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Streszczenie

W rozprawie zajmujemy sie nowym podejsciem do funkcji harmonicznych na przestrzeniach me-
trycznych z miara uzywajac przy ich definiowaniu wlasnosci wartosci éredniej. Badamy trzy typy
funkcji i zwiazanych z nimi zagadnien: funkcje silnie harmoniczne, funkcje p-harmoniczne i ich
nieliniowg asymptotycznag wlasno$é wartosci sredniej oraz funkcje asymptotycznie srednio harmo-
niczne. Badania powyzszych pojeé¢ prezentujemy odpowiednio w trzech przypadkach: wazonych
przestrzeni Euklidesowych, grup Carnot—Carathéodory’ego i przestrzeni metrycznych z miara po-
dwajajaca.

Na poczatku charakteryzujemy funkcje silnie harmoniczne okreélone na otwartych podzbiorach
przestrzeni Euklidesowej z wazona miara Lebesgue’a oraz z metryka indukowana przez norme. Wa-
runkiem koniecznym na silng harmonicznos¢ funkcji jest jej bycie stabym rozwigzaniem ukladu
eliptycznych réwnan rézniczkowych czastkowych, ktérego liczba réwnan zalezy od regularnosci
wagi. Warunek dostateczny jest udowodniony przy uzyciu wzoru Pizzettiego i stanowi, ze kazde
rozwiazanie wyzej wymienionego ukltadu réownan jest silnie harmoniczne. Wzor Pizzettiego jest
prawdziwy tylko dla funkcji analitycznych, dlatego zakladamy analityczng regularnos¢ wagi. Jedna
z konsekwencji przeprowadzonej analizy sa wyniki o regularnoéci funkcji silnie harmonicznych.
Dowodzimy, ze dla wagi z przestrzeni Sobolewa funkcje silnie harmoniczne naleza do przestrzeni
Sobolewa oraz, ze dla analitycznej wagi funkcje silnie harmoniczne réwniez sa analityczne. Przepro-
wadzona analiza zostala zilustrowana w przypadku planarnym z metryka indukowana przez norme
[P. Dla p = 2 oraz gladkiej wagi przedstawiamy w mozliwie najprostszy sposéb wyzej wymieniony
uktad réwnan rézniczkowych czastkowych charakteryzujacy harmoniczno$é. Ponadto, dla stalej
wagi oraz pozostalych wykladnikéw p € [1,00] \ {2} wykazujemy, ze wymiar przestrzeni funkcji
silnie harmonicznych wynosi 8.

W rozdziale trzecim charakteryzujemy ciagte rozwiazania lepko$ciowe rownania znormalizowa-
nego subeliptycznego p-Laplasjanu na grupach Carnot jako funkcje o asymptotyczej p-wlasnosci
wartosci sredniej w sensie lepkosciowym.

W ostatniej czeéci pracy badamy funkcje asymptotycznie Srednio harmoniczne na przestrze-
niach metrycznych z lokalnie podwajajaca miara. Uzywajac metody usredniania dowodzimy, ze
funkcje ze skoniczona amv-norma naleza do utamkowych przestrzeni Hajlasza—Sobolewa oraz, ze
funkcje asymptotycznie srednio harmoniczne sa a-Holderowsko ciagle z dowolnym wykladnikiem
0 < a < 1. Konsekwencja zastosowania metody usredniania jest udowodnienie lokalnej ciaglosci
Lipschitzowskiej dla funkcji silnie harmonicznych przy zalozeniach stabszych niz znane w literatu-
rze. Ponadto, dowodzimy skonczonosci wymiaru przestrzeni funkcji silnie harmonicznych o wzro-
$cie wielomianowym o ile miara ma wlasno$é zanikania na pierscieniach. Twierdzenie Blaschke—
Privaloffa—Zaremby zostalo uogdlnione na grupe Heisenberga H;. Uzywajac metody blow-up’éw na
przestrzeni metrycznej wykazujemy, ze funkcje styczne do tych ze skoficzong amv-norma sa silnie
harmoniczne na przestrzeni stycznej. W wazonych przestrzeniach Euklidesowych, gdy waga jest
lokalnie ciggla w sensie Lipschitza, dowodzimy, ze funkcje asymptotycznie érednio harmoniczne sg
rozwigzaniami eliptycznego réwnania rézniczkowego czastkowego.

