov exponents of periodic trajectories under certain
shadowing assumptions. Our approach di�ers considerably from the approach of
Kalinin [Ka], who proved a similar result.

We also study a class of solenoidal expanding attractors Λ for which the contrac-
tion is not conformal. Under an assumption of transversality and assumptions on
Lyapunov exponents for an appropriate Gibbs measure (stable Sinai-Ruelle-Bowen
measure) imposing thinness, assuming also there is an invariant C1+α strong stable
foliation, we prove that Hausdor� dimension dimH(Λ ∩W s) is the same quantity
t0 for all W s and else dimH(Λ) = t0 + 1.
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keywords:

zero temperature limits, maximal Lyapunov exponent, thermodynamic formalism,
subadditive potentials, Lyapunov spectrum, matrix cocycles, domination, topolog-
ical entropy, solenoid attractor, Hausdor� dimension.
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Streszczenie

W pracy zajmuj�e si�e optymizacj�a ergodyczn�a, formalizmem multifraktalnym, i
geometri�a fraktaln�a.

Dowodz�e dla typowych kocykli macierzowych nad subprzesuni�eciami sko«-
czonego typu tak zwan�a ograniczon�a zasad�a wariacyjn�a (restricted variational prin-
ciple), to znaczy

htop(E(~α)) = inf{P ~ΦA
(~q)− ~α.~q : ~q ∈ Rd}

= sup{hµ(T ) : µ ∈M(X,T ) with χ(µ, ~ΦA) = ~α},

gdzie E(~α) = {x ∈ X; limn→∞
1
n

log ‖(A∧i)n(x)‖ = αi}. Pokazuj�e równie», »e dla
takich kocykli widmo wykªadników Lapunowa jest dodatnie na g�estym podzbiorze.

Dla subaddytywnego potencjaªu Φ zadanego na topologicznym ukªadzie dy-
namicznym pokazuj�e, »e dowolna *sªaba granica stanów równowagi dla tΦ przy t→
0 jest miar�a maksymalizuj�ac�a wykªadnik Lapunowa; zachodzi równie» zbie»no±¢
wykªadnika Lapunowa i entropii. Ten wynik u»ywam nast�epnie do pokazania ci�agªo±ci
entropii na granicy widma Lapunowa dla typowych kocykli macierzowych.

Ci�agªo±¢ tak zwanego "lower joint spectral radius" zostaªa pokazana dla lokalnie
staªych kocykli macierzowych przez Bochi'ego i Morrisa w [BM], rozszerzam ten
wynik do kocykli z rozbiciem zdominowanym indeksu 1.

W klasie kocykli macierzowych dowodz�e, »e przy pewnych zaªo»eniach o aproksy-
macji trajektoriami okresowymi, maksymalny wykªadnik Lapunowa przybli»a si�e
wykªadnikami Lapunowa trajektorii okresowych. Podobny wynik zostaª uzyskany
innymi metodami przez Kalinina w [Ka].

W pracy badam równie» klas�e solenoidalnych rozci�agaj�acych atraktorów Λ
z niekonforemn�a kontrakcj�a w kierunku stabilnym. Zakªadaj�ac transwersalno±¢,
warunki na wykªadniki Lapunowa pewnej miary Gibbsa (stabilnej miary Sinai'a-
Ruelle'a-Bowena) implikuj�ace "cienko±¢" atraktora, jak równie» istnienie 1+hölderowskiej
foliacji w kierunku silnie stabilnym, dowodz�e, »e wymiar Hausdor�a przeci�ecia
atraktora z ka»dym li±ciem foliacji stabilnej przyjmuje t�e sam�a warto±¢ t0. Dla
caªego solenoidu mamy dimH(Λ) = t0 + 1.

Sªowa kluczowe:
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granica w zerowej temperaturze, maksymalny wykªadnik Lapunowa, formalizm ter-
modynamiczny, potencjaªy subaddytywne, widmo Lapunowa, kocykle macierzowe,
warunek dominacji, entropia topologiczna, solenoid, wymiar Hausdor�a.

xi



xii



Chapter 1

Introduction

1.1 Motivation

The goal of this thesis is to present results on the subadditive thermodynamic
formalism and their applications in di�erent areas of dynamical systems. In par-
ticular, I will investigate

� restricted variational principle for matrix cocycles,

� continuity of the spectrum on the boundary (zero temperature limits),

� continuity properties of the equilibrium states,

� ...

Moreover, I will investigate the solenoids, a class of dynamical systems where the
thermodynamic formalism will be used to obtain results on the geometric proper-
ties of the attractor. The thermodynamic formalism alone will not be enough, I will
also use the smooth dynamical systems theory, in particular the properties of hy-
perbolic expanding attractors and the holonomy functions de�ned by projections
along the one-dimensional unstable leaves.

1.1.1 Structure of thesis

The �rst chapter is the detailed introduction and presentation of results, basic
de�nitions and theorems relevant to the work are given in chapter 2 and results
are presented in chapters 3 to 4.
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1.2 Presentation of results

In this thesis (X,T ) denotes a topological dynamical system (TDS), that is, X
is a compact metric space that is endowed by the metric d and T : X → X is a
continuous map.

We denote byM(X,T ) the space of all T -invariant Borel probability measures
on X. This space is a nonempty convex set and is compact with respect to the
weak-∗ topology. Also let E(X,T ) ⊂ M(X,T ) be the subset formed by ergodic
measures, which are exactly the extremal points ofM(X,T ).

Let f : X → R be a continuous function. We denote Snf(x) :=
∑n−1

k=0 f(T k(x))
and call this a Birkho� sum and we call limn→∞

1
n
Snf(x) a Birkho� average.

By Birkho� ergodic theorem, for every µ ∈ M(X,T ) and µ-almost every x ∈
X, the Birkho� average is well-de�ned. The in�mum and the supremum of the
Birkho� average over x ∈ X will be denoted by α(f) and β(f), respectively; we
call these numbers the minimal and maximal ergodic averages of f .

We say that Φ := {log φn}∞n=1 is a subadditive potential if each φn is a continuous
positive-valued function on X such that

0 < φn+m(x) ≤ φn(x)φm(T n(x)) ∀x ∈ X,m, n ∈ N.

Furthermore, Φ = {log φn}∞n=1 is said to be an almost additive potential if there
exists a constant C ≥ 1 such that for any m,n ∈ N, x ∈ X, we have

C−1φn(x)φm(T n)(x) ≤ φn+m(x) ≤ Cφn(x)φm(T n(x)).

We also say that Φ = {log φn}∞n=1 is an additive potential if

φn+m(x) = φn(x)φm(T n(x)) ∀x ∈ X,m, n ∈ N;

in this case, φn(x) = eSn log φ1(x).
We denote by PΦ(t) the topological pressure for a potential tΦ. We will give

the de�nition in the next chapter.
As we mentioned above, the Birkho� average does not exist for all points. So,

one may ask about the size of the set of points

Ef (α) = {x ∈ X :
1

n
Snf(x)→ α as n→∞},

which we call α-level set of Birkho� spectrum, for a given value α from the set

L = {α ∈ R : ∃x ∈ X and lim
n→∞

1

n
Snf(x) = α},

which we call Birkho� spectrum.

2



That size is usually calculated in terms of topological entropy. Let Z ⊂ X,
we denote by htop(T, Z) topological entropy of T restricted to Z or, simply, the
topological entropy of Z, denote htop(Z), when there is no confusion about T . In
particular we write htop(T ) for htop(T,X).

We investigate the end points of Birkho� spectrum, i.e., α(f) and β(f). Since
α(f) = −β(−f), let us focus the discussion on the quantity β. It can also be
characterized as

β(f) = sup
µ∈M(X,T )

∫
fdµ.

Compactness of M(X,T ) implies the following attainability property : there
exists at least one measure µ ∈ M(X,T ) for which β(f) =

∫
fdµ; such measures

will be called maximizing measures.
We study the behavior of the equilibrium measures (µt) for a potential tΦ

when t → ∞. In the thermodynamic interpretation of the parameter t, it is the
inverse temperature. The limits t→∞ are called zero temperature limits, and the
accumulation points of the measure (µt) as t→∞ are called ground states.

The topic of ergodic optimization of Birkho� averages or Lyapunov exponents
revolves around realizing invariant measures which maximize the Lyapunov ex-
ponents. Zero temperature limits laws are also related to ergodic optimization,
because for t → ∞ any accumulation point of the equilibrium measures (µt) will
be a maximizing measure Φ. We refer the reader to [BG] and [J].

The behavior of the equilibrium measure (µt) as t→∞ has also been analyzed.
In particular, the continuities of zero temperature limit (µt)t→∞ in the sense,∫

fdµ = lim
t→∞

∫
fdµt, (1.2.1)

and

hµ(T ) = lim
t→∞

hµt(T ), (1.2.2)

have been investigated by many authors [DUZ], [IY], [J], [JMU], [M1], [WZ], [Z].
In the non-compact space setting, (1.2.1) and (1.2.2) were proved by Jenkinson,

Mauldin and Urba«ski [JMU], and Morris [M1] on the additive potential ψ : X →
R. Moreover, this kind of result is known for almost subadditive potentials by Zhao
[Z] under the speci�cation property, upper semi-continuity of entropy and �nite
topological entropy assumptions.

Note that even though we know the existence of an accumulation point for the
sequence (µt), this does not imply that the limt→∞ µt exists. In fact, Chazottes
and Hochman [CH] constructed an example on compact sub-shifts of �nite type
and Hölder potentials, where there is no convergence. For more information about
zero temperature limits see [J].

3



It is well known (see, e.g. [Ol], [Feng1], [FFW]) when (X,T ) is a transitive
subshift of �nite type and f is an additive potential, then

Ef (α) 6= ∅ ⇔ Ω := {
∫
fdµ : µ ∈M(X,T )},

and

htop(Ef (α)) = inf
t∈R
{Pf (t)− αt : t ∈ R}

= sup{hµ(T ) : µ ∈M(X,T ) with

∫
fdµ = α} ∀α ∈ Ω. (1.2.3)

In the almost additive potentials case, (1.2.3) was proven by Feng and Huang
[FH] under certain assumptions. In the subadditve potentials case, Feng and Huang
[FH] proved a similar result for t > 0 under the upper semi continuity entropy
assumption.

The natural example of subadditive potentials is matrix cocycles. More pre-
cisely, given a measurable map A : X → GL(k,R) taking values into the space
k × k invertible matrices. We consider the products

An(x) = A(T n−1(x)) . . .A(T (x))A(x).

The pair (T,A) is called a linear cocycle. It induces a skew-product dynamics
F on X × Rk by (x, v) 7→ X × Rk, whose n-th iterate is therefore

(x, v) 7→ (T n(x),An(x)v).

If T is invertible then so is F . Moreover, F−n(x) = (T−n(x),A−n(x)v) for each
n ≥ 1, where

A−n(x) := A(T−n(x))−1A(T−n+1(x))−1...A(T−1(x))−1.

More generally, we could replace X×Rk by any vector bundle over X and then
consider bundle endomorphisms that �ber over T : X → X.

A simple class of linear cocycles is locally constant cocycles which is de�ned
as follows. Assume that X = {1, ..., q}Z is a symbolic space. Suppose that T :
X → X is a shift map, i.e. T (xl)l = (xl+1)l. Given a �nite set of matrices A =
{A1, . . . , Aq} ⊂ GL(k,R), we de�ne the function A : X → GL(k,R) by A(x) =
Ax0 . In this case, we say that(T,A) is a locally constant cocycle.

By Kingman's subadditive ergodic theorem, for any µ ∈M(X,T ) and µ almost
every x ∈ X such that log+ ‖A‖ ∈ L1(µ), the following limit, called the top
Lyapunov exponent at x, exists:

4



χ(x,A) := lim
n→∞

1

n
log ‖An(x)‖, (1.2.4)

where ‖A‖ the Euclidean operator norm of a matrix A (i.e. the largest singular
value of A), that is subadditive i.e.,

0 < ‖An+m(x)‖ ≤ ‖An(x)‖‖An(Tm(x))‖ ∀x ∈ X,m, n ∈ N.

Let us denote χ(µ,A) =
∫
χ(.,A)dµ. If the measure µ is ergodic then χ(x,A) =

χ(µ,A) for µ-almost every x ∈ X.
Similarly to what we did for the Birkho� average, we can either minimize or

maximize number (1.2.4); the corresponding quantities will be denoted by α(A)
and β(A). However, this time the maximization and the minimization problems are
totally di�erent. While β(A) is always attained by at least one measure (which will
be called a Lyapunov maximizing measure, we denote byMmax(A) the set of such
measures), that is not necessarily the case for α(A). In fact, in the locally constant
cocycles case, Bochi and Morris [BM] investigated the continuity properties of the
minimal Lyapunov exponent. They showed that α(A) is Lipschitz continuous at
A under 1−domination assumption. Breuillard and Sert [BS] extended the Bochi
and Morris's result to the joint spectrum under domination condition. In this case
the χ(µ,A) depends continuously on the measure µ.

Feng [Feng1] proved (1.2.3) for continuous positive matrix-valued functions on
the one side shift. He (see [F], [FH])also proved that the �rst part (1.2.3) for locally
constant cocycles under the irreducibility assumption.

The linear cocycles generated by a di�emorphism map T : X → X on a closed
Riemannian manifold X and a family of maps A(x) := DxT : TxX → TT (x)X are
called derivative cocycles. Moreover, when T : X → X is an Anosov di�emophism
(or expanding map), Bowen [B] showed that there exists a symbolic coding of T by
a subshift of �nite type. From such a coding, the derivative cocycle of a uniformly
hyperbolic map can e�ectively be regarded as a linear cocycle over a subshift of
�nite type.

The main objects of interest in this thesis are linear cocycles A over two-
sided subshifts of �nite type (Σ, T ) generated by GL(k,R)-valued functions A
on Σ. In particular, we study the thermodynamic formalism of such cocycles. In
general, we know much more about locally constant cocycles that about the more
general derivative cocycles, but here are some of the results known in the derivative
cocycles situation.

We denote by L the set of admissible words Σ. We de�ne for A : Σ→ GL(k,R)
and I ∈ L

‖A(I)‖ := max
x∈[I]
‖A|I|(x)‖. (1.2.5)

5



We de�ne a positive continuous function {ϕA,n}n∈N on Σ such that

ϕA,n(x) := ‖An(x)‖.

We denote by ΦA the subbadditive potential {logϕA,n}∞n=1.
We say that A is quasi-multiplicative if there exist C > 0 and m ∈ N such that

for every I, J ∈ L, there exists K ∈ L with |K| ≤ m such that IKJ ∈ L and

‖A(IKJ)‖ ≥ C‖A(I)‖‖A(J)‖.

We always assume that T : Σ → Σ is a topologically mixing subshift of �nite
type. We denote by Hr(Σ, GL(k,R)) the space of all r−Hölder continuous func-
tions. We also denote by Hr

b (Σ, GL(k,R)) the space of all r−Hölder continuous
and �ber bunched functions, which says that the cocycles are nearly conformal.
We de�ne the typical cocycles among Hr(Σ, GL(k,R)). That is

W := {A ∈ Hr
b (Σ, GL(k,R)) : A is pinching and twisting}.

We denote E(α) = EΦ(α) when there is no confusion about Φ.
The interior and topological closure of a set A is denoted by Å and A. The

results of this thesis are as follows:

Theorem 1.2.1. Let A ∈ W. Then,

L = {α, htop(E(α)) > 0}.

Furthermore, α 7→ htop(E(α)) is concave for α ∈ L̊.

We also prove (1.2.3) for generic cocycles. Park [P] showed that every A ∈ W
is quasi-multiplicative. That implies that PΦA(q) is convex for q ∈ R.

Theorem 1.2.2. Assume that T : Σ → Σ is a topologically mixing subshift of
�nite type. Suppose that A : Σ→ GL(k,R) belongs to typical functions W. Then,

htop(E(α)) = sup{hµ(T ) : µ ∈M(Σ, T ), χ(µ,A) = α}
= inf{PΦA(q)− α.q : q ∈ R} ∀α ∈ Ω.

We also extend the zero temperature limit and the continuity results for sub-
additive potentials.

Theorem 1.2.3. Let (X,T ) be a TDS such that the entropy map µ 7→ hµ(T )
is upper semi-continuous and topological entropy htop(T ) < ∞. Suppose that Φ =
{log φn}∞n=1 is a subadditive potential on the compact metric on X. Then a family of
equilibrium measures (µt) for potentials tΦ, where t > 0, has a weak∗ accumulation
point as t→∞. Any such accumulation point µ is a Lyapunov maximizing measure
for Φ. Moreover,

6



(i) χ(µ,Φ) = limti→∞ χ(µti ,Φ),

(ii) hµ(T ) = limti→∞ hµti (T ) = max{hν(T ), ν ∈Mmax(Φ)}.

In particular, β(Φ) can be approximated by Lyapunov exponents of equilibrium
measures of a subadditive potential tΦ.

Theorem 1.2.4. Suppose Al,A ∈ W with Al → A, and tl, t ∈ R+ such that
tl → t. Assume αtl = P

′
ΦAl

(tl) and αt = P
′
ΦA

(t). Then,

lim
l→∞

htop(E(αtl)) = htop(E(αt)).

Moreover,
htop(E(αt))→ htop(E(β(ΦA)) when t→∞.

We also investigate the continuity of minimal Lyapunov exponents for general
cocycles. We prove the continuity of the minimal Lyapunov exponent under a cone
condition. Moreover, our result implies the continuity of the minimal Lyapunov
exponent under 1-domination assumption.

Theorem 1.2.5. Let An,A ∈ Hr
b (Σ, GL(k,R)). Assume that An and A satisfy

1−domination. Then, α(An)→ α(A), when An → A.

We de�ne the singular value function ϕs : GL(k,R)→ [0,∞) with the param-
eter 0 ≤ s ≤ k as follows.

ϕs(A) = σ1(A)...σm(A)σs−mm+1(A),

where m = bsc and σi is the i th singular value. We make the convention 00 = 1.
For completeness, if s > k, the we also de�ne

ϕs(A) = (det(A))
s
d .

It is well known that ϕs is submultiplicative for all s ≥ 0. That means, for any
A,B ∈ GL(k,R)

ϕs(AB) ≤ ϕs(A)ϕs(B).

The function (s, A) 7→ ϕs(A) is continuous in both A and s where A ∈
GL(k,R).

We de�ne ϕ̃sA on L as follows, for any n ∈ N and I ∈ L(n),

ϕ̃sA(I) := max
x∈[I]

ϕs(An(x)).

Note that this de�nition is similar to how we de�ne ‖A(I)‖ in (1.2.5). From the
submultiplicativity of ϕs, it follows that ϕsA is also submultiplicative. We denote
by Φ̃A := {logϕs(An)}.
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Feng and Shmerkin [FS] showed the continuity of the topological pressure for
locally constant cocycles. Moreover, this kind of result is known for typical cocycles
by Park. Recently, Cao, Pesin, and Zhao [CPZ] showed that the map (s,A) 7→
PΦ̃A

(s) is continuous on [0,∞) × Hr(Σ, GL(k,R)), and Theorem 1.2.6 is implied
by their result. However, the methods of proof are di�erent.

We show that one can prove the continuity of the topological pressure for
Hr
b (Σ, GL(2,R)) without assumption pinching, and twisting.

Theorem 1.2.6. The map (s,A) 7→ PΦ̃A
(s) is continuous on [0,∞)×

Hr
b (Σ, GL(2,R)).

We considered the linear cocycles as abstract objects but now we will investigate
a natural example of geometric appearance of matrix cocycles: solenoid.

Let M = S1 × D be the solid torus, where D = {v ∈ R2||v| < 1} carries the
product distance d = d1 × d2 and suppose f : M →M such that

(x, y, z) 7→ (η(x, y, z) mod 2π, λ(x, y, z) + u(x), ν(x, y, z) + v(x)) (1.2.6)

is a C1+α invective map, where λ(x, 0, 0) = ν(x, 0, 0) = 0.
Bothe [Bot] was the �rst who obtained results on the dimension of the attractor

of a thin linear solenoid under transversality condition, which we will introduce in
the last chapter. He also proved that this transversality condition holds generically
when the contractions are strong enough. Simon [Simon] use Bothe's result to show
that the Hausdro� dimension of all stable slices are equal. Barriera, Pesin and
Schemeling [BPS] established a dimension product structure of invariant measures
in the course of proving the following conjecture.

Conjecture. The fractal dimension of a hyperbolic set is (at least generically or
under mild hypotheses) the sum of those of its stable and unstable slices, where
fractal can mean either Hausdor� or upper box dimension.

There are di�culties due to possible low regularity of the holonomies, indeed,
Schmeling [Sch] found that while the solenoids often lack regular holonomies, under
natural assumptions there exist bounds on the size of the set of non-Lipschitz points
for the holonomy map. We will provide the details of this result later.. Hasselblat
and Schmeling [HS] proved the conjecture for a class of thin linear solenoids. We
prove the conjecture for a class of thin nonlinear solenoids of map (1.2.6). Precisely,

Theorem 1.2.7. Under transversality and χ(µt0 , ν
′
) < χ(µt0 , λ

′
) < −χ(µt0 , η

′
)

assumptions, we show that Hausdor� dimension of the conditional measures on
W s∩S1 of the geometric equilibrium measure µt for f−1 and the potential t0 log λ

′

(or stable slices), where λ is the weaker contraction rate function, is t0. Then, we
show that the Hausdor� dimension of solenoid attractor is 1 + t0.

8



Chapter 2

Preliminaries

2.1 Ergodic theory

We introduce some basic notions from dynamical systems and ergodic the-
ory. Let the triple (X,B, µ) denote the space X equipped with a σ-algebra B of
measurable subsets of X and a probability measure µ. Let T : X → X be a trans-
formation. Then, we say that (X,T ) is a dynamical system. Given a point x ∈ X
we say that {x, Tx, T 2x, ...} is the orbit of x under T . For a subset A ⊂ X denote
T−1(A) = {x ∈ X : T (x) ∈ A}. We say that T is measurable if for all A ∈ B,
T−1(A) ∈ B. We say that a set A ⊂ X is forward invariant set if T (A) ⊂ A.
If T is an invertible, then we say that a set A ⊂ X is backward invariant set if
T−1(A) ⊂ A. A set A ⊂ X is invariant set if it is forward and backward invariant
set. We say that T is measure preserving if µ(T−1(A)) = µ(A) for all A ∈ B, and
in this case we may also say that µ is T -invariant (or just invariant, whenever the
choice of map is clear).

Assume that (X,B, µ, T ) is a measure preserving transformation. T : X → X
is said to be ergodic if for any set A ∈ B which satis�es T−1(A) = A then either
µ(A) = 0 or µ(A) = 1. That is equivalent, if ψ ∈ L1(µ) is T -invariant, i.e. ψ ◦ T =
ψ µ-a.e., then ψ is constant µ-a.e. . Although T can have many ergodic measures,
distinct ergodic measures µ1 and µ2 are mutually singular, meaning that there
exists A ∈ B for which µ1(A) = µ2(X\A) = 1. Given an ergodic transformation,
we can deduce various statistical properties of T . The most well-known of these is
the Birkho� ergodic theorem, which connects the average of a potential f along
the orbit of a µ-typical point with the space average of f .

Theorem 2.1.1 (Birkho� Ergodic Theorem). Let T : (X,B, µ) → (X,B, µ) be
an ergodic measure preserving transformation such that µ(X) = 1. Let f ∈ L1(µ).
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Then

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
fdµ

for µ a.e. x ∈ X.

Theorem 2.1.2 ([King, Kingman's subadditive theorem]). Let (X,B, µ) be a
probability space and T : X → X be a measure-preserving transformation. Let
fn : X → [−∞,∞) be a subadditive sequence of measurable functions such that
f1 ∈ L1(µ), i.e. fn+m(x) ≤ fn(x)fm(T n(x)) for all x ∈ X, and n,m ∈ N.
Then, limn→∞

fn(x)
n

converges µ−almost every where to some invariant function
f : X → [−∞,∞). Moreover, the positive part f+ is integrable and∫

fdµ = lim
n→∞

1

n

∫
fndµ = inf

n

1

n

∫
fndµ ∈ [−∞,∞).

Let (X, τ, µ) be a Borel probability space, and T : X → X be a measure
preserving transformation.

A partition of (X, τ, µ) is a subfamily of τ consisting of mutually disjoint ele-
ments whose union is X. We denote by α and β the countable partition of X.

Let α = {Ai, i ≥ 1}, where Ai ∈ τ . We de�ne

Hµ(α) = −
∑
A∈α

µ(A) log µ(A)

to be the entropy of α (with the convention 0log 0 = 0).
We denote by α ∨ β the joint partition {A ∩B | A ∈ α,B ∈ β}.
Let T−1(α) = {T−1(A) | A ∈ α}. We de�ne

h(µ, α) = lim
n→∞

1

n
Hµ(

n−1∨
j=0

T−1(α))

to be the entropy of T relative to α 1.
Then the metric entropy of µ is de�ned as

hµ(T ) = suph(µ, α),

where the supremum is taken over all countable partitions α with Hµ(α) < ∞.
By a well-known theorem of Kolmogorov and Sinai (e.g. [W1, Theorem 4.1.7]),
hµ(T ) = h(µ, α) for any partition α such that Hµ(α) <∞ and

∨n−1
j=0 T

−1(α)→ B
as n→∞.

1Limits exist by subadditivity.
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Take into account that µ 7→ hµ(T ) is concave on M(X,T ) (c.f [PU, Chapter
2]). We also have the following important theorem which gives an alternative char-
acterization for the entropy when T is ergodic (see for instance the remark below
Corollary 4.14.4 in [W1]).

Theorem 2.1.3 (Shannon-McMillan-Breiman Theorem). Let T : (X,B, µ) →
(X,B, µ) be an ergodic measure-preserving transformation of a probability space
and. let α be a �nite partition of X. Let Bn(x) denote the unique member of∨n−1
j=0 T

−1(α) to which x belongs. Then,

− lim
n→∞

1

n
log µ(Bn(x)) = hµ(T )

for µ-almost every x.

2.1.1 Topological entropy

Assume that (X, d) is a topological dynamical systems. For any n ∈ N we
de�ne a new metric dn on X as follows

dn(x, y) = max{d(T k(x), T k(y)) : k = 0, ..., n− 1},

and for any ε > 0 , one can de�ne Bowen ball Bn(x, ε) that is an open ball of
radius ε > 0 in the metric dn around x. That is,

Bn(x, ε) = {y ∈ X : dn(x, y) < ε}.

Let Y ⊂ X and assume that Y ⊂
⋃
iBni(xi, ε) for some at most countable col-

lection of Bowen balls Y = (Bni(xi, ε))i. Consider N(Y) = mini ni. Let s ≥ 0
and

S(Y, s,N, ε) = inf
∑
i

e−sni ,

where the in�num is taken over all collections Y = {Bni(xi, ε)}i covering Y such
that n(Y) ≥ N. The quantity S(Y, s,N, ε) does not decrease with N , consequently

S(Y, s, ε) = lim
N→∞

S(Y, s,N, ε).

There is a critical value of the parameter s, which we denote by htop(T, Y, ε) such
that

S(Y, s, ε) =

{
0, s > htop(T, Y, ε),
∞, s < htop(T, Y, ε).

Since htop(T, Y, ε) does not decrease with ε, the following limit exists,

htop(T, Y ) = lim
ε→0

(T, Y, ε).
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We call htop(T, Y ) the topological entropy of T restricted to Y or the topological
entropy of Y (we denote htop(Y )), as there is no confusion about T . We denote
htop(X,T ) = htop(T ). Various such de�nition has been given by Bowen [B1] and
Pesin and Pitskel [PP].

2.2 Symbolic dynamic

We discuss symbolic dynamics, in particular topological Markov shifts which
plays as an important model throughout this thesis.

Let Q = (qij) be a k × k with qij ∈ {0, 1}. The one side subshift of �nite
type associated to the matrix Q is a left shift map T : Σ+

Q → Σ+
Q meaning that,

T (xn)n∈N0 = (xn+1)n∈N0 , where Σ+
Q is a set of sequences

Σ+
Q := {x = (xi)i∈N0 : xi ∈ {1, ..., k} and Qxi,xi+1

= 1 for all i ∈ N0},

Similarly, one de�nes two sided subshift of �nite type T : ΣQ → ΣQ, where

ΣQ := {x = (xi)i∈Z : xi ∈ {1, ..., k} and Qxi,xi+1
= 1 for all i ∈ Z}.

When the matrix Q has entries all equal to 1 we say this is the full shift. For
simplicity, we assume that Σ+

Q = Σ+ and ΣQ = Σ.
We say that i1...ik is an admissible word if Qin,in+1 = 1 for all 1 ≤ n ≤ k − 1.

We denote by L the set of collection of admissible words. We denote by |I| the
length of I ∈ L. Denote by L(n) the admissible words of length n. That is, a word
i0, .., in−1 with ij ∈ {1, ..., k} such that Qxi,xi+1

= 1. One can de�ne n-th level
cylinder [I] as follows:

[I] = [i0...in−1] := {x ∈ Σ : xi = ij ∀ 0 ≤ j ≤ n− 1},

for any i0...in−1 ∈ L(n).
Observe that the partition of ΣQ (or Σ+

Q) into �rst level cylinders is generating,
for this reason the partition into �rst level cylinders is the partition canonically
used in symbolic dynamics to calculate the metric entropy.

In the two-sided dynamics, we de�ne the local stable set

W s
loc(x) = {(yn)n∈Z : xn = yn for all n ≥ 0}

and the local unstable set

W u
loc(x) = {(yn)n∈Z : xn = yn for all n < 0}.

Furthermore, the global stable and unstable manifolds of x,

W s(x) := ∪∞n=0T
−n(W s

loc(T
n(x))) and W u(x) := ∪∞n=0T

n(W s
loc(T

−n(x)))
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are smoothly immersed submanifolds of X and they are characterized by

W s(x) = {y ∈ X : lim
n→∞

d(T n(x), T n(y)) = 0},

W u(x) = {y ∈ X : lim
n→−∞

d(T n(x), T n(y)) = 0}.

De�nition 2.2.1. The matrix Q is called primitive when there exist n such that
all the entries of Qn are positive.

It is well known that a subshift of a �nite type associated with a primitive
matrix Q is topologically mixing T . That is, for every open nonempty U, V ⊂ Σ,
there is N such that for every n ≥ N , T n(U)∩V 6= ∅. We say that T is topological
transitive if there is a point with dense orbit.

We will introduce two important classes of shift-invariant measures.

2.2.1 Bernoulli measures

Let (Σ, σ) be the full shift on the alphabet A, where A = {1, ..., k}. Let ~p =
(p1, p2, . . . , pk) be a probability vector, that is, pi ≥ 0 with

∑k
i=1 pi = 1.

By the Kolmogorov extension theorem, to de�ne a Borel measure on Σ it is
su�cient to de�ne a measure on the cylinder sets. We de�ne the measure µ~p on
the cylinder sets of σ by

µ~p([i1, . . . , is]) = pi1 . . . pis

and say that µ~p is a Bernoulli measure for ~p. Then, (σ,Σ, µ~p) is an ergodic measure
preserving system. Bernoulli measure can be de�ned both for one-sided and for
two-sided full shift.

2.2.2 Gibbs measures

A probability measure µ on Σ, where is the one-sided symbolic dynamics, is
said to be a Gibbs state (measure) for the continuous function φ : Σ → R (it is
called potential) if there exist P ∈ R and C ≥ 1 such that for all n ≥ 1, and
I ∈ Ln, we have

C−1 ≤ µ([I])

eSnφ(x)−nP ≤ C,

for any x ∈ I. If in addition µ is T -invariant, we call µ an invariant Gibbs state
(measure).

For systems like hyperbolic systems which there is a Markov coding for them,
one can also de�ne a Gibbs measure as above (see for more information [PU,
Chapter 5]).
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Gibbs measures were translated from statistical mechanics to the setting of
dynamical systems by Ruelle and Sinai beginning with [Si1], providing a class of
invariant measures whose properties were closely connected with the properties of
the Gibbs potential.

2.3 Convex functions

We �rst give some notation and basic facts in convex analysis. For details, one
is referred to [HL].

Let x, y ∈ Rn, the line segment connecting x and y is the set [x, y] formally
given by

[x, y] = {βx+ (1− β)y β ∈ [0, 1]}.

We say that a set X ⊂ Rn is convex when for any two points x, y ∈ X, the line
segment [x, y] also belongs to the set X, i.e., βx+ (1− β)y ∈ X for any x, y ∈ X
and β ∈ (0, 1). Let C be a convex subset of Rn. A point x ∈ C is called an extreme
point of C if whenever x = βy + (1 − β)z for some y, z ∈ C and 0 < β < 1, then
x = y = z. The set of extreme points of C is denoted by ext(C).

A function f : Rn → R is a convex if its domain dom(f) is a convex set and
for all x,y ∈ dom(f) and β ∈ (0, 1), the following relation holds

f(βx+ (1− β)y)) ≤ βf(x) + (1− β)f(y).

In other words, a function f : Rn → R is convex when for every segment [x1, x2], as
the vector xβ = βx1 + (1− β)x2 varies within the line segment [x1, x2], the points
(xβ, f(xβ)) on the graph {(x, f(x))|x ∈ Rn} lie below the segment connecting
(x1, f(x1)) and (x2, f(x2)), as illustrated in Figure 1.
Let U be an open convex subset of Rn and f be a real continuous convex function
on U . We say a vector a ∈ Rn is a subgradient of f at x if for all z ∈ U ,

f(z) ≥ f(x) + aT (z − x),

where the right hand side is the scalar product.
For each x ∈ Rn set the subdi�erential of f at the point x to be

∂f(x) := {a : a is a subgradient for f at x}.

For x ∈ U , the subdi�erential ∂f(x) is always a nonempty convex compact set.
De�ne ∂ef(x) := ext{∂f(x)}. In case n = 1, ∂ef(x) = {∂ef(x−), ∂ef(x+)}, where
∂ef (x−) (resp. ∂ef (x+)) denotes the left (resp. right) derivative. We say that f
is di�erentiable at x when ∂ef(x) = {a}.
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(x1, f(x1))

(x2, f(x2))

(xβ, f(xβ))

Figure 1: Convex line

We de�ne

∂f(U) = ∪x∈U∂f(x) and ∂ef(U) = ∪x∈U∂ef(x). (2.3.1)

In the case n = 1, Lebesgue's theorem for the di�erentiability of monotone
functions said ∂ef is di�erentiable almost everywhere. The case n = 2 was proven
by H. Busemann and W. Feller [BF]. The general case was settled by A. D. Alexan-
drov [A]. The following result is well known(cf. [[S], Theorem 7.9] ).

Theorem 2.3.1. Let f be a continuous function de�ned on an open interval that
has a derivative at each point of R except on a countable set, and f

′ ≤ 0 a.e., then
f is a nonincreasing function.

2.4 Lyapunov exponents

Lyapunov exponents are named after Aleksandr Mikhailovich Lyapunov [lya],
because of his fundamental work on the stability of solutions of di�erential equa-
tions in the late 19th century. Consider a quasi-linear di�erential equation

x
′
= L(t)x+R(t, x), (2.4.1)

where L(t) : Rd → Rd is linear and R(t, x) is a perturbation of order bigger than
1:

sup
t

‖R(t, x)‖
‖x‖

→ 0 as x→ 0.
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Let t0 be �xed. The Lyapunov exponent function v 7→ χ(v) is de�ned by

χ(v) = lim sup
t→∞

1

t
log ‖βv(t)‖ (2.4.2)

where βv denotes the solution of the linear equation

x
′
= L(t)x (2.4.3)

with initial condition βv(t0) = v. It does not depend on the choice of t0.
It is clear that the solution β0(t) ≡ 0 of the linear equation (2.4.3) is expo-

nentially stable if χ < 0. The stability theorem of Lyapunov states that the zero
solution remains exponentially stable for the non-linear equation (2.4.1), under
an additional condition called Lyapunov regularity. See for more information of
Barreira, Pesin [BP07], which contains a detailed presentation of this topic.

Furstenberg and Kesten [FK1] proved in 1960 that the limit in (2.4.2) exists
for almost every x, relative to any probability measure invariant under the �ow.
A few years later, in 1968, Oseledets [Ose] proved that Lyapunov regularity also
holds for almost every point. These two results brought the subject of Lyapunov
exponents �rmly to the camp of ergodic theory, where it has prospered since. To
give their precise statements, we need the notion of linear cocycle.

The work of Furstenberg, Ledrappier, Guivarc'h, Raugi, Gol'dsheid, Margulis,
Mañè, Viana, Bonatti, Avila, Bochi and other mathematicians, built the study
of Lyapunov characteristic exponents into a very active research �eld in its own
right, and one with an unusually vast array of interactions with other areas of
Mathematics and Physics, such as stochastic processes (random matrices and, more
generally, random walks on groups), spectral theory (Schrödinger-type operators)
and smooth dynamics (non-uniform hyperbolicity), to mention just a few.

2.4.1 Theorem of Oseledets

This is a re�nement of Furstenberg and Kesten's theorem [FK1] in that the
conclusion is formulated in terms of the norms of the images ‖An(x)v‖, for every
non-zero v ∈ Rd, rather than the norm ‖An(x)‖ of the matrix itself. That is, while
Furstenberg and Kesten's theorem is concerned with the matrices An(x), the next
statement is about their individual column vectors.

Theorem 2.4.1 ([Ose, Oseledets]). Assume that log+ ‖A‖ is integrable with re-
spect to µ. Then at µ-almost every x ∈ X there exist an integer k(x) ≥ 1, a �ag
Rd = V 1

x > . . . > V
k(x)
x > {0}, and real numbers χ1(x,A), . . . , χk(x)(x,A) such

that for any i = 1, . . . , k(x),

1) the functions x 7→ k(x), χi(x,A), V i
x are measurable;
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2) k(x) = k(T (x)), χi(x,A) = χi(T (x),A) and A(x)V i
x = V i

T (x) for almost every
x;

3) limn→∞
1
n

log ‖An(x)‖ = χi(x,A) for every v ∈ V i
x \ V i+1

x .

If the system (T, µ) is ergodic then the functions x 7→ k(x), χi(x,A), dimV i
x are

constant µ-almost everywhere.

The conclusion of this theorem may be sharpened considerably when the map
T is invertible, as long as we also assume that log+ ‖A‖ is integrable with respect
to µ. Indeed, in this case instead of a �ag one has a direct sum decomposition
Rd = E1

x ⊕ . . .⊕ E
k(x)
x with

A(x)Ei
x = Ei

T (x), lim
n→±∞

1

n
log ‖An(x)‖ = χi(x,A) for every v ∈ Ei

x \ {0}.

The �ag and the decomposition are related through V i
x = Ei

x⊕V i+1
x . This invertible

version of the Oseledets theorem also asserts that

lim
n→±∞

1

n
log ‖detAn(x)‖ = Σiχi(x,A) dimEi

x forµ− almost every x. (2.4.1.1)

The identity in (2.4.1.1) is precisely the Lyapunov regularity condition for x.

The Oseledets theorem was �rst proven in [Ose]. Alternative arguments fol-
lowed, by Raghunathan [Ragh], Ruelle [Ruell] and others. Dynamical systems
proofs can be found in Walters [Walt] and Viana [V, Sections 4.2�4.3].

The numbers χi(x,A) and χ(µ,A) =
∫
χ(.,A)dµ are called the Lyapunov ex-

ponents and Lyapunov exponents of measures of the linear cocycle, respectively.
The number mi = dimV i − dimV i+1(= dimEi in the invertible case) is called
the multiplicity of the corresponding Lyapunov exponent χi(x,A). The Lyapunov
spectrum is the set of Lyapunov exponents counted with multiplicity, that is, the
ordered list χ1(.,A) ≥ . . . ≥ χd(.,A) where each exponent χi(.,A) is repeated mi

times.

Kingman's subadditive theorem and the following lemma show the Lyapunov
exponents of measures are upper semi continuous onM(X,T ).

Lemma 2.4.2 ([Mor13, Lemma A.4]). If g : X → R ∪ {∞} is an upper semi-
continuous, then the map from M(X,T ) to R ∪ {−∞} given by µ 7→

∫
gdµ is

upper semi-continuous. If (fn) is a subadditive sequence of upper semi-continuous
functions from X to R∪ {−∞}, then the map fromM(X,T )→ R∪ {−∞} given
by µ 7→ infm≥1

∫
fmdµ is also upper semi-continuous.
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2.5 Thermodynamic formalism

In this section we will introduce the main tools in this thesis which comes from
thermodynamic formalism.

Ergodic theory has its origins in statistical mechanics and the study of the long
term behavior of systems of large numbers of particles. In such systems precise
computation of the behavior of each particle may be unfeasible, but through the
ergodic theorems one is able to gain an understanding of the long term of a typical
point and link the macroscopic behavior of the system with the microscopic laws
governing individual particles. When we refer here to a typical point, we mean
almost every point with respect to some suitable measure invariant under the
transformation, but this leads to the question, with respect to which measure
should one use the ergodic theorem? The empirical data available to physicists led
them to the conclusion that the Gibbs measure is the most suitable such measure.
The subsequent body of work that followed connecting Gibbs measures with other
analogues of notions from statistical mechanics such as pressure, equilibrium states
and entropy all in one beautiful and interwoven theory is now called thermodynamic
formalism.

The connections established by this theory have proved to be powerful tools in
many areas of dynamical systems including its dimension theory, rates of mixing
and statistical properties of dynamical systems. The monographs of Bowen [Bow]
and Ruelle [Ru] provide classical expositions of thermodynamic formalism in the
original settings in which it was developed.

2.5.1 Additive thermodynamic formalism

Let (X,T ) be a topological dynamical system. A continuous function ψ : X →
R is a potential.

For any n ∈ N, one can de�ne a new metric dn on X by

dn(x, y) = max{d(T k(x), T k(y)) : k = 0, ..., n− 1}.

For any ε > 0 a set E ⊂ X is said to be a (n, ε)-separated subset ofX if dn(x, y) > ε
for any two di�erent points x, y ∈ E.

Using (n, ε)-separated subsets, we can de�ne a thermodynamic object called
the pressure P (ψ) of ψ as follows:

P (ψ) = lim
ε→o

lim sup
n→∞

1

n
log sup{

∑
x∈E

eSn(ψ(x)) : E is (n, ε)-separated subset of X}.

When ψ = 0, the pressure P (0) is topological entropy htop(T ), which measures
the complexity of the system (X,T ).
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The pressure satis�es the variational principle:

P (ψ) = sup{hµ(T ) +

∫
fdµ : µ ∈M(X,T )}.

Any invariant measure µ ∈M(X,T ) achieving the supremum in the variational
principle is called an equilibrium state of ψ. If the entropy map µ 7→ hµ(T ) is
upper semi-continuous, then any potential has an equilibrium state. However, the
existence, the �niteness, or the uniqueness of the equilibrium state for a given
potential is a subtle question that depends on the system (X,T ) as well as the
potential ψ . On the other hand, there are speci�c settings where such questions
have an a�rmative answer. When (X,T ) is a mixing hyperbolic system, and the
potential ψ is a Hölder continuous, then the result of Bowen [B2] states that there
exists a unique equilibrium state µψ, which has the Gibbs property.

The topological pressure function P : C(X) → R is convex and q 7→ P (qψ) is
uniformly Lipschitz continuous.

Assume that ψ is a Hölder continuous function. A(t) := P (tψ) is di�erentiable
in t, and A

′
(t) :=

∫
ψdµt, where µt is the unique equilibrium state for tψ (which

also has Gibbs properties). Using convexity properties of A one can argue that
A
′
(t) takes all values in the interior of {

∫
ψdµt | µt is invariant}. In particular,

there is t such that A
′
(t) = α such that hµt(T ) = sup{hµ(T ) |

∫
ψdµ = α}. See

for more information [PU, Chapter 3-5] and [F7, Chapter 11].

2.5.2 Subadditive thermodynamic formalism

The additive theory of thermodynamic formalism extends to the subadditive
theory with suitable generalizations. A natural example of a subadditive potential
is the singular value potential of a continuous GL(k,R)-cocycle A over Σ.

Let (X,T ) be a topological dynamical system. We de�ne the subadditive pres-
sure of a subadditive potential Φ = {log φn}∞n=1 as

P (T,Φ) = lim
ε→0

lim sup
n→∞

1

n
Pn(T,Φ, ε)

= sup{
∑
x∈E

φn(x) : E is a (n, ε)-separated subset of X}

where the existence of the limit is guaranteed from the subadditivity of Φ. One
also observe that htop(T ) := P (T, 1). For t ∈ R+, we denote PΦ(t) = P (T, tΦ).

Cao, Feng and Huang [CFH] extend the additive theory of the variational
principle to the subadditive theory.
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Theorem 2.5.1 ([CFH], Theorem 1.1). Let (X,T ) be a topological dynamical
system such that htop(T ) < ∞. Suppose that Φ = {log φn}∞n=1 is a subadditive
potential on a compact metric space (X,T ). Then for t > 0

PΦ(t) = sup{hµ(T ) + tχ(µ,Φ)

: µ ∈M(X,T ), χ(µ,Φ) 6= −∞}.

2.5.3 Almost additive thermodynamic formalism

In this subsection, we state a theorem that shows that we have the Bowen's
result for almost additive sequences.

We say that a subadditive sequences Φ := {log φn}∞n=1 over (Σ, T ) has bounded
distortion: there exists C ≥ 1 such that for any n ∈ N and I ∈ L(n), we have

C−1 ≤ φn(x)

φn(y)
≤ C

for any x, y ∈ [I].

Lemma 2.5.2 ([P, Lemma 3.10]). Let A be a Hölder continuous and �ber-bunched
GL(k,R)-cocycle over (Σ, T ). Then ΦA has bounded distortion.

Theorem 2.5.3 ([Bar, Theorem 10.1.9]). Let Φ = {log φn}∞n=1 be an almost ad-
ditive sequence over a topologically mixing subshift of �nite type (Σ, T ). Assume
that Φ has bounded distortion. Then:

1. There is a unique equilibrium measure for Φ,

2. there is a unique invariant Gibbs measure for Φ,

3. the two measures coincide and are ergodic.

2.6 Fractal dimensions

Assume that (X, d) is a metric space. We de�ne covers and packings of a set
F ⊂ X at some scale δ > 0. A collection {Ui}i∈I of subsets of X will be called
a δ-cover of F if each of the sets Ui is open and has diameter less than or equal
to δ, and F is contained in the union

⋃
Ui∈I . Similarly, a collection {Ui}i∈I of

subsets of X will be called a centered δ-packing of F if each of the sets {Ui}i∈I are
disjoint closed balls with radius less than or equal to δ and centers in F . Analyzing
the behavior of such covers and packings as δ converges to zero will be crucial in
developing the theory of dimension.
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Hausdor� dimension, named after Felix Hausdor�, who introduced the notion
in 1918 [Hau], is intrinsically linked with packing dimension, named due to its
use of packings rather than the covers used to de�ne Hausdor� dimension, which
was introduced many years later in 1982 by Claude Tricot [Tricot]. These two
dimensions have probably received the most attention in the literature on fractals
and have found their way into various di�erent �elds. They both have a convenient
de�nition in terms of measures, which leads to a mathematically beautiful theory
but can often make them very di�cult to compute directly.