Stowa kluczowe: analiza na przestrzeniach metrycznych, wlasno$é wartosci éredniej, funkcja
harmoniczna, funkcja silnie harmoniczna, funkcja asymptotycznie $rednio harmoniczna, funkcja
p-harmoniczna, grupa Carnot, wazona miara Lebesgue’a, p-$rednia.
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Abstract

In the thesis we study a recent approach to harmonic functions on metric measure spaces defined
via the mean value property. Namely, we investigate three types of functions and related problems:
strongly harmonic functions, p-harmonic functions in connections to nonlinear asymptotic mean
value property and asymptotically mean value harmonic functions. Our analysis is divided into
three settings: weighted Euclidean domains with a norm induced metric, Carnot—Carathéodory
groups and doubling metric measure spaces, respectively.

First, we present a characterization of strongly harmonic functions on Euclidean spaces equipped
with a weighted Lebesgue measure and a norm induced metric. The necessary condition says, that
any strongly harmonic function is a solution to a system of elliptic partial differential equations,
where the number of equations in a system depends on the regularity of the weight. The suffi-
cient condition is proved using the Pizzetti formula and shows that every solution to previously
described system of equations is strongly harmonic. The result holds for analytic weights. As an
outcome of the discussion we obtain the Sobolev/analytic regularity of strongly harmonic functions
assuming Sobolev/analytic regularity of the weight, respectively. The discussion is illustrated by
distance functions induced by [P norm for planar domains. We demonstrate the aforementioned
system for a smooth weight and p = 2 and show, that for a constant weight and p € [1, 00] \ {2}
the space of strongly harmonic functions has dimension 8.

In the second part of the dissertation we work with normalized subelliptic p-Laplace equation
in Carnot groups. We show a characterization of continuous viscosity solutions via an asymptotic
p-mean value property understood in the viscosity sense.

Finally, we investigate asymptotically mean value harmonic functions in locally doubling met-
ric measure spaces. We employ a refined averaging to prove fractional Hajtasz—Sobolev regularity
of functions with finite amv-norm and a-Ho6lder regularity of strongly amv-harmonic functions for
all 0 < a < 1. An outcome of the discussion is local Lipschitz regularity for strongly harmonic
functions obtained under weaker set of assumptions than those known in the literature. More-
over, we show that the space of strongly harmonic functions with polynomial growth has finite
dimension whenever the measure has §-annular decay property. Moreover, we prove Blaschke—
Privaloff-Zaremba theorem in the Heisenberg group H;. We also study blow-ups of functions with
finite amv-norm proving, that a tangent function at almost every point is strongly harmonic on
the tangent space at that point. In the end, we show that amv-harmonic functions on weighted
Euclidean domains with locally Lipschitz weights are solutions to an elliptic partial differential
equation.

Keywords: analysis on metric spaces, mean value property, harmonic function, strongly har-
monic function, asymptotically mean value harmonic function, p-harmonic function, Carnot group,
weighted Lebesgue measure, p-mean.

AMS Subject Classification: 31C05, 30L99, 31E05; Secondary: 35R03, 53C23, 35J99, 35H20.
Socrates-Erasmus Subject Area: 11.1.
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Chapter 1

Introduction

This thesis is devoted to investigation of a recent concept of harmonic functions on metric measure
spaces defined via various kinds of the mean value property. In what follows, we describe the subject
and draw a road map of the thesis. We begin with presenting historical background of relations
between harmonic functions and the mean value property focusing on the classical results and
placing its place in the development of analysis of Partial Differential Equations. Then, we divide
the discussion with respect to three viewpoints:

1. strongly harmonic functions,
2. nonlinear averages of p-harmonic functions,
3. asymptotic mean value property.