Let F be a subset of X. For s > 0, and δ > 0 we de�ne the δ− approximates-
dimensional Hausdor� measure of F by

Hs
δ(F ) = inf{

∑
i∈I

|Ui|s : {Ui}i∈I is a countable δ − cover of F}

and the s−dimensional Hausdor� (outer) measure of F by Hs(F ) = limδ→0Hs
δ(F ).

The Hausdor� dimension of F is

dimH F = inf{s ≥ 0 : Hs(F ) = 0} = sup{s > 0 : Hs(F ) =∞}.

The reader surely observed how similar the de�nitions of Hausdor� dimension
and topological entropy are. Indeed, they are both just special cases of a more
general construction of Caratheodory, see [Carath].

If F is compact, then we may de�ne the Hausdor� measure of F in terms of
�nite covers. The following is a list of basic properties which Hausdor� dimension
satisfy:

Monotonicity : dimH is said to be monotone if E ⊂ F , then dimH E ≤ dimH F
for all E,F ⊂ X.

Finite stability : dimH is said to be �nitely stable if dimH(E ∪ F ) =
max{dimH E, dimH F} for all E,F ⊂ X.

Countable stability : dimH is said to be countably stable if dimH ∪iEi = supi dimH Ei
for all countable collections of sets {Ei} in X.

Stability under (bi-)Lipschitz maps: dimH is said to be stable under Lipschitz
maps if dimHf(E) ≤ (=) dimH E for all E ⊂X and all (bi-)Lipschitz maps f on
X.

Open set property: dimH is said to satisfy the open set property if for any
bounded open set U ⊂ Rn, dimH U = n.

Packing measure, de�ned in terms of packings, is a natural dual to Hausdor�
measure, which was de�ned in terms of covers. For s > 0 and δ > 0 we de�ne the
δ-approximates-dimensional packing pre-measure of F by

Psδ (F ) = sup{
∑
i∈I

|Ui|s : {Ui}i∈I s a countable centered δ − packing of F}
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and the s-dimensional packing pre-measure of F by Ps0(F ) = limδ→0Psδ (F ). To
ensure countable stability, the packing (outer) measure of F is de�ned by

Ps(F ) = inf{
∑
i∈I

Ps0(Fi) : F ⊂ ∪iFi}

and the packing dimension of F is

dimP F = inf{s ≥ 0 : Ps(F ) = 0} = sup{s > 0 : Ps(F ) =∞}.

Packing dimension satisfy Monotonicity, Finite stability, Countable stability,
Stability under (bi-)Lipschitz maps and Open set property.

The lower and upper box dimensions of a set F ⊂ X are de�ned by

dimB(F ) := lim inf
δ→0

logNδ(F )

− log δ
and dimB(F ) := lim sup

δ→0

logNδ(F )

− log δ

respectively, where Nδ(F ) is the smallest number of sets required for a δ-cover of
F . If dimB(F ) = dimB(F ), then we call the common value the box dimension of
F and denote it by dimB F . It is useful to note that we can replace Nδ with a
myriad of di�erent de�nitions all based on covering or packing the set at scale δ,
see [F8, Section 3.1]. For example, Nδ(F ) can be taken as the maximal size of a
centered δ-packing of F . If de�ning box dimension in a non-compact space, then
usually one restricts totally bounded sets in order to preclude the situation where
Nδ(F ) =∞.

Box dimension satisfy Monotonicity, Stability under (bi-)Lipschitz maps and
Open set property.

One could try to rede�ne box dimension by breaking the setup into countably
many bits, taking the supremum of the box dimension of the bits and then taking
the in�mum over the di�erent ways of splitting the set up. Amazingly, this new
de�nition simply returns the packing dimension. We obtain

dimP F = inf{sup
i

dimB Fi : F ⊂ ∪i∈IFi}

where the in�mum is taken over all countable partitions {Fi}i∈I of F, see [F8,
Section 3.4]. This alternative de�nition for packing dimension has the following
very useful consequence.

Lemma 2.6.1. Let F ⊂ X be a compact set such that for every open set U ⊂ X
which intersects F , we have dimB(F ∩ U) = dimB F . Then, dimP F = dimBF .

Assume that (X, dX) and (Y, dY ) are two metric spaces. We have

dimH(X) + dimH(Y ) ≤ dimH(X × Y ) ≤ dimH X + dimP Y ≤ dimP (X × Y ).
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See [Mat, Theorem 8.10].
For a Borel probability measure µ the Hausdor� dimension is de�ned as

dimH µ = inf{dimH A : A Borel set such that µ(A) = 1}.

The upper and lower local dimensions of a Borel probability measure µ at a
point x in its support are de�ned by

dimloc(µ, x) := lim sup
n→∞

log µ(B(x, r))

log r
and dimloc(µ, x) := lim inf

n→∞

log µ(B(x, r))

log r
.

If the upper and lower local dimensions coincide, we call the common value
the local dimension and denote it by dimloc(µ, x). This describes the rate at which
the measure of a small ball about a µ-typical point scales as the radius of the
ball is decreased. This notion is particularly important because if there exists a
constant α such that the local dimension exists and equals α at µ almost all points
then we say the measure µ is exact dimensional and in particular, if µ is exact
dimensional then all the de�nitions of the dimension of a measure coincide with
the exact dimension α.

One can also de�ne the Hausdor� dimension of measure in the following way:

dimH µ = sup{s : dimloc(µ, x) ≥ s for almost all x }.

See for more information [F7, Section 10.1].
If dimloc(µ, x) ≥ δ for a set of points of positive measure, then dimH µ ≥ δ;

this is known as Frostman's Lemma. Assume that U := {Ui}i∈I cover a set F . Let
µ be a mass distribution 2 on F and suppose that for some s there are numbers
C > 0 and δ > 0 such that

µ(U) ≥ C|U |s

for all sets U with |U | ≤ δ. Then s ≤ dimH(F ) ≤ dimB(F ) ≤ dimB(F ). See [F8,
Mass distribution principle 4.2].

We now present some results from measure theory which might be used in the
thesis. If a measure µ is absolutely continuous with respect to a measure ν, we
write µ� ν. The following proposition (e.g. [MMR, Lemma 2.4]) is useful to verify
exact-dimensionality whenever we have a measure which is absolutely continuous
with respect to an exact-dimensional measure

Lemma 2.6.2. Assume ν is a non-null �nite Borel measure on Rd with exact
dimension α. Let µ be any non-null �nite Borel measure µ on Rd with µ � ν.
Then, µ is exact dimensional with exact dimension α.

2A mass distribution on F is a measure with support contained in F such that 0 < µ(F ) <∞
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2.7 Self a�ne IFS

We say that f : Rd → Rd is a contraction if there exists a contraction ratio
0 < C < 1 such that for all x, y ∈ Rd

|f(x)− f(y)| ≤ C|x− y|.

One of the most important ways of constructing fractals is via iterated func-
tion systems. An iterated function system (IFS) is a �nite collection {fi}i∈I of
contracting self-maps. It is a fundamental result in fractal geometry, dating back
to Hutchinson's seminal 1981 paper [Hut], that for every IFS there exists a unique
non-empty compact set Λ, called the attractor, which satis�es

Λ =
⋃
i∈I

fi(Λ).

2.7.1 Symbolic coding of IFS and attractors

Typically, attractors of iterated function systems are studied by building a
symbolic space from the index set I, since the geometry of the symbolic space is
more convenient to work with than the more complex geometry of the attractor.
Let F = {fi}i∈I be an iterated function system on compact metric space X.
We will now brie�y describe this technique and �x some notation which will be
used throughout the thesis whenever a �xed IFS or a system with markov partition
indexed by I is present. Let I∗ =

⋂
k≥1 Ik and denote the set of all �nite sequences

with entries in I and for
i = (i1, . . . , ik) ∈ I∗

and write
fi = fi1 ◦ · · · ◦ fik .

We denote by IN the set of all in�nite I-valued strings and for i ∈ IN or I l
with l > k write i|k ∈ Ik to denote the restriction of i to its �rst k entries.

Then, we de�ne a natural projection

ρ : IN → Λ

from the symbolic space to the geometric space by

ρ(i) =
⋂
k∈N

fi|k(X).

Self-a�ne sets are attractors of IFS's where all of the maps are contracting
a�ne self-maps on some Euclidean space. An a�ne map is the map T : X → Y ,
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X and Y vector spaces, of the form T (x) = Ax + v, where A ∈ Lin(X, Y ) and
v ∈ Y . Self-a�ne sets are notoriously di�cult to handle in comparison with self-
similar, meaning that IFS consists solely of similarity transformation sets, and
there are still many fascinating open problems in the area.

The singular values of a linear map, A : Rn → Rn, are the positive square roots
of the eigenvalues of ATA. Viewed geometrically, these numbers are the lengths
of the semi-axes of the image of the unit ball under A. Thus, roughly speaking,
the singular values correspond to how much the map contracts (or expands) in
di�erent directions. For s ∈ [0, n] de�ne the singular value function ϕs(A) by

ϕs(A) = σ1σ2 . . . σdse−1σ
s−dse+1
dse (2.7.1.1)

where σ1 > · · · > σn are the singular values of A. This function has played a
important role in the study of self-a�ne sets over the past 25 years. Let {Ai : i ∈ I}
be a �nite collection of contracting linear self-maps on Rn, write m = |I| and let

d = d(Ai : i ∈ Ai) = inf{s :
∞∑
k=1

∑
Ik

ϕs(Ai1 . . . Aik) <∞}. (2.7.1.2)

This number is called the a�nity dimension of F and is always an upper bound for
the upper box dimension of F , see [Fal]. Moreover, by considering a natural cover
of F . Falconer proved that for `typical' translations it was equal to the Hausdor�
dimension of the set.

Theorem 2.7.1. Let {Ai}ki=1 be a collection of n × n matrices where each Ai
satis�es the bound on its matrix norm σ1(Ai) <

1
2
. Then for Lebesgue almost all

translations (t1, . . . , tk) ∈ Rkn, the attractor F of the self-a�ne IFS F = {Ai + ti :
i = 1, . . . , k} satis�es

dimH F = min{n, d}.

In fact, initially the above result was proved in [Fal] with the stronger assump-
tion that all the norms σ1(Ai) <

1
3
, but in [So], Solomyak weakened the condition

to the current form. Moreover, an upper bound of 1/2 was proved to be sharp by
an example of Przytycki and Urba«ski in [PU1].

2.8 Smooth dynamics

We recall some basic de�nitions, properties of Anosov di�eomorphisms and
partially hyperbolic dynamics which are going to be useful throughout this thesis.
During this section we use [KH, Section 6.4] and [CP].
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De�nition 2.8.1. Let X be a connected smooth manifold. A di�eomorphism
f : X → X is called an Anosov di�eomorphism or uniformly hyperbolic if there is
an invariant decomposition of the tangent bundle TX as a direct sum of continuous
Df -invariant sub bundles Es

x and E
u
x such that, for some appropriate Riemannian

metric,
‖Dfnx (vs)‖ ≤ Cλn‖vs‖ and ‖Df−nx (vu)‖ ≤ Cλn‖vu‖,

for all x ∈ X and for any pair of unit vectors vs ∈ Es
x, v

u ∈ Eu
x , where 0 < λ < 1

and C > 0 are both constants.

For example, a di�eomorphism T : T2 → T2 induced by the matrix

[
2 1
1 1

]
is

an Anosov di�eomorphism.
We proceed to show a basic proposition about the dependence of Es

x and Eu
x

on x.

Proposition 2.8.2. Let f : X → X be an Anosov di�eomorphism. Then, the
subspaces Es

x and Eu
x depend continuously on x.

We state fundamental result about stable and unstable manifolds for an Anosov
di�eomorphism. Let d be the Riemannian distance function.

Theorem 2.8.3 (Stable Manifold Theorem). Let f : X → X be an Anosov
di�eomorphism of class Ck. Then there exist ε > 0 and 0 < λ < 1 such that for
each 0 < ε < ε0 ∈ X, the local stable manifold

W s
loc(x) = {y ∈ X : d(fn(x), fn(y)) ≤ ε for all n ≥ 0},

and the local unstable manifold

W u
loc(x) = {y ∈ X : d(f−n(x), f−n(y)) ≤ ε for all n ≥ 0},

are Ck embedded disks tangent at x to Es
x and Eu

x respectively. In addition,

� f(W s
loc(x)) ⊂ W s

loc(f(x)) and f−1(W u
loc(x)) ⊂ W u

loc(f
−1(x));

� d(f(x), f(y)) ≤ λd(x, y) for all y ∈ W s
loc(x);

� d(f−1(x), f−1(y)) ≤ λd(x, y) for all y ∈ W u
loc(x);

� W s
loc(x) and W u

loc(x) vary continuously with the point x in the Ck topology.

Furthermore, the global stable and unstable manifolds of x,

W s(x) = ∪∞n=0f
−n(W s

loc(f
n(x)) and W u(x) = ∪∞n=0f

n(W s
loc(f

−n(x)),

are smoothly immersed submanifolds of X.
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A well-known property of Anosov dynamics is their local product structure.
More precisely, there is a constant δ1 > 0 such that for every x, y ∈ X which satisfy
d(x, y) < δ1 the intersection W u

loc(x) ∩W s
loc(y) consists of a unique point denoted

by [x, y]. In fact, for ε small enough the local stable manifold W s
ε (x) and the local

unstable manifold W s
ε (x) have transversal intersection at x and these manifolds

vary C1−continuously respect to x. As a result, we get the local product structure.

2.8.1 Closing property

Another well-known property of Anosov dynamics is closing property.
A sequence x1, ..., xn = x0 of points is called a periodic ε-pseudo-orbit if

d(f(xk), xk+1) < ε for all k = 1, ..., n. A homeomorphism f : X → X satis�es the
closing property if there exist two positive constants C, δ0 such that for ε < δ0 any
periodic ε−pseudo-orbit x0, x1, ..., xn = x0, there is a periodic point p such that
fn(p) = p and d(fkp, xk) < Cε, for every k ∈ {0, 1, ..., n}.

We say that f satis�es the closing property if there exist C1, ε0, θ > 0 such that
if z ∈ X satis�es d(fn(z), z) < ε0 then there exists a periodic point p ∈ X such
that fn(p) = p and

d(f j(z), f j(p)) ≤ C1e
−θmin{j,n−j}d(fn(z), z)

for every j = 0, 1, . . . , n.

Theorem 2.8.4 (Anosov closing lemma). Every Anosov di�eomorphism f : X →
X satis�es the closing property.

Note that shifts of �nite type, Axiom A di�eomorphism, and hyperbolic home-
omorphism are particular systems satisfying the Anosov closing property.

2.8.2 Partially hyperbolic dynamics

Partial hyperbolicity is a relaxed form of uniform hyperbolicity which intends
to address larger families of dynamics. A main goal of their study consists in
understanding how the properties of uniformly hyperbolic systems extends.

We consider M a closed connected d-dimensional Riemannian manifold and
let TM its tangent bundle. We also consider f in the space DiffrM) of Cr-
di�eomorphisms endowed with the Cr-topology, r ≥ 1.

De�nition 2.8.5. A partially hyperbolic set for f is a compact f -invariant set K
whose tangent bundle admits a splitting into three continuous vector subbundles
TKM = Eu

⊕
Ec
⊕

Es which satisfy:

� the splitting is dominated,
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� Es is uniformly contracted, Eu is uniformly expanded, one of them is non-
trivial.

A splitting TKM = E1

⊕
. . .
⊕

Ek is a dominated splitting if and only if:

� Invariance: The bundles areDf -invariant. This means that for every x ∈ K
and 1 ≤ i ≤ k one has Dxf(Ei(x)) = Ei(f(x)).

� Domination: There exists constants C > 0 and λ ∈ (0, 1) such that, for
every 1 ≤ i ≤ k − 1, for every x ∈ K and vectors u ∈ Ei(x) \ {0} and
u ∈ Ei+1(x) \ {0} one has:

‖Dxf
nu‖

‖u‖
≤ Cλn

‖Dxf
nv‖

‖v‖
, ∀n ≥ 0. (2.8.2.1)

Domination can be also expressed by saying that for any x ∈ K and 1 ≤ i ≤ k− 1
one has that ‖D|Ei(x)f

nu‖ ≤ Cλn‖(D|Ei+1(x)f
n)−1‖−1.

Remark 2.8.6. a) If k = 1 we say that the splitting is trivial. Sometimes,
when one says that an f -invariant subset admits a dominated splitting one
implicitly assumes that it is not trivial.

b) One can replace condition (2.8.2.1) by asking for the existence of n > 0 such
that for any x ∈ K and vectors u ∈ Ei(x) \ {0} and v ∈ Ei+1(x) \ {0} one
has:

‖Dxf
nu‖

‖u‖
≤ 1

2

‖Dxf
nv‖

‖v‖
.

In any case, in such a situation one says that Ei+1 dominates Ei and one
someone denotes this as E1⊕< . . .⊕<Ek to emphasize the order of the dom-
ination.

� If one replaces the bundles Ei, Ei+1 by their direct sum Ei⊕Ei+1 the splitting
remains dominated.

2.8.3 Convex cone

We adopt the convention that if V is a vector space, a convex cone C in V is
a subset such that there exists non-degenerate quadratic form QC such that

C = {v ∈ V : QC(v) ≥ 0}.

The interior of a convex cone is interiorC = {v ∈ V : QC(v) > 0} ∪ {0}.
A cone-�eld C on K ⊂ M is then a choice of a convex cone Cx ⊂ TxM for

each point in M such that in local charts the quadratic forms can be chosen in a
continuous way and have the same signature (d−, d+).

Equivalently, a cone-�eld C in K is given by:
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� a (not necessarily invariant) splitting TKM = Ê ⊕ F̂ into continuous sub-
bundles whose �bers have dimension d− and d+ respectively,

� a continuous family of Riemannian norms ‖ · ‖ de�ned on TKM (not neces-
sarily the ones given by the underlying Riemannian metric).

In this setting, for x ∈ K, one associates

� the convex cone Cx = {v = vÊ + vF̂ ∈ TxM, ‖vF̂‖ ≥ ‖vÊ‖},

� the dual convex cone C∗x = {v = vÊ + vF̂ ∈ TxM, ‖vÊ‖ ≥ ‖vF̂‖}.

The dimension dimC of the cone-�eld C is the dimension d+ of the bundle F̂ .
We say that a cone-�eld C de�ned in K is Df -contracted if there exists N > 0

such that for every x ∈ K ∩ . . . ∩ f−N(K) one has that

Dxf
N(Cx) ⊂ interior(CfN (x))

(Equivalently, the dual cone �eld C∗x is Df−1-contracted).

Theorem 2.8.7 ([CP, Theorem 2.6]). Assume that f ∈ Diffr(M). Let K be an
invariant compact set and �x d+ ≥ 1. Then K is endowed with a Df -contracted
cone-�eld C with dimension d+ if and only if there exists a dominated splitting
TKM = E ⊕< F with d+ = dim(F ).

2.9 Hilbert metric

Let V be a vector space over the reals.

De�nition 2.9.1. Fix a convex cone C ⊂ V . Given v, w ∈ C, let

α(v, w) = sup{λ > 0|w − λv ∈ C}, β(v, w) = inf{µ > 0|µv − w ∈ C}, (2.9.1)

with α = 0 and/or β = ∞ if the corresponding set is empty. The cone distance
between v and w is

dc(v, w) = log
β(v, w)

α(v, w)
. (2.9.2)

The distance dc is called Hilbert projective (pseudo) metric.

Several remarks are now in order. First we observe that although V may be
in�nite-dimensional, the distance dc(v, w) is completely determined in terms of
the two-dimensional subspace spanned by v and w, and in particular by the points
shown in Figure 2, the lines 0A and 0B are the boundary of this two-dimensional
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cross-section of C. The lines 0X and wY are parallel, as are the lines 0A and wX;
then we have

α =
|wY |
|0v|

, and β =
|0X|
|0v|

.

An alternate description of dC is available in terms of this more geometric
description. Let J be the line through v and w and let A,B be the points where
this line intersects the boundary of C. We see from Figure 2 that the triangles
BY w and B0v are similar, so

α =
|wY |
|0v|

=
|Bw|
|Bv|

.

Furthermore, v0A and vXw, are similar so

0

vA B

X

w

Y

Figure 2: Determining the cone distance between v and w

β =
|0X|
|0v|

= 1 +
|vX|
|0v|

= 1 +
|wv|
|Av|

=
|Aw|
|Av|

.

Thus dC can be given in terms of the cross-ratio of the points v, w,A,B :

β

α
=
|Aw|
|Av|

|Bv|
|Bw|

:= (v, w;A,B).

We have
dC(v, w) = log(v, w;A,B).

Note that it is possible that the line J does not intersect the boundary of C twice;
this corresponds to the the case when either α = 0 or β =∞ (or both) in and in
this case dC(v, w) =∞.
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Moreover, when α = β (that is, when v = cw, they are colinear), the Hilbert
metric then gives 0. Because of this phenomenon, dC is not a true metric (it is a
pseudometric metric). However, dC is a projective metric on C/ ∼ (the equivalence
classes of C for the relation x ∼ y if x = λy where λ ∈ R+).

An important property of the Hilbert metric is the following theorem, due to
Birkho�, which states that a linear map from one convex cone to another is a
contraction whenever its image has �nite diameter (see for more information [1]).

Theorem 2.9.2. Let C1 ⊂ V1 and C2 ⊂ V2 be convex cones, and L : V1 → V2 be a
linear map such that L(C1) ⊂ Co

2 . Assume that 4 := supv̂,ψ̂∈L(C1
dC2(v̂, ŵ). Then

for all v, w ∈ C1, we have

dC2(Lv, Lw) ≤ tanh(
4
4

)dC1(v, w),

where we use the convention that tanh∞ = 1.

We are also going to use the following lemma.

Lemma 2.9.3. Let V be a �nite dimensional vector space. Suppose that C1 and
C2 are two convex cones in V such that C1 ⊂ Co

2 and dC2 is the Hilbert metric on
C2. Then C1 is bounded in metric dC2.

Proof. Let us denote d as the usual distance on the projective space. Since C1 ⊂ Co
2 ,

d(C1, ∂C2) > 0. Hence, for every v, w ∈ C1 the distances d(A, v), d(B,w) are
uniformly bounded from below by c1 = d(C1, ∂C2), where A,B are the intersections
of the line vw with ∂C2 (see Figure 2). On the other hand, d(v, w) is uniformly
bounded from above by c2 = diamd(C1). Thus, dC2(v, w) ≤ log((c1 + c2)/c1).
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Chapter 3

Multifractal formalism

We recall that we are interested in the linear cocycles generated by a topolog-
ically mixing subshift of �nite type T : Σ → Σ and a Hölder continuous function
A : Σ→ GL(k,R).

3.1 Multilinear algebra

We recall some basic facts about the exterior algebra. We use them for studying
the singular value function.

We denote by σ1, ..., σk the singular values of the matrix A, which are the
square roots of the eigenvalues of the positive semi de�nite matrix A∗A listed in
decreasing order according to multiplicity.

Assume that {e1, .., ek} is the standard orthogonal basis of Rk and de�ne

∧lRk := {ei1 ∧ ei2 ∧ ... ∧ eil : 1 ≤ ei1 ≤ ei2 ≤ ... ≤ eil ≤ k}

for all l ∈ {1, ..., k} with the convention that ∧0Rk = R. It is called the l-th exterior
power of Rk.