In those parts we address recent results, which lead to our research. At the end of this chapter we
present most important results obtained throughout this thesis.
Let Q C R"™ be an open set. We say, that a function v € C?(£2) is harmonic on  if the Laplace

operator Au(z) := %(x) +...+ gig () =0 for all z € Q.
1 n

The standard questions concerning harmonic functions are the existence and the uniqueness of

solutions to the Dirichlet problem: given an open bounded smooth £ C R™ and a boundary data

p € C(0N) find u : Q — R which satisfies the following conditions

Au=0 1in Q,
u=¢ on 8.

One of the most important features of harmonic functions is the Dirichlet principle saying, that u
is a solution to the Dirichlet problem if and only if it is a minimizer of the Dirichlet energy

B(u) = / Vuly) dy

in the class of all W12(Q) functions with fixed trace ¢ on the boundary 9.

In the setting of a metric measure space (X,d, u), where d is a distance function and p is a
Borel measure, the lack of the linear structure of X makes the notion of a partial derivative of u
not well defined and a pointwise definition of metric Laplace operator is not accessible in general.
Observe, that in its very matter, the Dirichlet energy does not use the full information about
behaviour of a gradient in different directions, but only its length. Suitable counterpart to length
of the gradient of a function have been studied from many perspectives. Below, we present two
significant ideas which allowed analysis on metric spaces to flourish and enabled the development
of the metric differentiation and, hence, the theory of Sobolev spaces:



1. A weak upper gradient g : X — [0, 0o] of a function u is a function, which controls the growth
of u over almost every curve (in the sense of the modulus of a curve family) subsequent to
the Newton—Leibniz theorem, i.e.

ule) - u) < [ o
¥
where  is a curve joining x and y. This approach led to the construction of Newtonian
spaces as those consisting of LP(X) functions, for which there exists a p-integrabe weak
upper gradient. For more information see [Sha00; Hei+15; BB11].

2. A Hajlasz gradient g of function u is a counterpart of the Hardy—Littlewood maximal function
of the length of a gradient in the sense of satisfying the following estimate

lu(x) —u(y)| < d(z, y)lg(x) + 9(y)]

for p-a.e. x,y € X. Analogously to the Newtonian spaces, the Hajlasz—Sobolev space consists
of all LP(X) functions, for which there exists a p-integrable Hajlasz gradient, see [HKO0O;
Haj96].

Using the first concept of metric gradients one may define harmonic functions as minimizers of a
metric counterpart of the Dirichlet energy

B(u) :inf/ g*dp, QCX,
9 Ja

where the above infimum is considered over all g € L?() which are weak upper gradients of u.
Then, we say that u is harmonic in 2 whenever it minimizes energy E over all functions from the
Newtonian space on {2 having the same trace at 9S) as u.

To our best knowledge, the mean value property of a function was firstly associated with the
Laplace operator by Gauss |Gaud0], who proved that for a harmonic function u : 2 — R and every
ball B(z,r) € Q there holds

1
u(r) = Bl /BW) u(y)dy =: ]{BW) u(y)dy. (1.1)

The converse result, and hence a characterization of harmonic functions by the mean value prop-
erty, was observed by Koebe [Koe06], who proved that if u : Q — R is continuous and for every
ball B(z,r) € Q there holds , then wu is harmonic in €2. The mean value property is a tool used
in proving such properties of harmonic functions as the maximum principle, Harnack inequality,
analytic regularity and other potential analytic properties. For an interesting survey on the mean
value property and harmonic functions see [NV94].

The aforementioned Gauss—Koebe characterization of harmonic functions has also been investi-
gated on Riemannian manifolds and led to establishing the notion of harmonic manifolds. Recall,
that harmonic functions on Riemannian manifold (M, g) are solutions of the Beltrami-Laplace
equation, which is defined as follows Apru := (detg) /23", a%_i(\/detggij %u) = 0. Let us
restrict our discussion only to manifolds which are complete. The theory of harmonic manifolds
appeared for the first time in the dissertation of Ruse in 1930. He developed harmonic analysis on
general Riemannian manifolds by using a solution to the Beltrami—Laplace equation which only
depended on the geodesic distance from some fixed point (a counterpart of the fundamental solu-
tion). It was not until 1939 when he realised that such solutions do not necessarily exist on general
manifolds. Ruse defined harmonic manifolds as the class of manifolds which locally support such
radial fundamental solutions. This theory was later developed by Lichnerowicz, see |Lic44]. He
observed that one can equivalently define harmonic manifolds as those whose density function w
expressed in normal coordinates at any point p, i.e. wy(q) = 1/det g4, depends only on the geodesic
distance between p and ¢. Lichnerowicz proved in [Lic44] that all harmonic manifolds of dimen-
sion non-greater than 3 are either flat or rank one symmetric and conjectured that the same holds