We are interested in the invertible matrices GL(k,R). We consider induced
topology Rk2

for it. For A ∈ GL(k,R), we de�ne an invertible linear map A∧l :
∧lRk → ∧lRk as follows

(A∧l(ei1 ∧ ei2 ∧ ... ∧ eil)) = Aei1 ∧ Aei2 ∧ ... ∧ Aeil .

∧lRk is represented by a
(
k
l

)
×
(
k
l

)
whose entries are the l × l minors of A. It

can also show that
(AB)∧l = A∧lB∧l.

The singular values of A∧l are the product σi1(A)...σil(A). In addition,

‖A∧l‖ = σ1(A)...σl(A).
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3.2 The maximal and minimal Lyapunov exponent

We recall for A : Σ→ GL(k,R) and I ∈ L

‖A(I)‖ := max
x∈[I]
‖A|I|(x)‖.

We de�ne a positive continuous function {ϕA,n}n∈N on Σ such that

ϕA,n(x) = ‖An(x)‖.

We denote by ΦA the subbadditive potential {logϕA,n}∞n=1.
We recall the de�nition of the maximal Lyapunov exponent of linear cocycles

β(A) := lim
n→∞

1

n
log sup

x∈X
‖An(x)‖.

Morris [Mor10] showed that the maximal Lyapunov exponent is equal to the
supremum of the Lyapunov exponents of measure over invariant measures. That
means,

β(A) = sup
µ∈M(X,T )

χ(µ,A). (3.2.1)

Feng and Huang [FH] gave a di�erent proof of it.
Let us recall the set of maximizing measures of A to be the set of measures on

X given by
Mmax(A) := {µ ∈M(X,T ), β(A) = χ(µ,A)}.

We also recall the de�nition of the minimal Lyapunov exponents of linear co-
cycles as follows

α(A) := lim
n→∞

1

n
log inf

x∈X
‖An(x)‖.

Similarly, the set of minimizing measures is de�ned as follows

Mmin(A) := {µ ∈M(X,T ), α(A) = χ(µ,A)}.

We remark that supremum (3.2.1) is attained, soMmax is non-empty set. But,
Mmin is not necessarily non-empty.

Similarly, one can de�ne the above de�nitions for subadditive potentials.
We de�ne sum of top l Lyapunov exponents as follows

χl(A) := lim
n→∞

1

n
logϕA∧l,n(x),

if the limit exists.
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Similarly, we de�ne sum of top l Lyapunov exponents of measure as follows

χl(µ,A) := lim
n→∞

1

n

∫
logϕA∧l,n(x)dµ(x),

for µ ∈M(X,T ).
We are mainly concerned with the distribution of the Lyapunov exponents of

A. More precisely, for any α ∈ R, de�ne

EA(α) = {x ∈ X,χ1(A) = α},

which is called the α-level set of χ1(A).
We also de�ne the higher dimensional of level set of all of Lyapunov exponents

as follows
EA(~α) = {x ∈ X,χl(A) = αl},

for 1 ≤ l ≤ k.
We denote E(α) = EA(α), when there is no confusion about A.
We denote

~ΦA := ({logϕA,n}∞n=1, {logϕA∧2,n}∞n=1, ..., {logϕA∧k,n}∞n=1).

We say that ~ΦA is (simultaneously) quasi-multiplicative if there exist C > 0
and m ∈ N such that for every I, J ∈ L, there exists K ∈ L with |K| ≤ m such
that IKJ ∈ L and

‖A∧i(IKJ)‖ ≥ C‖A∧i(I)‖‖A∧i(J)‖,

for 1 ≤ i ≤ k.

3.3 Thermodynamic Formalism

3.3.1 Legendre transform

Assume that f : Rk → R ∪ {+∞} is a convex function that is not identically
equal to −∞. The Legendre transform of f is the function f ∗ of a new variable t,
de�ned by

t 7→ −f ∗(−t) := inf{f(x)− tx : x ∈ Rk},

where right hand side is scalar product.
It is easy to show that f ∗ is a convex function and not identically equal to −∞.

Let f ∗∗ be the Legendre transform of f ∗. The following result is well known (cf.
[Roc, Theorem 12.2]).
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Theorem 3.3.1. Assume that f : Rk → R ∪ {∞} is convex and not identically
equal to −∞. Let x ∈ Rk. Suppose that f is lower semi continuous at x, i.e.,
lim infy→x f(y) ≥ f(x). Then f ∗∗(x) = f(x).

Feng and Huang [FH, Corollary 2.5] proved the following corollary as an ap-
plication the above theorem.

Corollary 3.3.2. Assume that A is a non-empty, closed and convex set in Rk and
let g : A→ R be a concave function. Set

W (x) = sup{g(a) + ax : a ∈ A}, x ∈ Rk

and
G(a) = inf{W (x)− ax : x ∈ Rk}, a ∈ A.

Finally, if g is upper semi continuous at a ∈ A, then G(a) = g(a).

3.3.2 Thermodynamic Formalism for subadditive potentials

Assume that (X,T ) is a topological dynamical systems.

Let ~q = (q1, ..., qk) ∈ Rk+, and ~Φ = (Φ1, ...,Φk) = ({log φn,1}∞n=1, ...,

{log φn,k}∞n=1). Assume that ~q.~Φ =
∑k

i=1 qiΦi is a subadditive potential {qi log φn,i}∞n=1.
We can write topological pressure, maximal Lyapunov exponent, and minimal Lya-
punov exponent of ~Φ, respectively

P~Φ(~q) = P (T, ~q.~Φ), ~β(~Φ) = β(
k∑
i=1

Φi), ~α(~Φ) = α(
k∑
i=1

Φi).

For µ ∈M(X,T ), we write

χ(µ, ~Φ) = (χ(µ,Φ1), ...., χ(µ,Φk)),

where χ(µ,Φi) = limn→∞
1
n

∫
log φn,i(x)dµ(x) for i = 1, ..., k.

Theorem 3.3.3 ([FH, Theorem 1.2]). Let (X,T ) be a topological dynamical sys-
tems such that htop(T ) < ∞. Assume that ~Φ is a subadditive potential on the
compact metric space X. Then the pressure function P~Φ(~t) is a continuous real

convex function on (0,∞). Furthermore, P
′

~Φ
(∞) := limt→∞

P~Φ(~t)

~t
= ~β(~Φ).

We recall the de�nition of topological pressure by the following variational
principle.
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Theorem 3.3.4 ([CFH, Theorem 1.1]). Let (X,T ) be a topological dynamical
systems such that htop(T ) < ∞. For ~t ∈ Rk+, suppose that ~Φ is a subadditive
potential on the compact metric space X. Then

P~Φ(~t) = sup{hµ(T ) + ~t.χ(µ, ~Φ)

: µ ∈M(X,T ), χ(µ, ~Φ) 6= −∞}.

Let ~t ∈ Rk+, we denote by Eq(~Φ,~t) the collection of invariant measures µ such
that

hµ(T ) + ~t.χ(µ, ~Φ) = P~Φ(~t).

If Eq(~Φ,~t) 6= ∅, then each element Eq(~Φ,~t) is called an equilibrium state for
~t.~Φ.

In the remaining part of this section, we recall some theorems about multifractal
formalism for subadditive potentials.

Theorem 3.3.5 ([FH, Proposition 3.2]). Assume that htop(T ) <∞. Then, P~Φ(.)
is a real continuous convex function on Rk+ and

∂P (Rk+) ⊂ (−∞, β(Φ1)]× ...× (−∞, β(Φk)].

Theorem 3.3.6 ([FH, Theorem 1.1]). Let (X,T ) be a topological dynamical system
such that the topological entropy htop(T ) is �nite. Then E(β(Φ)) 6= ∅ . Moreover,

htop(T,E(β(Φ))) = sup{hµ(T ) : µ ∈M(X,T ), χ(µ,Φ) = β(Φ)}
= sup{hµ(T ) : µ ∈ E(X,T ), χ(µ,Φ) = β(Φ)}.

The topological pressure is related to Lyapunov exponents in the following way.

Proposition 3.3.7 ([FH, Theorem 3.3]). Let (X,T ) be a topological dynami-
cal system such that the entropy map µ 7→ hµ(T ) is upper semi-continuous and
htop(T ) <∞. For t ∈ Rk+, suppose that ~t.~Φ is a subadditive potential on the com-
pact metric space X. Then,

∂P~Φ(~t) = {χ(µ~t,
~Φ) : µ ∈ Eq(~Φ,~t)}. (3.3.2.1)

Moreover, Eq(~Φ,~t) is a non-empty compact convex subset of M(X,T ), for any
t ∈ Rk+. Furthermore, the above results hold for t ∈ Rk when ~Φ is an almost
additive.

The following lemma shows that we can always approximate the Lyapunov
exponent of the equilibrium measure by the Lyapunov exponent of the ergodic
measure.
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Lemma 3.3.8 ([FH, Lemma 4.7]). Suppose that htop(T ) < ∞, and ~t ∈ Rk+. Let
~α ∈ ∂P e

~Φ
(~t). Then for any ε > 0, there is a ν ∈ E(X,T ) such that

|χ(ν, ~Φ)− ~α| < ε, and |hν(T )− (P~Φ(~t)− ~α.~t)| < ε.

Theorem 3.3.9 ([FH, Theorem 4.8]). Keep the assumption of Theorem (3.3.6),
we also assume that the entropy map µ 7→ hµ(T ) is upper semi-continuous on
M(X,T ). If t ∈ Rk+ such that ~t.~Φ has a unique equilibrium state µ~t ∈ M(X,T ),
then µ~t is ergodic, ∇P~Φ(~t) = χ(µ~t,

~Φ), E(∇P~Φ(~t)) 6= ∅ and htop(T,E(∇P~Φ(~t))) =
hµ~t(T ).

We denote by M(X) the space of all Borel probability measure on X with
weak∗ topology.

Theorem 3.3.10 ([CFH, Lemma 2.3]). Suppose {νn}∞n=1 is a sequence inM(X)
and Φ = {log φn}∞n=1 is a subadditive potential on the compact metric space X. We
form the new sequence {µn}∞n=1 by µn = 1

n

∑n−1
i=0 νnoT

i. Assume that µni converges
to µ inM(X) for some subsequence {ni} of natural numbers. Then µ ∈M(X,T )
and

lim sup
i→∞

1

ni

∫
log φni(x)dνi(x) ≤ χ(µ,Φ). (3.3.2.2)

Given an almost additive potential Φ = {log φn}∞n=1. Feng and Huang [FH,
Lemma A.4] proved the following lemma:

Lemma 3.3.11. Let µ ∈M(X,T ). Then, the map µ 7→ χ(µ,Φ) is continuous on
M(X,T ).

3.4 Generic cocycles

3.4.1 Fiber bunched cocycles

We recall that T : Σ→ Σ is a topologically mixing subshift of �nite type. We
say that A : Σ→ GL(k,R) is a r-Hölder continuous function, if there exists C > 0
such that

‖A(x)−A(y)‖ ≤ Cd(x, y)r ∀x, y ∈ Σ. (3.4.1.1)

We denote by Hr(Σ, GL(k,R)) the set of r-Hölder continuous functions. We also
show by Hr(Σ), when there is no confusion about GL(k,R).

We denote by hr(A) the smallest constant C in (3.4.1.1). We equip theHr(Σ, GL(k,R))
with the distance

Dr(A,B) = sup
X
‖A−B‖+ hr(A−B).
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It is clear the locally constant functions are ∞-Hölder i.e., they are r-Hölder
for every r > 0, with bounded hr(A).

De�nition 3.4.1. A local stable holonomy for the linear cocycles (T,A) is a family
of matrices Hs

y←x ∈ GL(k,R) de�ned for all x ∈ Σ with y ∈ W s
loc(x) such that

a) Hs
x←x = Id and Hs

z←yoH
s
y←x = Hs

z←x for any z, y ∈ W s
loc(x).

b) A(x) ◦Hs
x←y = Hs

T (x)←T (y) ◦ A(y).

c) (x, y, v) 7→ Hy←x(v) is continuous.

Moreover, if y ∈ W u
loc(x), then there are analogous properties for Hu

x←y.

According (b) in the above de�nition, one can extend the de�nition to the
global stable holonomy Hs

y←x for y ∈ W s(x) not necessarily in W s
loc(x) :

Hs
y←x = An(y)−1 ◦Hs

Tn(y)←Tn(x) ◦ An(x),

where n ∈ N is large enough such that T n(y) ∈ W s
loc(T

n(x)). One can extend the
de�nition the global unstable holonomy similarly.

De�nition 3.4.2. A r−Hölder continuous function A is called �ber bunched if for
any x ∈ Σ,

‖A(x)‖‖A(x)−1‖ωr < 1, (3.4.1.2)

where ω is the hyperbolicity constant de�ning the metric on the base Σ.

We say that the linear cocycle (T,A) is �ber-bunched if its generator A is
�ber-bunched. We denoted by Hr

b (Σ, GL(k,R))) the family of r-Hölder-continuous
and �ber bunched functions.

The geometric interpretation of the �ber bunching condition is as follows. Let
A ∈ Hr

b (Σ, GL(k,R)). The projection cocycle associated to A and T is the map
PF : Σ× PRk → Σ× PRk given by

PF (x, v) := (T (x),
A(x)v

‖A(x)v‖
).

We denote by DAv the derivative of the action PRk → PRk on projective space
at all points v ∈ PRk. Taking derivative

‖DAv‖ ≤ ‖A‖‖A−1‖ and ‖DA−1
v ‖ ≤ ‖A‖‖A−1‖

for all v ∈ PRk. Therefore, the �ber bunching condition implies that rate of ex-
pansion (respectively, contraction) the projective cocycle PF at every point x ∈ Σ
is bounded above by ( 1

ω
)r( respectively, below by ωr).
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The Hölder continuity and the �ber bunched assumption A ∈ Hr
b (Σ, GL(k,R))

imply the convergence of the canonical holonomy Hs�u (see [BGMV], [KS]). That
means, for any y ∈ W s�u

loc (x),

Hs
y←x := lim

n→∞
An(y)−1An(x) and Hu

y←x := lim
n→−∞

An(y)−1An(x).

In addition, when the linear cocycle is �ber bunched, the canonical holonomies vary
r−Hölder continuisly (see [KS]), i.e., there exists C > 0 such that for y ∈ W s�u

loc (x),

‖Hs�u
x←y − I‖ ≤ Cd(x, y)r.

In this chapter, we will always work with the canonical holonomies for �ber
bunched cocycles.

Remark 3.4.3. Even though the locally constant cocycles are not necessary �ber
bunched, the canonical holonomies always exist. Indeed, for every y ∈ W s(x) there
exist m such that xn = yn for all n ≥ m. Then,

Hs
x←y = A−1(x) · · · Am−1(x)−1Am−1(y) · · · A(y).

In particular Hs
x←y = Id, for all x ∈ W s

loc(y). Similarly, we get the existence of
the unstable holonomy.

Remark 3.4.4. If a linear cocycle is not �ber bunched, then it might admit multiple
holonomies (see [KS1]).

3.4.2 Typical cocycles

We are going to discuss typical cocycles. For details, one is referred to [AV],
[BV1] and [V].

Suppose that p ∈ Σ is a periodic point of T , we say the p 6= z ∈ Σ is a
homoclinic point associated to p if it is the intersection of the stable and unstable
manifold of p. That is, z ∈ W s(p) ∩W u(p) (see �gure 8). The set of homoclinic
points of any periodic point is dense in Σ for hyperbolic systems.

We de�ne the holonomy loop

ψzp := Hs
z←p ◦Hu

p←z.

De�nition 3.4.5. Suppose that A : Σ→ GL(k,R) belongs Hr
b (Σ, GL(k,R)). We

say that A is 1-typical if there exists a periodic point p and a homoclinic point z
associated to p such that:

(i) The eigenvalues of Aper(p)(p) have multiplicity 1 and distinct norms. Let
{vi}ki=1 be the eigenvectors of P := Aper(p)(p).
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p z

Figure 3: Homoclinic point.

(ii) ψzp(vi) does not lie in any hyperplane Wj spanned by all eigenvectors of P
other than vi for any 1 ≤ i, j ≤ k.

For k = 2 this second condition means that ψzp(vi) does not intersect other
lines. See Figure 10 for a 1-typical cocycle in the 2 dimensional case.

We refer to (i) as the (pinching) properties and to (ii) as the (twisting) prop-
erties.

The cocycles generated by A∧t, 1 ≤ t ≤ k also admit stable and unstable
holonomies, namely (Hs�u)∧t.

De�nition 3.4.6. Assume that A is 1-typical. We say A is t-typical for 2 ≤ t ≤
k − 1, if the points p, z ∈ Σ from De�nition 3.4.5 satisfy

(I) P∧t satis�es the analogous statement to (i) from De�nition 3.4.5 for all t.
Let {vi1 ∧ ... ∧ vit}1≤i1<...<it≤k be the eigenvectors of P

∧t.

(II) The induced map (ψzp)
∧t on (Rk)∧t satis�es the analogous statement to (ii)

from De�nition 3.4.5.

We say that A is typical if A is t−typical for all 1 ≤ t ≤ k − 1. We denote by
W ⊂ Hr

b (Σ, GL(k,R)) the set of all typical functions.

Remark 3.4.7. Above de�nition for typical cocycles comes from [P] that is a
slightly weaker form typical cocycles which was �rst introduced by Bonatti and
Viana [BV1]; Park [P] considered a weaker twisting assumption. We also remark
that the di�erence in the settings of [BV1] and [P] does not make any problems in
translating the relevant statements and results from [BV1] to this thesis.

Remark 3.4.8. Avila and Viana in [AV] improved the Bonatti and Viana's result
by weakening the assumptions: they allowed the number of symbols of Σ to be count-
ably in�nite and proved analogous results to [BV1]. They call 1-typical cocycles of
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v1
ψzp(v1)

p z

Figure 4: ψzp(v1) 6= v2

[BV1] by simple cocycles. In comparison to simple cocycles of [AV], our typicality
assumption has a weaker twisting assumption, but we still require t-typicality for
each 1 ≤ t ≤ k − 1.

Despite slight variations in the de�nition of typicality, in all cases, W is open
and dense in Hr

b (Σ, GL(k,R)), and its complement has in�nite codimension.
Park [P] proved quasi-multiplicativity for typical cocycles W . The approach

has its roots in previous work of Feng [F, Proposition 2.8] who showed quasi-
multiplicativity for locally constant cocycles under a certain assumption.

Theorem 3.4.9 ([P, Theorem F]). Assume that A ∈ W. Then A is quasi-
multiplicative. Moreover, ~ΦA is (simultaneously) quasi-multiplicative.

3.4.3 The continuity of Lyapunov exponents

Throught, PF : Σ+ × PRk → Σ+ × PRk is the projective cocycle associated
with linear cocycle F : Σ+ × Rk → Σ+ × Rk that is generated by (T,A).

We say that a matrix cocycle is strongly irreducible when there is no �nite
family of proper subspaces invariant by A(x) for µ-almost every x. Furstenberg
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[V, Theorem 6.8] showed that the Lyapunov exponent χ(µ,A) of F coincides with
the integral of the function ψ : Σ+ × PRk → R,

ψ(x, v) = log
‖A(x)v‖
‖v‖

for locally constant cocycles under the strong irreducibility assumption. In other
words, he showed that

χ(µ,A) =

∫
ψd(µ× η),

for any stationary measure η of the associated projective cocycle PF . Therefore,
one can easily show that we have the continuity of Lyapunov exponents with
respect to (A, µ) ([V, Corollary 6.10]) under the strong irreducibility assumption.

Remark 3.4.10. Bonatti and Viana [BV1], [BGMV] extended the Furstenberg's
formula to 1-typical cocycles. Therefore, we have the continuity of Lyapunov expo-
nents for typical cocycles with respect to (A, µ), as well.

Even though discontinuity of Lyapunov exponents is a common features (see
[Bo], [Boc1]), there are some results for the continuity of Lyapunov exponents. For
instance, Bocker and Viana [BV] proved the continuity of Lyapunov exponents of
2−dimensional locally constant cocycles under a certain assumption. In order to
state the result of Bocker and Viana, we denote by 4k the collection of strictly
positive probability vectors in Rk for k ≥ 2. We denote by X the full shift space
over k symbols. For p = (p1, ..., pk) ∈ 4k, let µ be the associated Bernoulli product
measure on X.

Theorem 3.4.11 ([BV, Theorem B]). For every ε > 0 there exist δ > 0 and
a weak∗ neighborhood V of µ in the space of probability measures on GL(2,R)
such that for every probability measure µ

′ ∈ V whose support is contained in the
δ-neighborhood of the support of µ, we have

|χ(µ,A)− χ(µ
′
,A′)| < ε.

Avila, Eskin and Viana [AEV] announced recently that Bocker and Viana's
result remains true in arbitrary dimensions.

It was conjectured by Viana [V] that Lyapunov exponents are always continu-
ous among Hα

b (X,GL(2,R))-cocycles, and that has been proved by Backes, Brown
and Butler [BBB]. In fact, they prove Lyapunov exponents vary continuously on
any family of GL(2,R)-cocycles with continuous invariant holonomies i.e.,

χ(x,An)→ χ(x,A),

when (An, Hs,n, Hu,n)→ (A, Hs, Hu).
We state the main result of Backes, Brown, and Butler as follows.
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Theorem 3.4.12 ([BBB, Theorem 2.8]). Suppose that {An}n∈N is a sequence of
2-dimensional linear cocycles over T converging uniformly with holonomies to a
cocycle A and {µn}n∈N a sequence of fully supported, ergodic, T -invariant proba-
bility measures converging to an ergodic, T -invariant measure µ with local product
structure and full support. Then

χ(µn,An)→ χ(µ,A),

and,
χ(µn,A−1

n )→ χ(µ,A−1).

That improves Bocker and Viana's result [BV]. Furthermore, Butler [Bu] showed
in the following example that the �ber-bunching condition is sharp.

Example 3.4.13. Assume that T : {0, 1}Z → {0, 1}Z is a shift map. We de�ne a
locally constant cocycle (T,A) such that

A0 =

[
σ 0
0 σ−1

]
, A1 =

[
σ−1 0
0 σ

]
,

where σ is a positive constant greater than 1. We de�ne probability measure νp
in order to νp([0]) = p, νp([1]) = 1 − p, and then Bernoulli measure µp = νZp . By
de�nition the cocycle (T,A) is �ber bunched if and only if σ2 < 2α 1.

Butler[Bu] shows that for above example if σ4p−2 ≥ 2α for p ∈ (1
2
, 1), then for

each neighborhood U ⊂ Hα({0, 1}Z, SL(2,R)) of A and every κ ∈ (0, (2p−1) log σ],
there is a locally constant cocycle B ∈ U such that χ(x,B) = κ. In particular,
A is a discontinuity point for Lyapunov exponents in Hα({0, 1}Z, SL(2,R)). So,
this example shows that we have discontinuity of Lyapunov exponents near �ber
bunched cocycles.