in higher dimensions. The converse implication is always true. The Lichnerowicz conjecture was
confirmed in the case of dimension 4 by Walker [Wal49] and dimension 5 by Nikolayevsky [Nik05].
Later on, Szabé [Sza90] proved the conjecture for compact simply connected manifolds of all di-
mensions. On the other hand Damek—Ricci constructed a class of simply connected noncompact
harmonic manifolds with negative curvature being nonsymmetric, see [DR92a; [DR92b|, where the
smallest dimension of this type of counterexample to Lichnerowicz conjecture is 7. As it turned out
due to Heber [Heb06] the class of harmonic manifolds which are additionally homogeneous consists
only of flat, rank one symmetric and Damek—Ricci counterexamples. The Lichnerowicz conjecture
remains unsettled for dimension 6 and in the class of nonhomogeneous harmonic manifolds. From
our point of view harmonic manifolds possess a very refined depiction due to Willmore [Wil50|:
A Riemannian manifold M is harmonic if and only if for any function v on M being harmonic is
equivalent to having the spherical mean value property over any geodesic sphere.

A different approach to the mean value property is due to Blaschke—Privaloff-Zaremba, who
proved independently the following result: Let 2 C R™ be open and v € C(Q). Suppose that for
every x € () there holds
JCB(x7T) u(y)dy - u(m)

lim 5

r—0 r

=0. (1.2)

Then w is harmonic in ). Observe, that the converse is always true, since if u is harmonic, then
the numerator in is constantly 0. The main reason, why the Blaschke—Privaloff-Zaremba
theorem holds true is the following observation, which is well explained in the introduction to
[Llo15]. Fix a function u € C?(Q) and a point z € Q. Then by the Taylor expansion there holds
for all y € B(x,r) that

uly) = ule) + (Vu(x), y — 2) + 3 (Vu(@)(y — 2),y — 2) + o(r?).

This, upon taking the mean integral over B(xz,r) on both sides and observing that the linear term

vanishes, reads
1

72(71 9 r? Au(z) + o(r?).

f o uldy=uto)+
B(xz,r)
Therefore, for a function u € C?(Q2) the expression

_ JCB(x,T) u(y)dy — u(x)

Ayu(z) : 5

" (1.3)
converges to Au(z) up to a constant. The above equality or is often called the asymptotic
mean value property. In order to discuss the difference between conditions and notice
that property can be expressed as a condition on the function M, (r) = fB(wn) u(y)dy. By
the Lebesgue differentiation theorem we extend the domain of M, to an interval containing 0
and set M,(r) = u(x). Then, can be equivalently stated as follows: for each € Q the
function M, (r) is constant for all € [0, dist(z, d2)). On the other hand, condition can be
expressed equivalently that M, around r = 0 has at most quadratic rate of change, which is more
extensive than . One of the most important features of ([1.2)) is that it holds also for harmonic
functions on general Riemannian manifolds, in contrast to which holds only on the class
of harmonic manifolds being a subclass of all Riemannian manifolds. Moreover, even beyond the
setting of Riemannian manifolds the space of functions with property has richer structure
than the space of functions with property . As we will see in further parts of the dissertation
in weighted Euclidean setting is equivalent to a partial differential equation, while is
characterized with a system of PDEs. Moreover, in the Heisenberg group (1.2 is equivalent to
being harmonic and in general Carnot group a weak version of property is equivalent to
harmonicity, while functions with are a proper subclass of those. Finally, in non-collapsed
RCD spaces with vanishing metric measure boundary every harmonic function has in a weak
sense. For more information we refer to Chapter |4 and [AKS20].
Let us define one of the main objects studied in Chapter [2] of this thesis.
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1.1 Strongly harmonic functions

Let us observe, that the mean value property makes sense formally on a metric measure
space (X, d, i), where the notion of a ball and an integral is available. In order to write down the
mean value we only need to assume, that the measure of every ball is positive and finite and that
a function u is locally integrable on X. Therefore, from now on we denote by a metric measure
space a metric space (X, d) equipped with a Borel regular measure p, which assigns to every ball a
positive and finite value. This observation and the historical discussion concerning Gauss—Koebe
theorem and related results motivated Gaczkowski-Goérka [GG09| and Adamowicz—Gaczkowski—
Gérka |[AGG19] to formulate a novel approach in metric theory of harmonic functions: Let Q C X
be open and function v € L} (2). We say, that u is strongly harmonic on Q if for every point

loc

x € Q and every radius r > 0 for which B(x,r) € Q there holds
u@ = f  uwdu(y). (1.4
B(z,r)

The class of all strongly harmonic functions on € is denoted by H(€2, d, 1) and often abbreviated
to H (), when the metric and the measure are clear from the context. Notice, that this approach
to harmonic functions on metric measure spaces is more straightforward than by minimization
of Dirichlet energy, since it does not require the use of metric gradients and Sobolev spaces.
Moreover, by our previous discussion, strongly harmonic functions agree with harmonic functions
on Euclidean domains and on harmonic manifolds.

The class of strongly harmonic functions has been widely examined: in general metric measure
spaces |[AGG19; |GG09|, in case of metric space being homogeneous graph in [Zuc02; [PW89] and
in case of metric space being Carnot group in [AW20; BLUOQ7|. Let us shortly discuss those results.

Gaczkowski-Gérka |[GGO09| showed that in metric measure spaces, where the measure is con-
tinuous with respect to metric strongly harmonic functions are continuous. Moreover, they proved
the strong maximum and minimum principle and in spaces with precompact balls showed the
Harnack inequality and compactness of locally bounded subfamilies of H(X).

To our best knowledge [GG09] is the first paper which deals with harmonicity defined via the
mean value property in such a generality. In their further paper Adamowicz—Gaczkowski—
Gorka [AGG19] studied the class H(X) more deeply and also from different perspectives. Among
results let us mention further Harnack estimates, weak and strong maximum principles, local
Holder regularity on metric spaces with measures satisfying the J-annular decay property for some
d € (0,1] (the latter meaning that there exists constant C' > 0 such that for all x € X, r > 0
and & > 0 there holds u(B(z,7) \ B(z, (1 —¢)r)) < Ce®u(B(x,r))). The Holder exponent equals
0 and if 6 = 1 the regularity raises to locally Lipschitz. The authors employed Cheeger’s result
[Che99| to show that if the space supports a Poincaré inequality and measure p is either Q-regular
or posseses the 1-annular decay property, then every strongly harmonic function has the minimal
weak upper gradient. Additionally, the Liouville theorems for entire harmonic functions on metric
measure spaces were obtained. Finally, the authors employed the Perron method to study existence
of solutions to Dirichlet problem, see [AGG19|[Section 6].

Apart from strongly harmonic functions, the authors studied in [AGG19|] a class of the so-
called weakly harmonic functions. Since it is largely connected to strongly harmonic function, we
are going to briefly sketch this notion. Its origin goes back to studies by Kellogg, Koebe, Littlewood
and Volterra and grows from the attempt of weakening the mean value property so that it still
implies the harmonicity in the sense of the Laplace equation. There are two key ways to approach
the task:

1. by reducing the assumption that (1.1) holds on every ball B(z,r) € Q2 and assume in-
stead that for every point x €  there exists a nonempty collection of radii {r?},eca- with
B(z,rZ) € Q for every a € A”,

2. by reducing the set of points x € € for which the mean value property holds.

4



Let us illustrate the above discussion with presenting one of results by Hansen—Nadirashvili
[HN93] which is often called the 1-radius theorem: Let 2 be an open bounded subset of R, u €
C(2) N L*>®(Q) be such that for every x € Q there exists 0 < r* < dist(x, Q) with the property
u(z) = fB(w,Tm)u(y)dy, Then w is Laplace harmonic in €. On the other hand, the sufficient
number of radii, for which the mean value property must hold to imply the harmonicity of the
function whose domain is the whole R™ is 2. This type of result is often called the 2-radius theorem
and was first observed by Delsarte |[Del58] in R™ and later on generalized by Berenstein—Zalcman
IBZ80| to rank one symmetric spaces and by Peyerimhoff-Samiou [PS15| to noncompact harmonic
manifolds.