The inequality σ4p−2 ≥ 2α comes from the following observation

lim
n→∞

log(‖An(x)‖‖An(x)−1‖) = (χ(µp, A)− χ(µp, A
−1)) = (4p− 2) log σ,

for µp almost every x ∈ {0, 1}Z.
Lyapunov exponents are T -invariant maps, thus when µ is ergodic they are

constant µ-almost everywhere. In that case, we denote them as χi(A) for i = 1, .., k.
For α ∈ R, the Lyapunov spectrum of linear cocycles is de�ned as:

L := {α, ∃x ∈ Σ such that χ1(A) = α}. (3.4.3.1)

1Σ is equipped by a norm d that is, for all x 6= y, d(x, y) = 2−N(x,y), where N(x, y) =
min{n, xn 6= yn}.
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For ~α ∈ Rk, we also de�ne the Lyapunpv spectrum of a vector as follows:

~L := {~α, ∃x ∈ Σ such that χl(A) = αl},

for 1 ≤ l ≤ k.

Theorem 3.4.14 ([P, Theorem D]). Let A ∈ W. Then L ⊂ R and ~L ⊂ Rk are
convex and closed.

We use Theorem 3.4.12 to show that the Lyapunov spectrum of �ber bunched
cocycles is a closed and convex set.

Corollary 3.4.15. Let A ∈ Hr
b (X,GL(2,R))). Then ~L is a convex and closed

subset of R2.

Proof. Since W is open and dense, for every A ∈ Hr
b (X,GL(2,R))) there is a

Ak ∈ W such that Ak → A.
By Theorem 3.4.12,

χi(Ak)→ χi(A)

for i = 1, 2. By Theorem 3.4.14, ~L is a closed and convex subset of R2.

3.4.4 Thermodynamic formalism for linear cocycles

In this subsection we will present what is known for linear cocycles.
Feng and Käenmäki [FK] extended the Bowen's result, who proved the unique-

ness of equilibrium state for additive potentials under certain assumptions, for
subadditive potentials tΦ on a locally constant cocycle under the assumption that
the matrices in A do not preserve a common proper subspace of Rk (i.e. (T,A) is
irreducible).

Consider Theorem 3.4.9, the following theorem shows that we have the Feng
and Käenmäki's result for typical cocycles.

Theorem 3.4.16. Let A ∈ W be typical. Assume that ~ΦA is (simultaneously)
quasi-multiplicative and ~t ∈ Rk+. Then P~ΦA(~t) has a unique equilibrium state µ~t for

the subadditive potential ~t.~ΦA. Furthermore, µ~t has the following Gibbs property:
There exists C ≥ 1 such that for any n ∈ N, [J ] ∈ L(n), we have

C−1 ≤ µ~t([J ])

e
−nP~ΦA (~t)+~t. ~ΦA(x)

≤ C, (3.4.4.1)

for any x ∈ [J ]. Furthermore, P~ΦA(.) is di�erentiable on Rk+ and ∇P~ΦA(~t) =

χ(µ~t,
~ΦA).

44



Proof. It is easily follows from Lemma 2.5.2 and [P, Proposition 3.9].

Park [P] uses the quasi-multiplicative property A ∈ W to show the continuity
of the topological pressure which it states in the following theorem. We remark
that we prove that for A ∈ Hα

b (Σ, GL(2,R)) in the next section.

Theorem 3.4.17 ([P, Theorem B]). The map (s,A) → PΦ̃A
(s) is continuous on

[0,∞)×W.

Theorem 3.4.18. Assume that htop(T ) < ∞, and α(A) < ∞. If A ∈ W, then
PΦA() is a real continuous convex function on R. Moreover, α(A) exists and it

is equal P
′
ΦA

(−∞) := limt→−∞
PΦA (t)

t
. Similarly, P~ΦA is a real continuous convex

function on Rk. Furthermore,

~α(A) := min{αi, ~α ∈ ~L}

= lim
~t→−∞

P~ΦA(~t)

~t
.

Proof. See [F, Lemmas 2.2 and 2.3]. We remark that although [F, Lemmas 2.2 and
2.3] only deal with locally constant cocycles, the proof given there works for our
theorem under slightly modi�cation. Indeed, Feng uses the quasi-multiplicative
properties to prove the lemmas. Since A ∈ W , ~ΦA is (simultaneously) quasi-
multiplicative by Theorem 3.4.9.

3.5 The results

3.5.1 The proof of Theorem 1.2.2

In this subection we discuss multifractal formalism of typical cocycles. Our
motivation for studying of the multifractal formalism associated to certain iterated
function systems with overlaps. For instance, the Hausdor� dimension of level
sets has been calculated for 2-dimension-planar a�ne iterated function systems
satisfying strong irreducibility and the strong open set condition by B. Bárány, T.
Jordan, A. Käenmäki, and M. Rams [BJKR]. In the additive potential setting, the
Lyapunov exponents are equal the Birkho� averages. In this case, the restricted
varitional principle, topological entropy, and Hausdor� dimension level set has
been studied by a lot of authors (see [C]).

Theorem 3.5.1. Let A ∈ W. Suppose that P~ΦA(~q) ∈ R for each ~q ∈ Rk. Then for

~α ∈ ~L,
htop(T,E(~α)) = inf{P~ΦA(~q)− ~α.~q : ~q ∈ Rk}. (3.5.1.1)
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Proof. One can �nd the proof in [FH, Theorem 4.10] and [F, Theorem 1.1]. We
remark that although Feng only deals with the locally constant cocycles, the proof
given there works under slightly modi�cation.

Theorem 3.5.2. Assume that T : Σ→ Σ is a topologically mixing subshift of �nite
type on the compact metric space Σ. Suppose that A : X → GL(k,R) belongs to
typical functions W. Assume that ω is the range of the map fromM(Σ, T ) to Rk

µ 7→ (χ1(µ,A), χ2(µ,A), ..., χk(µ,A)).

We de�ne

h(~α) := sup{hµ(T ) : µ ∈M(Σ, T ), χi(µ,A) = αi},

where ~α ∈ ω. Then,

h(~α) = inf{P~ΦA(~q)− ~α.~q : ~q ∈ Rk}.

Proof. Fix ~α = (α1, ..., αk) ∈ ω. For µ ∈M(Σ, T ), we de�ne

V~α(µ) := (χ1(µ,A)− α1, ..., χk(µ,A)− αk).

It is easy to see that there is µ
′ ∈M(Σ, T ) such that V~α(µ

′
) = ~0.

We write
A = {V~α(µ) : µ ∈M(Σ, T )}.

V~α(.) is a continuous a�ne function onM(X,T ) (see remark 3.4.10). Therefore,
A is a convex compact set in Rk.

We de�ne g : A→ R by

g(~t) = sup{hµ(T ) : µ ∈M(Σ, T ), V~α(µ) = ~t}.

It is easy to see that g is a concave and upper semi continuous function on A. We
have h(~α) = g(0). We de�ne

W (~q) := sup{g(~t) + ~q.~t : ~t ∈ Rk},

for all ~q ∈ A. Then, we have

g(~t) = inf{W (~q)− ~q.~t : ~q ∈ Rk}

for all ~t ∈ A, by Corollary 3.3.2. Hence, we have

h(~α) = g(~0) = inf{W (~q) : ~q ∈ Rk}.

By Theorem 3.4.18, P~ΦA(~q) is a convex function on Rk. Then, by variational prin-
ciple

W (~q) = P~ΦA(~q)− ~α.~q.

46



q
′ q

PΦA(q
′
)

PΦA

htop(E(α)) = hµ
q
′ (T ) = PΦA(q

′
)− αq′

PΦ(q)

Figure 5: PΦA(.) is a convex function for q ∈ R. The blue line is tangent to PΦA(.)
at q

′
with slope α = P ′ΦA(q

′
).

Remark 3.5.3. In the locally constant cocycles case, Theorem 3.5.2 is true under
the strong irreducibility assumption, which means we do not need the pinching
assumption in this case.

3.5.2 The proof of Theorem 1.2.1

In this subsection, we are going to show that the closure of the set where the
entropy spectrum is positive is equal the Lyapunov spectrum for typical cocycles.
This result is �rst attempt to characterize Lyapunov spectrum as a set of positive
entropy spectrum. The main input of our argument will be the fact that the topo-
logical pressure is convex for typical cocycles. Then, we can show the concavity of
the entropy spectrum of Lyapunov exponents by Theorem 1.2.2.

We recall that T : Σ → Σ is a topologically mixing subshift of �nite type and
A : Σ→ GL(k,R) is a Hölder continuous function. We always assume htop(T ) > 0.

Lemma 3.5.4. Let A ∈ W. Then, htop(E(α)) is concave on the convex set L̊2.

2See (3.4.3.1).

47



Proof. The topological pressure PΦA(.) is convex by Theorem 3.4.18 and L̊ is con-
vex by Theorem 3.4.14. Moreover, by Theorems 3.5.1 and 3.5.2, we have

htop(E(α)) = inf
t∈R
{PΦA(t)− αt}

= sup{hµ(T ) : µ ∈M(Σ, T ), χ(µ,A) = α}.

Since the Legendre transform of the convex function is concave (cf. [HL, Theorem
1.1.2]), htop(E(α)) is concave.

Lemma 3.5.5. Assume that a nonnegative function f de�ned on a convex domain
D is concave and achieves a positive value at some point x ∈ D. Then f(y) > 0
for all y ∈ D̊.

Proof. Let x be in D such that f(x) > 0. For any point y in the interior of D, we
can always choose a point z ∈ D̊ such that:

(1− λ)x+ λz = y,

for some λ ∈ (0, 1). Hence,

(1− λ)f(x) + λf(z) ≤ f(y).

Therefore, f(y) > 0 for all y ∈ D̊.

Theorem 3.5.6. For α ∈ L̊, htop(E(α)) > 0.

Proof. By Lemma 3.5.4, htop(E(α)) is concave. Moreover, by Theorems 3.5.1 and
3.5.2,

htop(E(α)) = sup{hµ(T ) : µ ∈M(Σ, T ), χ(µ,A) = α}.
Since the measure-theoretic entropy is non-negative, htop(E(α)) ≥ 0.

We claim that there is α such that htop(E(α)) > 0. Let us assume htop(E(α)) =

0 for all α ∈ L̊. Then, as by Oseledets Theorem 3for every ergodic measure µ
supported on (Σ, T ) there exist a common value of Lyapunov exponent shared
µ-almost everywhere, we must have h(µ) = 0 for every ergodic measure µ. Thus,
by variational principle, htop(T ) = supµ h(µ) = 0, which is a contradiction. Con-

sequently, by Lemma 3.5.5, htop(E(α)) > 0 for all α ∈ L̊.

Remark 3.5.7. Entropy spectrum at boundary of Lyapunov spectrum is not nec-
essarily positive. In fact, there is a conjecture, which is known as Meta conjecture,
that says that under generic assumptions the entropy spectrum at boundary of Lya-
punov spectrum is zero (which would mean that htop(E(β(A)) = htop(E(α(A)) =
0); this phenomenon is often referred to as ergodic optimization of Lyapunov ex-
ponents, see for example [Bo]. In the additive potential case, instead, this phe-
nomenon is often referred to as ergodic optimization of Birkho� averages, see for
example [J].
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αmin αmax

PΦA

α

Theorem 3.5.8. {α ∈ R, htop((E(α)) > 0} = L.

Proof. That is direct consequence Theorem 3.5.6.

Park [P] proved Theorem 3.4.14 for higher dimensional case. That means, ~L
is closed and convex. Therefore, we can obtain the following generalization of
Theorem 3.5.8 to the Lyapunov spectrum of of all Lyapunov exponents.

Theorem 3.5.9. {~α ∈ Rk, htop(E(~α)) > 0} = ~L.

3.5.3 The proof of Theorem 1.2.3

Suppose that Φ = {log φn}∞n=1 is a subadditive potential over a topological
dynamical system (X,T ). We de�ne

β(Φ) := lim sup
n→∞

1

n
log sup

x∈X
φn(x)

and call it the maximal Lyapunov exponent.
Morris [Mor13, Theorem A.3] showed that one can de�ne the maxinal Lyapunov

exponent as the supremum of the Lyapunov exponents of measure over invariant
measures, i.e.,

β(Φ) = sup
µ∈M(X,T )

χ(µ,Φ), (3.5.3.1)

where

χ(µ,Φ) = lim
n→∞

1

n

∫
log φn(x)dµ(x).

3See Theorem 2.4.1.
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This limits exists by Kingman subadditive theorem (see Theorem 2.1.2). In (3.5.3.1),
the supremum is always attained by an ergodic measure� this follows from upper
semi continuity of χ(.,Φ)4, with respect to the weak∗ topology, and the fact that
M(X,T ) is a compact convex set whose extreme points are exactly the ergodic
measure.

We recall that the set of maximizing measures of Φ is the set of measures on
X given by

Mmax(Φ) := {µ ∈M(X,T ), β(Φ) = χ(µ,Φ)},
which is a non-empty set.

In this subsection, we always assume that the entropy map µ 7→ hµ(T ) is upper
semi-continuous and htop(T ) <∞.

Theorem 3.5.10. For each t > 0, consider the family of equilibrium measures
Eq(Φ, t) for the subaddititve potential tΦ. Then one can choose a weak∗ convergent
sequence µti ∈ Eq(Φ, ti), as ti → ∞. Every measure µ which is a limit of such
sequence is a Lyapunov maximizing measure for Φ. Moreover,

χ(µ,Φ) = lim
ti→∞

χ(µti ,Φ).

In particular, the maximal Lyapunov exponent can be approximated by Lyapunov
exponents of equilibrium measures.

Proof. Since Eq(Φ, t) is a non-empty compact convex subset of M(X,T ) (see
Theorem 3.3.7), the sequence (µt) has at least one accumulation point, let us call
it µ. More precisely, there is a subsequence µti ∈ Eq(Φ, ti) that converges to µ
in weak∗ topology. By Theorem 3.3.3, PΦ(t) is convex, then we have ∂PΦ(t) =
{χ(µt,Φ) : µt ∈ Eq(Φ, t)} by Proposition 3.3.7. Moreover, since PΦ(t) is convex
for t > 0, t 7→ χ(µt,Φ) is non-decreasing and bounded above5.
It follows that

lim
t→∞

∂PΦ(t) = lim
t→∞

χ(µt,Φ) exists and is �nite.

Since Lyapunov exponents are upper semi continuous (see Lemma 2.4.2),

lim
ti→∞

χ(µti ,Φ) ≤ χ(µ,Φ). (3.5.3.2)

By the de�nition of Eq(Φ, ti),

χ(µti ,Φ) +
hµti (T )

ti
≥ χ(µ,Φ) +

hµ(T )

ti
. (3.5.3.3)

4See Lemma 2.4.2.
5See Theorem 2.1.2.
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Since the topological dynamical systems (X,T ) has �nite topological entropy,
so when ti →∞, (3.5.3.3) implies

lim
ti→∞

χ(µti ,Φ) ≥ χ(µ,Φ). (3.5.3.4)

Comparing (3.5.3.2) with (3.5.3.4), we get

lim
ti→∞

χ(µti ,Φ) = χ(µ,Φ).

Now, we shall show that µ is a Lyapunov maximizing measure.
By contradiction, let us assume that there exists ν with χ(ν,Φ) − χ(µ,Φ) =

κ > 0. One can de�ne the a�ne map Tν : R+ → R by Tν(ti) = hν(T ) + tiχ(ν,Φ).
We know that ti 7→ χ(µti ,Φ) is a function which increases to its limit χ(µ,Φ), so

χ(µ,Φ) ≥ χ(µti∗ ,Φ) = ∂ePΦ(ti∗),where ti∗ = ti− or ti− ,

and T
′

ν(ti) = χ(ν,Φ) = χ(µ,Φ) + κ ≥ ∂ePΦ(ti∗) + κ.

Consequently, hν(T ) + tiχ(ν,Φ) > PΦ(ti) for all su�ciently large ti > 0, that
contradicts by our assumption. So, µ is a Lyapunov maximizing measure.

Moreover, our proof implies that β(Φ) can be approximated by Lyapunov ex-
ponents of equilibrium measures of a subadditive potential tΦ.

Denote P (tΦ) := PΦ(t), where t ∈ R+ and Φ = {log φn}∞n=1 is a subadditive
potential.

Lemma 3.5.11. The maps t 7→ hµt(T ) and t 7→ P (tΦ− tβ(Φ)) are non-increasing
and bounded below on the interval (0,∞). Moreover, we have

lim
t→∞

hµt(T ) = lim
t→∞

P (tΦ− tβ(Φ)) ≥ sup
ν∈Mmax(Φ)

hν(T ).

Proof. The map t 7→ P (tΦ− tβ(Φ)) is convex. By de�nition of β(Φ),

χ(µt,Φ) ≤ β(Φ) for all µt ∈ Eq(Φ, t).

By the de�nition of the topological pressure, P (tΦ− tβ(Φ)) = P (tΦ)− tβ(Φ).
Then,

∂eP (t∗Φ− t∗β(Φ)) = ∂eP (t∗Φ)− β(Φ) = χ(µt∗ ,Φ)− β(Φ) ≤ 0,

where t∗ = t− or t+. Thus, P (tΦ− tβ(Φ)) is non-increasing by Theorem 2.3.1. We
are going to show that t 7→ hµt(T ) is non-increasing. Since µt is an equilibrium
measure,

hµt∗ (T ) = P (t)− t∂eP (t∗).
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For 0 < x < y we have

∂eP (x∗) ≤
P (y)− P (x)

y − x
≤ ∂eP (y∗),

so P (y)− P (x) ≤ y∂eP (y∗)− x∂eP (y∗) ≤ y∂eP (y∗)− x∂eP (x∗), and then

P (y)− y∂eP (y∗) ≤ P (x)− x∂eP (x∗).

Since t 7→ hµt(T ) and t 7→ P (tΦ − tβ(Φ)) ≥ 0 are non-increasing and non-
negative, we conclude that limt→∞ hµt(T ) and limt→∞ P (tΦ − tβ(Φ)) both exist.
This implies that the limit

lim
t→∞

t∂eP (t)− tβ(Φ) = lim
t→∞

(P (tΦ− tβ(Φ))− hµt(T ))

exists. Then,

lim
t→∞

hµt(T ) = lim
t→∞

P (tΦ− tβ(Φ)).

Last part follows from the variational principle.

Lemma 3.5.12. Mmax(Φ) is compact, convex and nonempty, and its extreme
points are precisely its ergodic elements.

Proof. See [Mor13, Appendix A].

Theorem 3.5.13. hµ(T ) = limti→∞ hµti (T ) = max{hν(T ), ν ∈Mmax(Φ)}.

Proof. By Theorem 3.5.10 and Lemmas 3.5.11 and 3.5.12,

hµ(T ) ≤ max
ν∈Mmax(Φ)

hν(T ) ≤ lim
ti→∞

hµti (T ),

the reverse inequality follows from upper semi continuity of entropy.

Remark 3.5.14. Let (T,A) be a locally constant cocycle. Then, one can prove the
above results for Gibbs measures under the assumption that (T,A) is irreducible
(see [FK, Proposition 1.2]). Moreover, if T : X → X is a mixing subshift of
�nite type and A : X → GL(k,R) is a Hölder continuous function, then one can
prove the above results for Gibbs measures under the generic assumption (typical
cocycles).
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3.5.4 Approximation of the maximal Lyapunov exponent

In this subsection, we consider locally constant cocycles and we prove the max-
imal Lyapunov exponent can be approximated by Lyapunov exponents of periodic
trajectories.

Kalinin and Sadovskaya [KS19, Theorem 1.4] proved that if a homeomorphism
T satis�es the closing property, and A : X → GL(k,R) is a Hölder continuous Ba-
nach cocycle, then the top Lyapunov exponent can be approximated by Lyapunov
exponents of measures supported on periodic orbits. In general, Kalinin [Ka, The-
orem 1.4] showed that for a Hölder continuous map A : X → GL(k,R), Lyapunov
exponents can be approximated by Lyapunov exponents of measures supported on
periodic orbits under an assumption slightly stronger than the closing property.
Our approach di�ers from them. We use the continuity of Lyapunov exponents
(Theorem 3.4.11) and the closing property.

For µ ∈M(X,T ), the set Gµ of µ−generic points is de�ned by

Gµ :=

{
x ∈ X :

1

n

n−1∑
j=0

δT jx → µ in the weak ∗ topology as n→∞

}

where δy denotes the probability measure whose support is the single point y.

Theorem 3.5.15. Let (T,A) be a locally constant cocycle, where A : X →
GL(2,R), satisfying the closing property. Then the maximal Lyapunov exponent
can be approximated by Lyapunov exponents of measures supported on periodic
orbits.

Proof. Denote φn(x) = ‖An(x)‖. Let µ be an ergodic maximizing measure, that is
β(Φ) = χ(µ,Φ). Let x be a generic point for µ.

Since x is a generic point and the intersection of the support of measure with
the set of generic points has full measure, µ(B(x, 1

k
)) > 0 for every k ∈ N, where

B(x, 1
k
) is the ball of radius 1

k
centered at x. By Poincaré's Recurrence Theo-

rem 6 there exists a sequence (nk)k∈N of positive integers so that nk → +∞ and
T nk(x) ∈ B

(
x, 1

k

)
for each k ∈ N.

By the closing property, it follows that, for each k su�ciently large, there exists
a periodic point pk of period nk so that

d
(
T j(x), T j (pk)

)
≤ C1e

−θmin{j,nk−j}d (T nk(x), x) ≤ C1

k
e−θmin{j,nk−j} (3.5.4.1)

for every j = 0, 1, . . . , nk.

6See [PU, Theorem 2.2].
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Denote by

µk :=
1

nk

nk−1∑
j=0

δT j(pk)

the ergodic T -invariant measure supported on the orbit of pk.

We claim that µk → µ in weak∗ topology.
Proof of the claim: To prove that µk → µ in the weak∗ topology it is enough to
check that for every continuous function f : X → R we have

∫
fdµk →

∫
fdµ. Let

us choose a continuous function f , note that f has compact domain and hence it
is uniformly continuous. Choose ε > 0. Let δ be so small that |f(x) − f(y)| < ε
whenever d(x, y) < δ.

If k is su�ciently large, the right-hand side of (3.5.4.1) is small for every j and
d(T j(x), T j(pk)) < δ for every j ∈ {0, ...nk}. Given a continuous map f : X → R
take above δ associated to ε by the uniform continuity of f . Consequently,

|f(T j(x))− f(T j(p))| < ε

for every j ∈ {0, ...nk}, which implies that

| 1

nk

nk−1∑
j=0

f(T j(x))− 1

nk

nk−1∑
j=0

f(T j(p))| < ε.

Now, since x is a µ−generic,

1

nk

nk−1∑
j=0

f(T j(x))→
∫
fdµ

Thus,

|
∫
fdµ−

∫
fdµk| =|

∫
fdµ− 1

nk

nk−1∑
j=0

f(T j(p))|

≤ |
∫
fdµ− 1

nk

nk−1∑
j=0

f(T j(x))|

+ | 1

nk

nk−1∑
j=0

f(T j(x))− 1

nk

nk−1∑
j=0

f(T j(p))| ≤ 2ε

for every k su�ciently large. As ε can be choosen arbitrarily small, this proves∫
fdµk →

∫
fdµ. As f was arbitrary, the weak∗ convergence of µk to µ follows.
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Moreover, supp(µk) is contained in a C 1
k
-neighbourhood of the trajectory of x,

which is contained in supp(µ). Therefore, by Theorem 3.4.11, for every ε > 0,

|χ(µk,Φ)− χ(µ,Φ)| ≤ ε,

for k large enough.

Remark 3.5.16. One can prove the above theorem for 2-dimensional �ber bunched
linear cocycles by using Theorem 3.4.12.

Remark 3.5.17. Avila, Eskin and Viana [AEV] announced recently that the The-
orem 3.4.11 remains true in arbitrary dimensions. By their result, the proof given
for Theorem 3.5.15 works for arbitrary dimensions.

Remark 3.5.18. Morris [Mor10, Theorem 1.2] showed that the speed of conver-
gence of Theorem 3.5.15 is always superpolynomial for locally constant cocycles.
Moreover, Bochi and Garibaldi [BG, Theorem 7.2] showed that it is true for generic
matrix cocycles under certain assumptions.

3.5.5 The proof of Theorem 1.2.4

In this subsection, we will discuss the continuity of the entropy spectrum of
Lyapunov exponents, that is, the topological entropy of level sets of points with a
common given Lyapunov exponent. In the locally constant cocycles case, Lemma
3.5.19 follows from Feng and Shmerkin's paper [FS]; see [FS, Proposition 5.3].

Lemma 3.5.19. Assume Ak,A ∈ W with Ak → A. For tk, t > 0, let tk → t.
Suppose that αtk and αt are the derivatives of PΦAk

() and PΦA() at tk and t,
respectively. Then,

lim
k→∞

htop(EAk(αtk)) = htop(EA(αt)).

Proof. According to Theorem 3.4.16 PΦA() is di�erentiable for any t > 0 and there
is a unique equilibrium measure µt for the subadditive potential tΦA . Therefore,
we have

htop(EA(αt)) = hµt(T ),

where P
′
ΦA

(t) = αt, by Theorem 3.3.9.
Taking into account the observation above, to prove the theorem it is enough

to show that hµtk (T )→ hµt(T ) for proving the theorem.
By the de�nition of Eq(ΦAk , tk),

PΦAk
(tk) = hµtk (T ) + tkχ(µtk ,Ak).
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Notice that the Lyapunov exponents are upper semi-continuous. Moreover,
the topologically mixing subshift of �nite type T : Σ → Σ implies upper semi-
continuity of the entropy map µ 7→ hµ(T ). Now, we conclude from above observa-
tions and Theorem 3.4.17,

PΦA(t) = lim
k→∞

PΦAk
(tk)

= lim
k→∞

hµtk (T ) + tkχ(µtk ,Ak)

≤ hµt(T ) + tχ(µt,A).

This shows µt ∈ Eq(ΦA, t) and µtk → µt
7. Moreover, we have equality in the

above, which gives the claim. Furthermore, it shows the continuity of Lyapunov
exponents of equilibrium measures.

We use Theorems 3.5.10 and 3.5.13 to prove the following theorem.

Theorem 3.5.20. Suppose that A ∈ W. If αt = P
′
ΦA

(t)8 for t > 0. Then,

htop(E(αt))→ htop(E(β(A)) when t→∞.
Proof. Since A ∈ W , Theorem 3.4.16 implies that there is a unique equilibrium
state µt for the subadditive potential tΦA such that

χ(µt,A) = αt = P
′

ΦA
(t).

By Theorem (3.3.9),
htop(E(αt)) = hµt(T ).

We know that

htop(E(β(A)) = sup{hµ(T ), µ ∈M(Σ, T ), χ(µ,A) = β(A)}
by Theorem 3.3.6. Therefore, we only need to show that

hµt(T )→ sup{hµ(T ), µ ∈M(Σ, T ), χ(µ,A) = β(A)}.
That follows from Theorem 3.5.13.

Theorem 3.5.21. Suppose Al,A ∈ W with Al → A, and ~tl,~t ∈ Rk+ such that
tl → t. Assume ~αtl = ∇P~ΦAl (

~tl) and ~αt = ∇P~ΦA(~t). Then,

lim
l→∞

htop(E( ~αtl)) = htop(E(~αt)).

Moreover,
htop(E(~αt))→ htop(E(~β(~ΦA)) when t→∞.

Proof. The proof is similar to Theorems 3.5.20 and 3.5.13 and is omitted.
7By weak∗ compactness µtk has a accumulation point, let us call µt. According the above

observation µt is an equilibrium measure for tΦA. Then uniqueness of equilibrium measure implies
the limit.

8We remind the reader that P (.) is di�erentiable for A ∈ W according to Theorem 3.4.16
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3.5.6 The proof of Theorem 1.2.5

In this subsection, we are going to prove the continuity of the lower joint
spectral radius for derivative cocycles under certain assumptions. This kind of
result is known by Bochi and Morris [BM] under 1-domination assumption for
locally constant cocycles. Breuillard and Sert [BS] extended their result to the joint
spectrum of locally constant cocycles. Moreover, they gave a counterexample [BS,
Example 4.13] that shows that we have discontinuity the lower joint spectral for
typical cocycles. Even though, we have a lot of results for the upper spectral radius,
we have few result about the lower spectral radius, which shows that working on
the later case is much harder than the former case.

Assume that T : X → X is a di�eomorphism on a compact invariant set X.
Let V ⊕W be a splitting of the tangent bundle over X that is invariant by the
tangent map DT . In this case, if vectors in V are uniformly contracted by DT and
vectors in W are uniformly expanded, then the splitting is called hyperbolic. The
more general notion is the dominated splitting, if at each point all vectors in V are
more contracted than all vectors in W . Domination could also be called uniform
projective hyperbolicity. Indeed, domination is equivalent to V being hyperbolic
repeller and W being hyperbolic attractor in the projective bundle.

In the linear cocycles case, we are interested in bundles of the form X × Rk,
where the linear cocycles is generated by (T,A). Bochi and Gourmelon [BGO]
showed that a cocycle admits a dominated splitting V ⊕W with dimV = k if and
only if when n→∞, the ratio between the k− th and (k+ 1)− th singular values
of the matrices of the n− th iterate increase uniformly exponentially. In fact, they
extended the Yoccoz's result [Y] that was proved for 2-dimensional vector bundles.

De�nition 3.5.22. We say that A is i-dominated if there exist constants C > 1,
0 < τ < 1 such that

σi+1(An(x))

σi(An(x))
≤ Cτn, ∀n ∈ N, x ∈ X.

According to the multilinear algebra properties, where A is i−dominated if and
only if A∧i is 1−dominated.

Let (X,T ) be a TDS. We say that A : X → GL(k,R) is almost multiplicative
if there is a constant C > 0 such that

||Am+n(x)|| ≥ C||Am(x)||||An(Tm(x))|| ∀x ∈ X,m.n ∈ N.

We note that since clearly ||Am+n(x)|| ≤ ||Am(x)||||An(Tm(x))|| for all x ∈
X,m.n ∈ N, the condition of almost multiplicativity of A is equivalent to the
statement that ΦA is almost additive.
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Proposition 3.5.23. Let X be a compact manifold, and let A : X → GL(k,R)
be a matrix cocycle over a TDS (T,X). Let (Cx)x∈X be a cone �eld on X. Then,
there exists κ > 0 such that for every m,n > 0 and for every x ∈ X we have

||Am+n(x)|| ≥ κ||Am(x)|| · ||An(Tm(x))||.

Proof. Let us start from the notation. Denote by π the natural projection from Rk
to the projective space PRk and by d the natural metric on PRk. For a family of
convex cones (Cr)r∈J , all contained in the interior Co of another convex cone C,
we de�ne their convex hull as

conv(Cr) = {v ∈ C; π(v) = π(
∑
i

αivi) for some αi ≥ 0,
∑
i

αi = 1, vi ∈ Cri}

The Hausdor� distance in metric d between C and conv(Cr) equals the supremum
of Hausdor� distances between C and Cr (to be absolutely precise, the Hausdor�
distance is de�ned for compact sets and the metric d is de�ned on the projective
space, so we mean here the Hausdor� distance between π(C) and π(conv(Cr))). If
this supremum is positive (for example, if the cones Cr are continuous as a function
of r and J is compact) then this supremum is positive, hence conv(Cr) ⊂ Co.

For every x ∈ X the set T−1(x) is compact. Thus, we can de�ne

Dx = conv({Cy; y ∈ T−1(x)})

for x ∈ T (X) and, by compactness, we have Dx ⊂ Co
x. We denote

DT (x) = conv({A(y)(Cy); y ∈ T−1(x)})

for x ∈ T (X). We choose Dx as any convex cone contained in Co
x for x ∈ X \T (X),

we only demand that x → Dx is a continuous map (this can be done because X
is compact, hence X \ T (X) is open in X). One can check that, as Dx ⊂ Co

x, we
have

A(x)Dx ⊂ (A(x)Cx)
o ⊂ Do

T (x).

Hence, (Dx) is another invariant cone �eld, strictly contained in (Cx).
Let for each x ∈ X dx be the Hilbert metric in Cx. Let d be the usual metric

on PRk. We have the following properties:

� Each Dx is bounded in dx. By compactness of X, there exists K1 > 0 such
that diamdx(Dx) < K1 for all x ∈ X.
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� In each Dx the metric dx is equivalent to d. By compactness of X, there
exists K2 > 1 such that for every x ∈ X for every v, w ∈ Dx we have
K−1

2 dx(v, w) ≤ d(v, w) ≤ K2dx(v, w).

� Each A(x) : Dx → DT (x) is a contraction. By compactness of X, there
exists λ < 1 such that for every x ∈ X for every v, w ∈ Dx we have
dT (x)(A(x)v,A(x)w) ≤ λdx(v, w).

� For v ∈ Cx denote γx(v) = log(|A(x)v|/|v|). The map v → γx(v) is Lipschitz
(in metric d) on Dx. By compactness of X, there exists K3 > 0 such that for
every x ∈ X the map γx is K3-Lipschitz (in metric d) on Dx.

� For every x ∈ X the convex cone Dx contains (for some vx ∈ Dx ∩ PRk and
rx > 0) a ball B(vx, rx) = {w ∈ PRk; d(vx, w) < rx}. By compactness of X,
there exists r > 0 such that for every x ∈ X we have Dx ⊃ B(vx, r) for some
vx ∈ Dx ∩ PRk.

Choose some x ∈ X and v, w ∈ Dx. Fix m > 0. Denote

γmx (v) = log
|Am(x)v|
|v|

=
m−1∑
i=0

γT i(x)(Ai(x)v).

Note three obvious properties of this function:

� γx is a projective function, that is γx(v) = γx(αv) for α > 0. Thus, we can
de�ne γx on the projective space PRk. The same holds for γmx .

� γmx (v) ≤ log ||Am(x)||,

� γm+n
x (v) = γmx (v) + γnTm(x)(Am(x)v).

We have

d(Ai(x)v,Ai(x)w) ≤ K2dT i(x)(Ai(x)v,Ai(x)w)

≤ K2λ
idx(v, w) ≤ K2λ

iK1.

Hence,

|γm(v)− γm(w)| ≤ K3

m−1∑
i=0

d(Ai(x)v,Ai(x)w) ≤ K4 := K1K2K3
1

1− λ

for every v, w ∈ Dx.
To �nish the proof we need the following lemma.
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Lemma 3.5.24. Let A ∈ GL(k,R). Let K, r > 0. Assume |γ(v) − γ(w)| < K
for some v ∈ PRk and all w ∈ B(v, r), where γ(v) = log |Av|. Then there exists
a constant ρ = ρ(K, r), depending on K and r but not on A, such that γ(v) ≥
log ||A|| − ρ(K, r).

Before proving Lemma 3.5.24 let us observe that it indeed implies the assertion
of Proposition 3.5.23. As Dx contains some ball B(v, r) with v ∈ Dx∩PRk, we can
apply the lemma to the matrix Am(x), obtaining log ||Am(x)|| ≤ ρ(K4, r)+γmx (v).
Hence, for every w ∈ Dx we have

log ||Am(x)|| ≤ ρ(K4, r) +K4 + γmx (w).

Similarly, DTm(x) contains a ball of size r, hence for every u ∈ DTm(x) we have

log ||An(Tm(x))|| ≤ ρ(K4, r) +K4 + γnTm(x)(u).

Thus, choosing u = Am(x)w we get

log ||Am(x)||+ log ||An(Tm(x))|| ≤ 2ρ(K, r) + 2K4 + γm+n
x (w)

≤ 2ρ(K, r) + 2K4 + log ||Am+n(x)|

which is our assertion.
Now, let us come back and prove Lemma 3.5.24.

Proof. We start by a decomposition A = O1DO2, where O1, O2 are orthogonal
matrices and D is a diagonal matrix with elements ±(σi(A)) (the singular values
of A). It is enough to prove the assertion for the matrix D.

So, let D be a diagonal matrix. Let e be the eigenvector corresponding to the
maximal eigenvalue: |De| = ||D||. Even when v.e = 0, the ball B(v, r) still must
contain a vector w such that |w.e| ≥ 1/2 · sin r. We have w = (w.e)e + (1 −
(w.e)2)1/2e′, where e.e′ = 0. Hence,

γ(w) = log |Dw| ≥ log(|w.e| · |De|) = log |w.e|+ log ||D|| ≥ log(
1

2
sin r) + log ||D||.

Thus, for every u ∈ B(v, r) we have

γ(u) ≥ γ(w)−K ≥ log ||D||+ log(
1

2
sin r)−K.

We are done.
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One needs to be careful that quasi-multiplicativity is not equivalent of almost
additivity. For instance, let T : {0, 1}Z → {0, 1}Z be a shift map. We de�ne a linear
cocycle (T,A) such that

A0 =

[
2 0
0 1

2

]
, A1 = Rθ,

where θ is an irrational angle. It is easy to see that the locally constant cocycle
(T,A) is strongly irreducible. Feng [F, Proposition 2.8] showed that the irreducible
matrix cocycles are quasi-multiplicative.

We de�ne the upper joint spectral radius of A : X → GL(k,R) as follows

ρ̂(A) := lim
n→∞

sup{‖An(x)‖
1
n : x ∈ X}.

It is easy to see that β(A) = log ρ̂(A). Similarly, we de�ne the lower joint
spectral radius of A : X → GL(k,R) as follows

ρ̌(A) := lim
n→∞

inf{‖An(x)‖
1
n : x ∈ X}.

We have

log ρ̌(A) = min{α1, ~α = (α1, α2, ..., αk) ∈ ~L} = α(A).

Assume that f : X → X is a convex continuous function on a compact metric
space X. We have ∂f(R) = ∂f(R)∪{f ′(∞)}∪ {f ′(−∞)}, where ∂f(R) is de�ned
as in (2.3.1).

Theorem 3.5.25. Let (X,T ) be a TDS such that the entropy map µ 7→ hµ(T ) is
upper semi-continuous and htop(T ) < ∞. Suppose that A : X → GL(k,R) is a
matrix cocycle over the TDS (X,T ) and (Cx)x∈X is an invariant cone �eld on X.
Then α(A) can be approximated by the Lyapunov exponents of the equilibrium mea-
sures for the almost additive potential tΦA, where t ∈ R. Moreover, a minimizing
measure for A exists.

Proof. Let α := α(A) = P
′
ΦA

(−∞). We know that A is almost multiplicative by
Proposition 3.5.23.

According to convexity of PΦA(), there exists a sequence (tj) such that P
′
ΦA

(tj) =:
αj exists for every j ∈ N and αj → α as j → ∞. There exists µj ∈ Eq(ΦA, tj)
such that χ(µj,Φ) = αj for all j, by Proposition 3.3.7. Let µ be an accumulation
9 point of sequence (µj) as j →∞. By Lemma 3.3.11, we have

χ(µj,A)→ χ(µ,A) = α.

Furthermore, our proof shows that a minimizing measure exists.

9Eq(A, t) is compact in weak∗ topology.
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Now, we can show the continuity of the minimal Lyapunov exponent.

Theorem 3.5.26. Let (Σ, T ) be a topologically mixing subshift of �nite type. Sup-
pose that An,A : Σ → GL(k,R) are matrix cocycles over (Σ, T ), and ΦA has
bounded distortion. Assume that (Cx)x∈Σ is an invariant cone �eld on Σ. Then,
α(An)→ α(A) when An → A.

Proof. According to Theorem 3.5.25, α(A) can be approximated by Lyapunov
exponents of equilibrium measures for the almost additive potential tΦA, where
t ∈ R. Therfore, it is enough to show

χ(µn,An)→ χ(µ,A), (3.5.6.1)

where µ, µn are the equilibrium measures.

By Proposition 3.5.23, A is almost multiplicative. Hence, there exist a unique
equilibrium measure for the almost additive potential tΦA, where t ∈ R (see The-
orem 2.5.3). Thus, (3.5.6.1) follows from the proof of Lemma 3.5.19.

Domination can be characterized in terms of existence of invariant cone �elds
for derivative cocycles (Theorem 2.8.7). This fact shows that 1-domination implies
that A is almost multiplicative. Therefore, one can prove Theorem 3.5.26 for �ber
bunched cocycles (see Lemma 2.5.2) under 1-domination assumption.

It is possible to obtain the generalization of Theorem 3.5.25 to the joint spec-
trum of all Lyapunov exponents. One can also obtain the continuity of the lower
joint spectral radius for all Lyapunov exponents.

3.5.7 The proof of Theorem 1.2.6

In this subsection we are going to prove the continuity of the topological pres-
sure for Hr

b (Σ, GL(2,R)). In the locally constant cocycles case, Feng and Shmerkin
[FS] proved that we have the continuity of the topological pressure. Recently, Park
[P] proved that we have the continuity of the topological pressure for typical co-
cycles. We recall that typical means that a linear cocycle is pinching, twisting and
�ber bunching. The techniques we use in the proof are inspired from result [FS].
The result shows that one can prove the continuity of the topological pressure
under weaker assumption that Park assumed. The main input our argument is the
continuity of Lyapunov expoents that was proved by Backes, Brown, and Butler
[BBB] for Hr

b (Σ, GL(2,R)).

We use the our result to show that set of Φ̃A-equilibrium states for upper
triangular matrices that belongs to Hr

b (Σ, GL(2,R)) is equal set of equilibrium
states its diagonal.
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For s ≥ 0, we de�ne

λe(A, s) := lim
n→∞

1

n

∫
logϕs(An(x))dµ(x),

where µ ∈ Eq(Φ̃A, s).

Theorem 3.5.27. The map (A, s) 7→ PΦ̃A
(s) is continuous on [0,∞)×Hr

b (Σ, GL(2,R)).

Proof. Since the topological pressure is upper semi continuous, it is enough to
show that it is lower semi-continuous.

Assume that Ak ∈ Hr
b (Σ, GL(2,R)) and sk ∈ (1, 2) . We can assume that there

is an ergodic measure µ ∈ Eq(Φ̃A, s) by Lemma 3.3.8. Then, by varitional principle

PΦ̃Ak
(sk) ≥ hµ(T ) + λe(Ak, sk)

= hµ(T ) + (2− sk)λe(Ak, 1) + (sk − 1)λe(Ak, 2).

(3.5.7.1)

Notice that

λe(Ak, 2) = lim
n→∞

1

n

∫
log ‖ det(Ank(x))‖dµ(x).

Therefore, when Ak → A, we have

λe(Ak, 2)→ λe(A, 2),

and
λe(Ak, 1)→ λe(A, 1).

by Theorem 3.4.12. Then, by (3.5.7.1),

lim inf
(Ak,sk)→(A,s)

PΦ̃Ak
(sk) ≥ hµ(T ) + λe(A, s) = PΦ̃A

(s).

This proves the continuity of PΦ̃.
(.) at (A, s).

Remark 3.5.28. Recently, C. Freijo and K. Marin [FK2] extended the Backes,
Brown, and Butler's result to non-uniformly �ber-bunched cocycles. According to
their result, one can prove the above theorem for non-uniformly �ber-bunched co-
cycles.

3.5.7.1 Application of Theorem 3.5.27

In the locally constant cocycles case, Falconer and Miao [FM, Theorem 2.5]
showed that the set of Φ̃A-equilibrium states of upper triangular matrices is pre-
cisely the set of Φ̃A-equilibrium states its diagonal. Käenmäki and Morris [KM,
Proposition 6.2] extended Falconer and Miao's result for higher dimensional case.
One can use the Käenmäki and Morris's proof and Theorem 3.5.27 to obtain the
following result:
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Corollary 3.5.29. Let A ∈ Hr(Σ, GL(2,R)) be an upper triangular matrices :

A(x) :=

[
a(x) b(x)

0 c(x)

]
.

Then the set of Φ̃A-equilibrium states of upper triangular matrices A is precisely
the set of Φ̃A′ -equilibrium states its diagonal :

A′(x) :=

[
a(x) 0

0 c(x)

]
.

Remark 3.5.30. Recently, Butler and Park [BP] proved some results in this di-
rection for 2-dimensional cocycles.
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Chapter 4

On Hausdor� dimension of thin

nonlinear solenoids

4.1 Introduction

In this chapter, we will be concerned with so-called "Smale-Solenoid", a very
natural example of a non-conformal map.

Let M = S1 × D be the solid torus, where D = {v ∈ R2||v| < 1} carries the
product distance d = d1 × d2 and suppose f : M →M such that

(x, y, z) 7→ (η(x, y, z) mod 2π, λ(x, y, z) + u(x), ν(x, y, z) + v(x)) (4.1.1)

is a C1+α invective map, where λ(x, 0, 0) = ν(x, 0, 0) = 0. Moreover, the component
functions η, λ and ν satisfy the following assumption :

1- η
′
(x, y, z) := ∂

∂x
η(x, y, z) > 1

2- λ
′
(x, y, z) := ∂

∂y
λ(x, y, z) < 1

3- ν
′
(x, y, z) := ∂

∂z
ν(x, y, z) < λ

′
(x, y, z),

at every x, y, z. In addition, the functions λ, ν and η(x, y, z)−d×x are 2π-periodic
with respect to x, where d is degree of f . We always assume d ≥ 2. In the linear
solenoid case, if η

′
< 1/λ

′
, then such a solenoid can be called a uniformly thin

solenoid1.
In fact, our assumption guaranties hyperbolicity. For ϕ = η

′
, ν
′
, λ
′
, let ϕn(p) =∏i=0

i=−n+1 ϕ(f i(p)) for p ∈M (e.g. λn(p) =
∏i=0

i=−n+1 λ
′
(f i(p))).

We will modify assumption of function (4.1.1) in the following subsections.

1For the de�nition of a thick linear solenoid, where η
′
λ

′
> 1, see e.g. [Tsu].
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De�nition 4.1.1. Suppose that W is a di�erentiable manifold and X ⊂ W. A
family N of smoothly injectively immersed in W manifolds {Nα}α∈I (called the
leaves) is called a lamination on X if Nα ∩Nβ = ∅ when α 6= β, X ⊂ ∪αNα, and
for each x ∈ X there is a neighborhood U and a homemorphism h : U → Rn such
that h maps every connected component V of Nα ∩ U to h(V ) ∩ (Rk × {y}) ⊂ Rn
for some y ∈ Rn−k.

If X = W , this lamination is said to be a foliation.
We de�ne hyperbolic attractor for map (4.1.1) as Λ := ∩n∈Nfn(M). f|Λ is

topologically transitive. We consider the dominated splitting TΛ(M) = Eu⊕Ews⊕
Ess, where ss means strong stable ws weak stable and u stands for unstable.

De�nition 4.1.2. For ε > 0 small enough, one de�nes at each p ∈ M its
strong stable set ,

W ss(p) := {q ∈M, ∃C > 0,∀n ≥ 0, d(fn(p), fn(q)) ≤ Ce−εnDfn|Ews(p)}. (4.1.2)

In other terms W ss(p) is the set of points whose orbit converge to the orbit of p
faster than the contractions Dfn|Ews .

We de�ne the natural projection π : p = (x, y, z) → x(p) := x. For any set
D ⊂M , let p ∈ Dx := (πD)−1(x). Thus, we de�ne stable slice as Λx := W s

Dx(p)∩Λ.

Λx

f

Λx

Figure 6: The Solenoid, whose expanding map is a doubling map.

We de�ne π(x,y) := (x, y, z) 7→ (x, y). Suppose that Λ has a transversal crossing
over the points (p, q)(q, p ∈ Λ). That means,

(1) π(x,y)(p) = π(x,y)(q),

(2) π(x,y)(W
u
loc(p)) is transversal to π(x,y)(W

u
loc(q)).

Sometimes we say that Λ has a transversal crossing over t = π(p) = π(q).
An unstable foliation for Λ is a foliation Wu of a neighborhood Λ such that
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Figure 7: Λx.

a) For each p ∈ Λ, Wu(p), the leaf Wu containing p, is tanget to Eu
p ,

b) for each p ∈ Λ, f(Wu(p)) ⊃ Wu(f(p)).

We say that Wu is transitive (minimal), if Wu(x) = M for some (all) x ∈M.

4.1.1 Unstable Holonomies

Assume that A and B are two nearby embedded disks transverse to unstable
laminationW u then there is a holonomy map de�ned on a subset of A∩Λ to B∩Λ
such that

p 7→ W u
loc(p) ∩B.

In other words, we move along unstable leaves from A ∩ Λ to B ∩ Λ (see Figure
8).

These holonomies are always Hölder continuous, but they are not necessary
Lipschitz continuous. See for more information [Br].

4.1.1.1 Unstable holonomies for solenoid

The holonomy mapping

Π
x(q)
x(p) : W s

Dx(p)
(p) ∩ Λ→ W s

Dx(q)
(q) ∩ Λ (|x(p)− x(q)| < 2π)

is de�ned by
Π
x(q)
x(p)(p) := W s

Dx(q)
(q) ∩W u

loc(p).

Note that there is a unique point the intersection on the right-hand side, by
local product structure.

67



A ∩ Λ

p

4p

p
′

B ∩ Λ

q

4q

q
′

W u(p)

W u(p
′
)

Holonomy from A ∩ Λ
to B ∩ Λ
at p is NOT Lipschitz
continuous at p i�
for all C > 1, 4q > C4p.

Figure 8: Holonomy

Pinto and Rand [[PR], [PRF]] show that the stable and unstable holonomies of
a hyperbolic set Λ of map (4.1.1) have C1+α extension for some α. More precisely,

Theorem 4.1.3 ([PR], [PRF]). Let f : M → M be C1+β with a codimension 1
hyperbolic invariant set Λ which is topologically transitive and has a local product
structure. Suppose that the Hausdor� dimension of the unstable leaf segments is
one. Then, there is α such that all the holonomies are C1+α.

Due to the integrability of Es we get stable foliation Ws of M which is C1+α.
By Theorem 4.1.3, under an appropriate C1+α change of coordinates becomes the
foliation of M by discs x×D. That means, �xed p = (x, y, z). We consider the map
L : M →M such that

p = (x, y, z) 7−→ (W s(p) ∩ S1, y, z),

which will be used as a suitable change of coordinate.
We obtain a new map f

′
= LofoL−1 such that

(x, y, z) 7−→ (x, h1(x, y, z) + u(x), h2(x, y, z) + v(x)),

where h
′
i s are distinct function for i = 1, 2.

The strong stable foliation W ss is known to be C1+α in W s, see [Br]. Hence,
one can �nd a locally C1+α change of coordinates which would make W ss consist
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of vertical intervals. In the new coordinates f would be locally C1+α in each W s,
but we do not know what would be its global smoothness.

Keep the assumption of map (4.1.1). According to the above observation, we
just assume the map f : M →M is a C1+α and looks like

(x, y, z) 7→ (η(x) mod 2π, λ(x, y) + u(x), ν(x, y, z) + v(x)). (4.1.1.1)

Take w ∈M , the di�erential of f at e ∈ W s(w) is

Def =

a 0 0
b1 b2 0
c1 c2 c3

xy
z

 . (4.1.1.2)

The mapping f in (4.1.1.1) is called triangular non-linear.
The leaves W u of the lamination Wu of Λ project locally 1-to-1 to S1, their

angle with allW s is bounded away from 0. WritingW u, we consider only a bounded
parts ofW u, usuallyW u

[0,2π], which means the part which projects onto [0, 2π] 1-to-1

(excepts the ends), in particular 1-to-1 to S1.
We will always consider f given by the formula (4.1.1.1).
Under transversality and χ(µt, ν

′
) < χ(µt, λ

′
) < −χ(µt, η

′
), we show that Haus-

dor� dimension of the conditional measures onW s∩S1 of the geometric equilibrium
measure µt for f

−1 and the potential t0 log λ
′
, where λ

′
is the weaker contraction

rate function, is t0. Then, we show that the Hausdor� dimension of solenoid at-
tractor is 1 + t0.

4.2 Symbolic dynamics and Markov Partitions

It is well known that there is a Markov coding for Anosov di�eomorphisms (see
[A]). Markov partitions are a useful way of partitioning the space that a dynamical
system acts on by providing a useful tool for developing a "symbolic coding" of f|Λ.
So, we can partition S1 into closed intervals Ii = [ai, ai+1) where {ai} = η−1(0).
We write Ii−n+1,...,i0| :=

⋂0
j=−n+1 η

(−j−1)(Iij). Further, we call V|i1,...,in := I|i1...in ×D
n-vertical cylinder and Hi−n+1,...,i0| := fn(V|i−n+1,...,i0) n-horizontal cylinder, while
the set Cin,...,i0|i1,...,in := Hi−n,...,i0| ∩ V|i1,...,in . We consider Hi−n+1,...,i0|(p) ,V|i1,...,in(p)
and Cin,...,i0|i1,...,in(p), respectively, n-horizontal cylinder, n-vertical cylinder and n-
rectangle contain p, respectively. Sometimes, we denote them by Hn(p), Vn(p) and
Cn
−n(p).
We denote by H(n) and V (n) the sets of all horizontal, respectively vertical,

cylinder as above, of generation n. Using projection π(x,y), we repeat all the above
de�nitions for coordinate plane (x, y), using the same notation with hat over the
symbols. That is,

Ĥi−n,...,i0| = π(x,y) ◦ Hi−n,...,i0|, V̂|i1,...,in = π(x,y) ◦ V|i1,...,in , ,
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Ĉin,...,i0|i1,...,in = π(x,y) ◦ Cin,...,i0|i1,...,in , Ŵ u = π(x,y) ◦W u,

Ŵ s = π(x,y) ◦W s, Λ̂ = πx,y(Λ), f̂ = πx,y ◦ f ◦ (πx,y)
−1.

To construct symbolic dynamics, we introduce symbolic space Σ := {1, . . . , k}Z.
We consider the canonical coding ρ : Σ→ Λ, where

ρ(i) =
⋂

n=1,2,...

V|i1,...,in ∩
⋂

n=1,2,...

Hi−n,...,i0|

for any two side sequence i = (. . . , i−n, . . . , i0|i1, . . . , in, . . . ).
We denote by Σ+ and Σ− the sets of right-sided and left-sided sequence on d

symbols which is obtained from the sequence Σ. That is,

Σ+ = {x = (xi)i ∈ Σ | i > 0},

and,
Σ− = {x = (xi)i ∈ Σ | i ≤ 0}.

If a function ϕ : Σ → R depends only on the coordinates . . . , i−n, . . . , i0, then
we will say ϕ depends only on the past. Similarly, if a function ϕ : Σ→ R depends
only on the coordinates i1, . . . , in, . . . , then we will say ϕ depends only on the
future.

We also consider the following one side shift maps

σ+ : Σ+ → Σ+ and σ− : Σ− → Σ−.

We can use the canonical splitting of our symbolic space Σ = Σ−×Σ+, where Σ−

speci�es the local unstable manifold and Σ+ the local stable manifold.

De�nition 4.2.1. We say that the unstable foliation is transverse if the curves
π(x,y)(ρ([. . . i−n . . . i−1, i0|]) , π(x,y)(ρ([. . . j−n . . . j−1j0|]) such that i0 6= j0 are trans-
verse. We denote the set of their intersection(crossing) point by Γ. We call these
crossing 0order crossing .

De�nition 4.2.2. We call transversal intersection of the curves
π(x,y)(ρ([. . . i−n . . . i−1i|l1l2 . . . lm]) and π(x,y)(ρ([. . . j−n . . . j−1j|l1l2 . . . lm]) for all 1 ≤
i, j ≤ k, i 6= j, where

π(x,y)(ρ([. . . i−n . . . i−1i|l1l2 . . . lm]) ∩ π(x,y)(ρ([. . . j−n . . . j−1j|l1l2 . . . lm]) =

π(x,y)(f
m(ρ([. . . i−n . . . i−1i|])) ∩ π(x,y)(f

m(ρ([. . . j−n . . . j−1j|])) ∩ V|l1l2...lm ⊂ fm(Γ),

m-order crossing .

Standing Assumption: In throught this chapter, all intersection of this lines
(i.e. projections by πx,y of unstable manifolds) with di�erent i0 are transversal.
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4.3 On Lipschitz property Wu

In this section we will describe in more details the smoothness of holonomies
along unstable leaves.

The discussion here requires only the assumption described at the beginning of
previous section (see map 4.1.1.1). It was shown by Anosov [A] for general Anosov
systems, the unstable and stable foliations are always α−Hölder for some α de-
pending on the rates of expansion and contraction of the system . But, holonomies
are not necessary Lipschitz continuous. See for more information [Br].
In the solenoid case, Schmeling [Sch] found solenoids are often lack of regular
holonomies but the set of non Lipschitz for unstable foliation are small in the
measure sense. We are going to show that it is true in our case.

4.3.1 Strong Lipschitz

Suppose p ∈ Λ, q ∈ W u(p) are such that the holonomy from W s(p) to W s(q)
is not Lipschitz at p, i.e., for all C > 1 there is a p

′ ∈ W s
loc(p) arbitrary near p

such that 4q := d(q, q
′
) > Cd(p, p

′
) = C4p, where q′ is the image of p

′
under

the holonomy. We denote by NL the set of non-Lipschitz points of the unstable
foliation.

Remark 4.3.1. Notice that by the transversality argument of the sub-bundle Eu

all the intersection angles are bounded away from 0, say by α0. Also by compactness
and continuity of Eu on Λ there exists r0 > 0 such that if for p, p

′ ∈ Λ ∩W s their
mutual Euclidean distance is r < r0 and their i0 are di�erent then the distance of
their π(x,y) projections from Γ, more precisely from the intersection Ŵ u(p)∩Ŵ u(p

′
)

which is in particular nonempty, is bounded by 2r/ tanα0.

Compactness and transversality imply that every p ∈ NL has a subsequence
of preimages that accumulate exponentially fast to the set of crossing, which is
Γ. That means, set of bad points naturally associated with transverse crossing.
Hence, we can de�ne set of good points as follows :

De�nition 4.3.2. A point p ∈ Λ is said to be strong locally Lipschitz, if there is
L > 0 such that for all n big enough

dπ(f̂−n(p),Γ ∩ Ŵ u
[−L(ηn(p))−1,2π+L(ηn(p))−1](f

−n(p)) ≥ L(ηn(p))−1, (4.3.1.1)

with the distance in W u measured between the projections by π to R.
Equivalently we could replace here f̂−n(p) by ̂Vn(f−n(p)). It would in�uence

the constant L only.
By the unstable transversality and transversality of intersection of stable and

unstable foliations, this is equivalent to the distance in the {(x, y)}-plane satisfying

71



d(f̂−n(p), Ŵ u(p
′
)) ≥ Const(ηn(p))−1, (4.3.1.2)

for all p
′
having i0 di�erent from the i0 for f−n(p).

We call all points p, which are strong locally Lipschitz with the constant L such
that (4.3.1.1) holds for all q ∈ W u(p) in place of p, strong locally bi-Lipschitz.

Notice that this de�nition allows to say that the whole W u(p) is strong locally
bi-Lipschitz and write

dπ(f̂−n(W u(p)),Γ ∩ Ŵ u
[−L(ηn(p))−1,2π+L(ηn(p))−1](p)) ≥ L(ηn(p))−1. (4.3.1.3)

f−n(p
′
)

42p

41p

f−n(p)

Wu(f−n(p))

Wu(f−n(p))

f−n(q
′
)

42q

41q

f−n(q)

p
′
42p

41p

p

fn

q
′

42q41q

qWu(p)

Wu(p)

Figure 9: Strong Lipschitz.

We denote the set of all strong locally bi-Lipschitz points in Λ by Ls and
Ls ∩W s(p) with x(p) = x by Lsx. We call the set complementary to Ls in Λ, weak
non-Lipschitz, and we denote it by NLweak.

Remark 4.3.3. Note that if for L̃ > 0 strong locally Lipschitz condition
dπ(f̂−n(p),Γ∩Ŵ u(f−n(p))) ≥ L̃(ηn(p))−1 holds and q ∈ W u

[0,2π](p) then dπ(f̂−n(p),Γ) ≥
(L̃ − Const)(ηn(q))−1. Therefore, (4.3.1.1) satis�ed at p with L̃ > 2 Const strong
locally condition holds for all q ∈ W u(p), with L = L̃

2
. So, p is strong locally

bi-Lipschitz.

Let dpq := d(π(p), π(q)). The following lemma shows that if two point be close
to each other, then their trajectories remain close each other.

Lemma 4.3.4 ([HS, Lemma 6]). For p ∈ Λ, there is a C1 > 0 such that ϕn(q)
ϕn(p)

≤
1 + C1d

α
pq for q ∈ W u(p) and n ∈ N and some α > 0.

Since D carries the product distance d = d1×d2 we can write 4p = 41p+42p
in a natural way, and likewise 4q = 41q+42q, hence 4p := d(f−n(p), f−n(p

′
)) =

41p+42p, 4q := d(f−n(q), f−n(q
′
)) = 41q +42q.
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Lemma 4.3.5. For every L2 > 0 there exists L1 > 0 such that for each p strong
locally (bi)Lipschitz with the constant L = L1 there exists n(p) such that for each
q ∈ W u

[0;2π](p) the holonomy between Λx(p) and Λx(q), in Hn(p)(p)∩Λ, is bi-Lipschitz

locally continuous at p with Lipschitz constant L2, i.e, for every p
′ ∈ Λx(p)∩Hn(p)(p)

we have
L−1

2 d(p, p
′
) ≤ d(Π

x(q)
x(p)(p),Π

x(q)
x(p)(p

′
)) ≤ L2d(p, p

′
),

where d is the euclidean distance in D.

Proof. We repeat (adjust) the calculations in [HS]. We consider q ∈ W u(p) and

p
′ ∈ W s(p) ∩ Λ. We denote q

′
:= Π

x(q)
x(p)(p

′
). Assume that p

′ ∈ Hn(p) \ Hn+1(p),

where f−n(p), f−n(p
′
) are in mutually di�erent H0's.

Local Lipschitz continuity of the holonomy Π
x(q)
x(p)(p) at p would follow from the

existence of a uniform upper bound of

4q/4p (4.3.1.4)

for p
′
close enough to p, i.e. n de�ned above large.

We shall do the estimates in the original coordinates using the triangular form

of the di�erential Df |{y,z} =

[
λ
′

0
a ν

′

]
. Due to ν

′
< λ

′
we have Dfn|{y,z} =[

λn 0
an νn

]
where |an| ≤ Constλn. We estimate

4q =λ̄n(q)41q + |ān(q))41q + ν̄n(q)42q|
≤ λ̄n(p)41p+ |ān(p)41p+ ν̄n(p)42p|+ λ̄n(p)A/ηn(p)

for a constant A depending on the angle between W u and W s. Here λ̄n, ān and
ν̄n are averages of derivatives λn, an and νn respectively, on appropriate intervals,
namely integrals divided by the lengths of the intervals, horizontal along y for two
�rst integrals and vertical along z for the last one.

On the other hand,

4p = λ̄n(p)41p+ |ān(p))41p+ ν̄n(p)42p|.

To obtain an upper bound of (4.3.1.4) it is su�cient to assume the existence
of an upper bound of the ratio of the above quantities, namely

1 +
A(λ̄n(p)/ηn(p))

λ̄n(p)41p+ |ān(p))41p+ ν̄n(p)42p|
.

We needed bars over λ, ν, a to reduce above a fraction to the summand 1. From
now on these bars (integrals) are not needed.
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We conclude calculations with assuming the existence of an upper bound of

1

41p+ (an(p)41p+νn(p)42p
λn(p)

)ηn(p)
(4.3.1.5)

or to assume that the inverse

(41p+
an41p+ νn(p)42p

λn(p)
)ηn(p)

is bounded away 0.
Thus, Lipschitz property follows from either of

(
an41p+ νn(p)42p

λn(p)
)ηn(p) ≥ Const > 0. (4.3.1.6)

or
41pηn(p) ≥ Const > 0 (4.3.1.7)

The condition (4.3.1.6), in the diagonal case an = 0, means that the contraction
in the space of stable leaves W s by f−n, along the coordinate x, due to small
(ηn)−1 is strong enough to bound the twisting e�ect caused by νn(p)/λn(p), hence
implying the Lipschitz continuity of all the holonomies at p along unstable foliation
of a bounded length leaves (e.g. by 2π). This is for 41p ≈ 0 (hence 42p large).
Otherwise Lipschitz condition holds automatically.

The condition (4.3.1.7) is equivalent to strong locally Lipschitz (4.3.1.1) in
De�nition 4.3.2 by transversality condition, see Remark 4.3.1 and (4.3.1.2). This
implies that the distance between W s(f−n(p)) and W s(f−n(q)) is bounded by
Const×41(p) hence41q ≤ Const41p. So,4q ≤ Const4p, which means Lipschitz

property of Π
x(q)
x(p) at p. Notice that Const above large enough we obtain strong bi-

Lipschitz property (see Remark 4.3.3).

Above lemma implies the following lemma.

Lemma 4.3.6. Πx
′

x (Lsx) = Ls
x′

for all x, x
′ ∈ S1 for the holonomy Πx

′

x along
unstable foliation. The holonomy is locally Lipschitz on Ls.

The strong stable set restricts to n-horizontal cylinder is de�ned by

W ss
n,Λ(p) := (Λ ∩W ss(p)) ∩ (∪m≥nH

′

m) ∪ {x},

where H
′
m = (Hi−m,...,i−1i0|\Hi−(m+1)i−m...i−1i0|).

Lemma 4.3.7. There exists n ≥ 1 such that W ss
n,Λ(p) = {p} for any p ∈ Ls.
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Proof. Suppose p belongs Ls. That implies, there is a natural number n(p) such
that for every n ≥ n(p), we have π(x,y)(f

−n(p))∩Γ = ∅. Fix an arbitrary n ≥ n(p).
Hence, H

′
0∩W ss

0,Λ(f−n(p)) = ∅ such that f−n(p) /∈ H ′0. Therefore, H
′
n∩W ss

n,Λ(p) = ∅
due to the f-invarince of Λ and fn(W ss

0,Λ(p)) = W ss
n,Λ(fn(p)) for p ∈ Λ. Hence,

W ss
n,Λ(p) = {p}.

4.4 Geometric measure

In this subsection we introduce an interesting measure which shows that the
set of week Lipschitz is small.

De�nition 4.4.1. Let g : X → X be a continuous on a compact metric space,
then two functions ϕ1 : X → R and ϕ2 : X → R are called cohomologous on X
with respect to g, if there exists a continuous ζ : X → R such that

ϕ1 − ϕ2 = ζ − ζ ◦ g onX.

Sometimes, we use ϕ1 v ϕ2. Moreover, we say that ζ − ζ ◦ g is a coboundary.

Assume that σ : Σ→ Σ is topologically mixing subshift of �nite type. Note that
two functions being cohomologous is an equivalence relation. Also observe that if
two functions ϕ1 and ϕ2 are cohomologous then their Birkho� sums coincide on
periodic orbits. Coboundaries are useful since adding a coboundary to a function
preserves thermodynamic quantities, as demonstrated by the following result, see
in [PU, Chapter 5].

Lemma 4.4.2. Two Hölder continuous functions ϕ1 and ϕ2 have the same equi-
librium state if and only if ϕ v ϕ2 + c, where c = Pϕ1 − Pϕ2 .

Theorem 4.4.3. Let ϕ be a Hölder continuous function on Σ. Then, ϕ is coho-
mologous to a function ϕ̂ on Σ− that depends only on the past. Consequently, they
have the same topological pressure and equilibrium measure.

Let P (·) = P (f−1, ·) be topological pressure for the transformation f−1 and let
φ = log λ

′ ◦ f−1 as potential. We choose t = t0 that is the only zero of the pressure
function t 7→ P (t log λ

′ ◦ f−1) (see Figure 10). We call t0, a�nity dimension of
stable slices.

There is a unique ergodic equilibrium state µt0 for t0φ. Moreover, µt0 has Gibbs
properties . We de�ne h∗ := hµt0 (f).

We replace log λ
′ ◦f−1 by a function having logarithm cohomologous to log λ

′ ◦
f−1 (denote it also by λ

′
), not depending of future (|i1, . . . ). In conformal case,

the quantity t0 is Hausdor� and box dimensions, here in the non-conformal case is
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P (t0φ)

h∗ := hµt0 (f)

t0

Figure 10: A�nity dimension.

only the upper bound of the dimensions of W s ∩Λ, so-called a�nity dimension 2.
Our main goal is to prove that t0 is in fact the Hausdor� dimension of all W s ∩Λ.

We de�ne χ(µt0 , η
′
) :=

∫
log η

′
dµt0 , χ(µt0 , λ

′
) :=

∫
log λ

′
dµt0 and χ(µt0 , ν

′
) :=∫

log ν
′
dµt0 .

We replace assumption (3) of the map (4.1.1) by χ(µt0 , ν
′
) < χ(µt0 , λ

′
). In rest

of the chapter, we work with above assumption.

4.4.1 General description of measurable partition

We consider (X, τ, γ) probability, complete and separable space. Suppose that
ζ1 = {C1, . . . , Cn} is a �nite partition of X into sets of positive measure γ, assume
that τ1 = B(ζ1) is the σ-algebra which includes all unions of elements of ζ1 , so that
τ1 contains 2n sets. One can get a �ner partition ζ2 and a larger σ−algebra τ2 =
B(ζ2) whose elements are unions of some, none, or all of the Ci,j by partitioning
each Ci into Ci,1,. . . ,Ci,k . By iterating this procedure, we have a sequence of
partitions

ζ1 < ζ2 < . . . (4.4.1.1)

each of which is a re�nement of the previous partition, and a sequence of σ -algebras

τ1 < τ2 < . . . (4.4.1.2)

We consider the limit (4.4.1.1) ζ = ∨∞n=1ζn. Each element of ζ corresponds to a
"funnel"

Ci1 ⊃ Ci1,i2 ⊃ . . . (4.4.1.3)

of decreasing subsets within the sequence of partitions; the intersection of all the
sets in such a funnel is an element of ζ.

2In fact, t0 is s in the singular value function (see 2.7).
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The sequence (4.4.1.1) is a basis because it generates both the σ−algebra τ
and the space X, as follows:

(1) the associated σ-algebras τn := B(ζn) from (4.4.1.2) have the property that⋃
n≥1 τn generates τ ;

(2) it generates the space X; that is, every �funnel� Ci1 ⊃ Ci1,i2 ⊃ . . . as in
(4.4.1.3) has intersection containing at most one point (complete property).

Notice that the existence of an increasing sequence of �nite or countable partitions
satisfying (1) is equivalent to separability of the σ-algebra.

4.4.1.1 Dynamical systems setting

Assume that a map T is an automorphism, i.e., invertible with measure-preserving
system. Let ζ be a �nite partition of X into measurable sets, and de�ne

ζT :=
∨
n∈Z

T nζ = lim
n→∞

n∨
−n

T nζ.

The elements of this partition are given by
⋂
n∈Z T

nCn, where Cn ∈ ζ. Observe
that x ∈ T nCn if and only if T−n(x) ∈ Cn, and so knowing which element of T nζ
the point x lies in corresponds to knowing in which element of ζ the points T−n(x)
lies.

4.4.1.2 Solenoid setting

Fixed p ∈ M . Taking into account to above observation, in the solenoid case
(or any general hyperbolic set), we can de�ne for the measure µ a system
stable conditional measure for the partition into Λx(p) [R].

Let us explain it in more details. Let W = {J1, . . . , Jn} be a �nite partition
of S1 into measurable sets. We consider n-Vertical cylinder V|i1,...,in around the
W s
D(x)∩Λ. Given a set E ⊂ W s(p), we consider conditional measure (µx(p))n(E) :=

µ(E∩V|i1,...,in )

µ(V|i1,...,in )
. Rokhlin showed (µx(p))n → µx(p) (weak

∗ topology). They de�ne for

µ- a.e. p. We call (µx(p))W stable conditional measure. (They of course coincide for
p
′ ∈ W s

D(p) when W s
D(p) = W s(p

′
)).

Similarly, we can de�ne a system conditional measure for strong stable mani-
fold.
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4.4.2 Results

Recall that the map f : M →M is C1+α such that

(x, y, z) 7→ (η(x) mod 2π, λ(x, y) + u(x), ν(x, y, z) + v(x)),

where λ(x, 0) = ν(x, 0, 0) = 0 and

1- η
′
> 1

2- λ
′
< 1

3- χ(µt0 , ν
′
) < χ(µt0 , λ

′
).

Moreover, the functions λ, ν and η−d×x are 2π-periodic with respect to x, where
d is degree of f . We always assume d ≥ 2.

Now, we can state our main result.

Theorem 4.4.4. Consider a C1+α map f : M → M as above, and assume that
η
′
is constant as well as

1- supλ
′
(p) < (η

′
)−1(p) = 1/d (d the is degree of η

′
) for p ∈ Λ,

2- The unstable lines of the πx,y(Λ) intersect each other transversal.
Then, dimH(Λ) = 1 + dimH(Λx) = 1 + t0 for every x ∈ S1.

Hasselblatt and Schmeling stated in [HS] the following.

Conjecture. Hausdor� dimension of a hyperbolic set is sum of those its stable
and unstable slices.

In fact, we prove the conjecture for non linear solenoids. Moreover, we can
prove Theorem 4.4.4 for much general case.

Theorem 4.4.5. Assume that η
′
is not constant. Then Theorem 4.4.4 holds if

instead of supλ
′
(p) < 1/d we assume χ(µt0 , λ

′
) < χ(µt0 ,−η

′
).

De�nition 4.4.6. A point p = ρ(. . . i−n, . . . , i0|i1, . . . , in, . . . ) is said to be Birkho�
(ϕ, ε,N)-backward regular for an arbitrary ε > 0 and for ϕ = ν

′
, λ
′
or η

′
, if for all

n ≥ N

en(χ(µ.ϕ
′
)−ε) ≤ ϕn(p) ≤ en(χ(µ.ϕ

′
)+ε)). (4.4.2.1)

When we mean just (4.4.2.1) we say (ϕ, ε, n)-backward regular, omitting "Birkho�".
Compare Shannon-McMillan-Breiman property in the proof of Lemma 4.5.7.

By bounded distortion the property (4.4.2.1) for p = ρ(. . . i−n, . . . , i0|i1, . . . , in, . . . )
depends only on (i−n+1, . . . , i0), provided we insert constant factors before exp, so
it can be considered as a property of a horizontal cylinder H(n). Analogously
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for the forward regularity this is a property of vertical cylinders V (n). We call
these cylinders (ϕ, ε, n)-forward or backward regular and all other points or n-th
generation cylinders irregular.

According to Birkho� Ergodic Theorem, we can immediately get following
corollary :

Corollary 4.4.7. µt0{p | p is backward regular} = 1.

Assume that f : Λ → Λ is a C1+α di�eomorphism on the compact locally
maximal hyperbolic set and ϕ : Λ → R is a Hölder continuous function. For each
α ∈ R, we consider the level set of Birkho� averages

E−α (ϕ) = {x ∈ Λ, lim
n→−∞

1

n
Snϕ(x) = α},

E+
α (ϕ) = {x ∈ Λ, lim

n→∞

1

n
Snϕ(x) = α}.

One can also de�ne the irregular set for the Birkho� averages

Eb
a(ϕ) = {x ∈ Λ, a := lim inf

n→∞

1

n
Snϕ(x) < b := lim sup

n→∞

1

n
Snϕ(x)}.

Theorem 4.4.8 ([BV06]). Suppose that Λ is a compact locally maximal hyperbolic
set for C1+ε di�eomorphism on smooth surface. Then, for each α ∈ R and x± ∈
E±α (ϕ) we have

Λ ∩W s(x+) ⊂ E+
α (ϕ), Λ ∩W s(x−) ⊂ E−α (ϕ).

And,

dimH E
+
α (ϕ) = dimH(E+

α (ϕ) ∩W u
loc(x

+)) + ts,

dimH E
−
α (ϕ) = dimH(E−α (ϕ) ∩W s

loc(x
−)) + tu,

where tu and ts are P (ts log df|Es(x)) = 0, P (tu log df|Eu(x)) = 0.

Theorem 4.4.9. dimH E
b
a(ϕ) = minc∈[a,b] dimH Ec(ϕ).

Proof. See [GR, Theorem 1].

Thus our main result and above theorems imply that Hausdor� dimension of
irregular set is smaller than Hausdor� dimension regular sets.
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4.5 Ls has full support

In this section, we show that Γ is small. Consequently, we will show that set
of NLweak is kind with respect to Hausdor� dimension. We prove the following
lemma for the case supλ

′
(p) < 1/d.

Lemma 4.5.1. dimB(Γ∩ Ĥi) ≤ t0 for any i = (. . . i
′
0|), where t0 is a�nity dimen-

sion of stable slices.

Proof. FixedW u(ρ(i)) for arbitrary point ρ(i). We consider n-Horizontal cylinders

Hi−n+1,...,i0| with i0 6= i
′
0 so that Ĥi−n+1,...,i0| intersects Ŵ

u(ρ(i)).
We know P (t0 log λ

′
) = 0. So, by the de�nition of topological pressure,∑
n

∑
{Ĥi−n+1,...,i0| ∩Γ 6=∅}

λn(q)t ≤ C <∞, (4.5.1)

where q is any point such that π(x,y)(q) ∈ Ŵ u(ρ(i))∩Ĥi−n+1,...,i0|, and for t > t0. In-

deed, by transversality, length of intersection the n-Horizontal cylinders Ĥi−n+1,...,i0|
with Γ is equal diameter n-Horizontal cylinder up to some constant.

We know supp∈Λ λ
′
(p) < 1/d. For each sequence i := (. . . , i−1, i0) and r ∈ (0, 1),

we consider the unique integer n = n(i) such that

Length(Ĥi−n+1,...,i0|(q(i)) ∩ Ŵ u(ρ(i)) ≤ r ≤ Length(Ĥi−n+2,...,i0|(q(i)) ∩ Ŵ u(ρ(i)),

3 where π(x,y)(q(i)) = Ŵ u(ρ(i))∩Ŵ u(ρ(i)). We can easily verify that for each �xed
r the sets

I(q(i), n, r) := Ii−n(i)+1,...,i0 = Ŵ u((ρ(i)) ∩ Ĥi−n(i)+1,...,i0|.

Consider in Ŵ u(ρ(i)) the ball (arc) J(q, r) = B(q̂(i), r). Choose a family

J(qk, r) of the arcs of the form J(q, r) covering Γ ∩ Ŵ u(ρ(i)), having multiplic-

ity at most 2, namely that each point in Ŵ u(ρ(i)) belongs to at most 2 arcs. Then
I(q(i), n, r) ⊂ J(qk, r) for all k. On the other hand by the de�nition of n(i) there
is a constant K such that K LengthI(qk(i), n, r) ≥ Length(J(qk, r)).

Finally notice that for two di�erent qk and qk′ it may happen that n = n(k) =
n(k

′
) and the n−th codings i−n+1, . . . , i0 are the same; in other words the n−th

horizontal cylinders coincide. Then however J(qk) and J(qk′ ) intersect so the co-
incidence of these codings may happen only for at most two di�erent k and k

′
.

3We mean here the length of the projection by π to R (of course we can alternatively consider

the lengths in Ŵu(p) or Wu(p)).
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It follows from (4.5.1) that∑
k

(2r)t ≤2K−t
∑
k

Length(I(qk(i), n, r))

≤ 2 ConstK−1
∑
n,k

λn(qk)
t ≤ ConstC <∞. (4.5.2)

Hence, as our estimates hold for every r > 0, we obtain

dimB(Γ ∩ Ĥi) ≤ t0.

De�nition 4.5.2. For each i = (i−n, . . . i0|) de�ne

hrn(i) :=
1

n+ 1
log #{(i1, . . . , in) :

Ĥi ∩B(V̂|i1,...,in , L1ηn(π(ρ(i)))−1 ∩
⋃

i′n,...,i
′
0 6=i0

Ĥi
′
−n,...,i

′
0
6= ∅},

where L1 is the constant in Lemma 4.3.5 . De�ne also

hrn := suphrn(i), and hr := lim sup
n→∞

hrn. (4.5.3)

De�nition 4.5.3. Let i = (. . . i0|). For Hi = W u(p), where ρ(i) = p, we de�ne

hn(i) :=
1

n+ 1
log #{(i1, . . . , in) :

Ĥi ∩ V̂|i1,...,in ∩B(Γ ∩ Ĥi, L1η
−1
n (π(ρ(i))) 6= ∅},

Compare (4.3.1.1), and

hn := suphn(i), and h := lim sup
n→∞

hn. (4.5.4)

Proposition 4.5.4. h and hr are independent of L1 large enough. Moreover, h ≤
hr. The opposite inequality holds if supλ

′
< 1/ sup η

′
.

We use Lemma 4.5.1 to prove the following lemma.

Lemma 4.5.5. Keep the assumption Theorem 4.4.4. Then, h < h∗.

3I thank Adam Abrams for drawing the picture.
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Ĥ ′n−1

Ĥn−1

Ĥn

Ĥn

Ĥ ′n

Ĥ ′n

Vn Vn Vn Vn Vn

Figure 11: Projection to (x, y)−plane. Hn = Hi−n,...,i0|, H
′
n = Hi

′
−n,...,i

′
0|
, Vn =

V|i1,...,in .

Proof. For an arability ε > 0 and n large enough, we easily get

hn(i) ≤ (dimB(Ĥi ∩ Γ) + ε))(log sup η
′
) (4.5.5)

for every i = (. . . i0|).
By Lemma 4.5.1, we have

dimB(Ĥi ∩ Γ) ≤t0 =
h∗

−χ(µt0 , λ
′)

≤ h∗
− sup log λ′

<
h∗

log sup η′
.

Inequality (4.5.2) in Lemma 4.5.1 is uniform, that is n for which it holds is inde-
pendent i. So, we can pass hn(i) to a uniform version with hn. Then it completes
the proof.

We used the fact η
′
is constant in Lemma 4.5.1 to provide concerted scales for

dimB. In general case, the varying scales is obtaining from the partitions of S1 into
arcs between consecutive ηn preimages of a �xed point cause di�culties. They will
be overcome by restricting de�ning h to regular points having πx,y−images in Γ.
We will explain it in next section.

We denote µt0 = µ, if there is no confusion.
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Remark 4.5.6. For p, p
′ ∈ Ls, (Π

x(p
′
)

x(p) )∗(µx(p)) = µx(p′ ).

We use above fact and h < h∗ to prove the following lemma.

Lemma 4.5.7. If h < h∗, then µ(NLweak) = 0. Consequently, µ(Ls) = 1.

Proof. By applying Shannon-McMillan-Breiman Theorem for f−1,

1

n
log µ(Hn(p))→ h∗

for µ almost every p ∈ Λ, so for every ε > 0 and n large enough

e−n(h∗+ε) ≤ µ(Hn(p)) ≤ e−n(h∗−ε). (4.5.6)

Given ε > 0 and n, we denote by Yε,n the set where (4.5.6) does not hold. Thus,
the set

Y irr
ε := lim sup

n→∞
Yn,ε =

⋂
n

⋃
k≥n

Yε,k (4.5.7)

has measure equal 0. Its ε-regular complement lim infn→∞Xn,ε =
⋃
n

⋂
k≥nXk,ε for

Xk,ε = Λ\Yε,k has full measure for each ε.
By Gibbs property measure µ and Birkho� ergodic theorem for f−1 and log λ

′

in place of Shannon-McMillan-Breiman:

Const−1 en(t0+ε)χ(µ,λ
′
) ≤Const−1(λn(p))t0

≤µ(Hn(p))

≤Const(λn(p))t0

≤Const en(t0−ε)χ(µ,λ
′
).

The number e(n+1)hr+nh∗ is roughly (that is up to enε order of deviation) an

upper bound of the number of horizontal rectangles ̂H(2n+ 1) whose horizontal

extension to (−L2π, (L + 1)2π) intersect f̂n(Γ) and else which do not belong to
Yε,n.

Indeed, the number e(n+1)hr comes from fn(H) for each H ∈ H(n+1), whereas
the number enh∗ comes from the number of regular H ∈ H(n + 1) whose some
H(2n + 1) ⊂ fn(H) belong to Xε,2n+1 ∩Xε,n. Notice that H satisfying this, need
not exhaust allH satisfying (4.5.6). The measure µ of each suchH is lower bounded
for p ∈ H by

Constλn(p)t0 = Const
(λ2n+1(fn(p)))t0

(λn(fn(p))t0

≥ en+1((χ(µ,λ
′
)−3ε)t0

= e−(n+1)h∗e−(n+1)3εt0 ,
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compare (4.6.3), and Gibbs property µ (used already above to reformulate (4.5.6)
to the language of λ

′
).

Thus, for the union Hε,n these cylinders∑
H

µ(H) ≤ e(2n+1)(−h∗+ε)e(n+1)(hr+ε)+n(h∗+3t0ε)

≤ e(n+1)(hl−h∗)+(3n(1+t0)+2)ε

So, for arbitrary ε > 0 small enough,

lim
N→∞

µ(
⋃
n≥N

(Hε,n ∪ Yε,n)) = 0,

so µ(NLweak) = 0.

4.6 Proof of the main theorems

Fixed p ∈ Λ. We denote the system of conditional measures of γ with respect
to partition ζs, ζss, respectively by γsx(p), γ

ss
x(p) and for any measurable set A ⊂ Λ

we have
γsx(p)(A) = γsx(p)(A ∩ ζs(p)) and

γssx(p)(A) = γssx(p)(A ∩ ζss(p)).

We denote by d(p) , d(p) the lower and upper pointwise dimensions of γ at p.
Since that functions are measurable and f−invariant they are constant γ-almost
everywhere. We denote these constants by d and d, respectively.

Ledrappier-Young introduced the quantities

ds(p) := lim
r→0

log γsx(p)(B
s(p, r))

log r
, dss(p) := lim

r→0

log γssx(p)(B
ss(p, r))

log r
, (4.6.1)

where Bs(p, r) and Bss(p, r) are balls in stable and strong stable manifolds , pro-
vided that corresponding limit exists at p ∈ Λ.

Theorem 4.6.1. For each x ∈ S1, dimH(Λx) = h∗
−χ(µt0 ,λ

′ )
= t0.

It is convenient to break up the proof of Theorem 4.6.1 into several separate
statements. In particular, the theorem is obtained by combining Theorems 4.6.2
and 4.6.3 below.

Theorem 4.6.2. For each p ∈ Ls, dimH(Λx(p)) ≥ h∗
−χ(µt0 ,λ

′ )
= t0.

84



Proof. Suppose that γ is ergodic, hyperbolic measure and γ(Ls) = 1. Given p ∈ Ls.
To estimate the dimension of the set Ls, we study �rst Hausdor� dimension of γ.
We consider γx(p) as the conditional measure of γ.

We may apply the theory of Ledrappier-Young formula [LY2], hγx(p)
(f) =

−(ds−dss)χ(γ, λ
′
)−dssχ(γ, ν

′
) for γ-a.e. p. According Lemma 4.3.7, sinceW ss

n,Λ(p) =

{p} for p ∈ Ls, we have dss(p) = 0. Therefore, hγx(p)
(f) = −dsχ(γ, λ

′
). Moreover,

dimH(γx(p)) = hγ(f)

−χ(γ,λ′ )
by Frostman lemma.

Conclusion, use above arguments for γ = µ. Then dimH(Λx(p)) ≥ dimH(µx(p)) =
h∗

−χ(µt0 ,λ
′ )

= t0.

Now, we prove the other direction.

Theorem 4.6.3. For each p ∈ Λ, dimH(Λx(p)) ≤ h∗
χ(µ,λ′ )

= t0.

Proof. Consider conditional measures µx(p) in µ− a.e. Λx(p) for p ∈ Λ. By the

de�nition of µx(p) (Gibbs property), we have
µx(p)(V|i1,...,in∩W

s
Dx(p)

(p))

λ
t0
n (p)

≥ Const . for

every n ∈ N. Consequently, dimH(Λx(p)) ≤ h∗
−χ(µ,λ′ )

= t0 for every x(p).

Now, we prove Theorem 4.4.4.

Proof. Fixed (x, y, z) = p ∈ Λ. We introduce a map F where preserves x coordinate
and moves y, x coordinates along holonomy. More precisely, for q = (x

′
, y
′
, z
′
),

F (x, y, z) = (x,Πx
′

x (y, z)).

We consider Bs(p, λn(p)) for p ∈ Ls inside stable slice Λx(p). The union images
of Bs(p, λn(p)) over all |x′ −x| < 2π under F becomes Cartesian product. Because
the map is locally Lipschitz 4, hence, dimH(Λ) ≥ 1 + dimH(Λx) = 1 + t0.

More precisely F is locally Lipschitz, in the sense that there exists L > 0 such
that for every p ∈ Ls there exists measurable r(p) > 0 such that for every r ≤ r(p)
and q ∈ B(p, r), dist(F (p), F (q)) ≤ Ldist(p, q). This is su�cient to non increase
dimension by splitting the space into a countable number of pieces.

Now, we prove other direction. We introduce a measure

µ̂ :=

∫ x+2π

x

µxdLeb(x), (4.6.2)

that its support is in Λ.

4By Lemma 4.3.6 all the holonomies Πx
′

x for 0 ≤ x′ ≤ 2π are locally bi-Lipschitz on Ls
x.

85



Given p ∈ Λ. We consider image Bs(p, λn(p)) under holonomy, i.e. we move
along unstable foliation. Therefore, we have,

{x′} ×Bs(p, (C + 1)λn(p)) ⊃ Πx
′

x (Bs(p, λn(p))),

where C := tan^(Eu, Es) 5, and x
′ ∈ B(x(p), λn(p)). Hence,

µ({x′} ×Bs(p, (C + 1)λn(p))) ≥ µ(Πx
′

x (Bs(p, λn(p))).

Then, for any p ∈ Λ,

µ̂(B(p, (C + 1)λn(p))) ≥
∫ λn(p)

−λn(p)

(µx′ (Hn(p) ∩ Λx′ )dLeb(x
′
)

≥ Const .λn(p).λt0n (p).

So, dimH(Λ) ≤ 1 + t0.

Proof of Theorem 4.4.5. Now, we explain how to modify the proof of Theorem
4.4.4 such that it works for Theorem 4.4.5.

The technical step involved are roughly as follows. For each n, we consider
Hn+m(p) Horizontal cylinder for all p's where they are (ε, ϕ, n) and (ε, ϕ, n + m)
regular points. We come back n−step, i.e. consider f−n(p) and we look at all the
preimages which is around the intersection. We de�ne entropy for those cylinders
contain the points as same as De�nition 4.5.3 , and then we show that it is smaller
than h∗.

We know that ϕn+m(p) = ϕn(p)ϕm(f−n(p)). So,

ϕm(f−n(p)) =
ϕn+m(p)

ϕn(p)
. (4.6.3)

Hence, for p being (ϕ, ε, k)−backward regular for k = n, and k = m+n, by (4.6.3)
and De�nition 4.4.2.1, we have

e(n+m)(χ(µ.ϕ
′
)−ε)

e(n(χ(µ.ϕ′ )+ε)
≤ ϕm(f−n(p)) ≤ e(n+m)(χ(µ.ϕ

′
)+ε)

e(n(χ(µ.ϕ′ )−ε)
. (4.6.4)

Hence,

em(χ(µ.ϕ
′
)−ε(2 n

m
+1)) ≤ ϕm(f−n(p)) ≤ em(χ(µ.ϕ

′
)+ε(2 n

m
+1)). (4.6.5)

For each m,n ∈ N, we denote by Xε,n,m the union of all H(n + m) Horizontal
cylinders of (ϕ, ε, n)−backward regular points in Λ for all ϕ = ν

′
, λ
′
, η
′
and yet

(λ
′
, ε, n+m)-backward regular points. We call Yε,n,m := Λ\Xε,n,m irregular points

5Angle between stable and unstable manifold is bounded (uniform hyperbolicity)
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which µ(Yε,n,m)→ 0 as n→∞. Now, as proof of Lemma 4.5.7, the idea is to remove
for each n the irregular set Yε,n,m for m to be de�ned later on, and estimate the
number of remaining cylinders H(n+m) which are regular contaminated by other
regular cylinders in the sense below (4.6.6).

We say that any point (or cylinder) p ∈ H(n+m) regular is (Γregn+m)-contaminated
if for p̃ := f−n(p)

πx,y(p̃) ∈ Bu(Γreg, L1η
−1
n (p̃)), (4.6.6)

compare De�nition 4.3.2. Bu denotes a ball in Ŵ u(p̃). The set Γreg is de�ned as
Γ in De�nition 4.2.1, but restricted to p̂ being πx,y image of q = ρ(. . . , , i0|) and
q
′
= ρ(. . . , , i

′
0|) such that fn(q) and fn(q

′
) are in Xε,n,m.

As in De�nition 4.3.2 we can say equivalently that V̂n(p̃) is Γregn+m-contaminated
if it does not satisfy (4.5.3), with Γ replaced by Γregn+m.

We are looking for m > 0 as small as possible so that

λm(f−n(p)) < (ηn(p))−1.

Taking into account that both fn(q) and q are in Xε,n,m. By using (4.6.5),

em(χ(µ,λ
′
)+ε(2 n

m
+1)) < en(−χ(µ,η

′
)−ε).

It follows that for ε > 0 small it is su�cient

m

n
� χ(µ, η

′
)

−χ(µ, λ′)
+ ε

′
(4.6.7)

with ε
′
> 0 also small.

Now, we do similar to what we did in section 4.5. We brie�y explain it. First,
for given Hm(p̃) with p = fn(p̃) ∈ Xε,n.m, we de�ne h

req
n := 1

n+1
logZn where Zn of

the number of contaminated vertical cylinder V̂ (n) in Ĥm(p̃) by dual Ĥm(q̃) (they
are di�erent at zero level).

The number Zn is bounded by a constant times the number of H(m) above,
taking in account L in (4.3.1.1) and the observation that regular Hm, as thinner
than V (m) can intersect at most two (neighbor) V (m)'s. So, enh

reg
n ≤ Const .emh∗ ,

hence using (4.6.7),

hreg ≤ h∗(
χ(µ, η

′
)

−χ(µ, λ′)
) + ε

′
.

The argument in the previous theorem now give the analogous statement.
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