The aforementioned relation between harmonicity and the weaker variant of the mean value
property leads to formulating a relaxed version of the strong harmonicity: Let 2 C X be an open
set in a metric measure space (X,d, ). We call a locally integrable function u : Q@ — R weakly
harmonic in Q if for all points x € Q there exists at least one radius 0 < r* < dist(x, 9Q) with the
following property u( fB(x vy u(y)du(y). For further information about properties of weakly

harmonic functions we refer the reader to [AGG19).

Picardello-Woess in [PW89] studied relations between the discrete Laplacian on graphs and
the mean value property. Given a graph G = (V| E), where V is the set of vertices and E the set
of unoriented edges between vertices in V' we define the graph Laplacian of a function u: V — R
at vertex x € V as follows Agu(z) = @ > yme(W(y) — u(x)), where deg is the number of
neighbours of x and we write y ~ x whenever y is adjacent to x. A graph G can be viewed as a
metric measure space (V,d, #), where d(x,y) is the infimum of number of edges joining z to y and
# is the counting measure. Picardello-Woess proved that in any homogeneous tree T} for k > 3
harmonic functions in the sense of the graph Laplacian possess the mean value property .
Conversely, any function on a homogeneous tree Tj, £ > 3 having at every vertex x € V
with one radius r» = r(z) € N, r(x) > 1, is graph harmonic assuming a Lipschitz-type growth on
x +— r(x). For a connection to Markov processes we refer to [Zuc02].

Let us complete this part with a short discussion on the results obtained by Adamowicz—
Warhurst in [AW20|. The authors studied strongly harmonic functions on Carnot groups. Results
of [AW20] encompass the smoothness of strongly harmonic functions and the fact that they solve
the sub-Laplace equation. The converse need not be true, but the authors found in the Heisenberg
group that a class of spherical harmonic polynomials is both strongly harmonic and solves the
sub-Laplace equation.

Next, we describe relations between p-harmonic functions and a nonlinear mean value property,
which is a subject of Chapter [3]

1.2 Asymptotic mean value characterization for p-harmonic
functions

Let us fix an open set 2 C R™. One of the classical generalizations of harmonic functions originates
from allowing in the Dirichlet energy exponents different that 2: E,(u) := [, |[Vu|? for any p €
[1,00). The Euler-Lagrange equation arising from the minimization problem of energy F, is the
p-Laplace equation. The p-Laplace operator is defined as follows

Ay = div(|Vu|’ % Vu),

which for p = 2 coincides with the Laplace operator, and solutions to the equation Aj,u = 0 are
called p-harmonic functions. The infinity Laplacian is defined as follows

Z 0x; 8% axz) 6g;j) = (V2u(x)Vu(z), Vu(z)).

Among many properties of the p-Laplace operator is the equivalence between continuous weak
solutions and viscosity solutions whenever p € (1, ), see [JLMO1]. First, let us describe shortly the

5



concept of viscosity solutions, for more rigorous discussion see [CIL92} [Koi04]. The idea originates
from a geometric approach to monotone operators. By saying that A, is monotone we mean here,
that for a function u € C?(Q), a point z € Q and any twice differentiable test function ¢ touching
u at = from below (the latter meaning that u — ¢ has a local minimum at = equal to 0 and
V(z) # 0) it holds that A,p(z) < Ayu(x). Observe, that if ¢ touches u at = from above, then u
touches ¢ at = from below and by the monotonicity of A, the inequality between operators is the
following A,u(z) < Ape(z). Notice, that formally in order to say that a test function touches u
(from below or above) it is enough to assume that « is continuous. This idea is employed in order
to shift calculating the value of Apu (about which we want to assume the least possible a priori
regularity) to C? test functions touching u from below and from above. Therefore, we say, that a
continuous function w is a viscosity solution to the p-Laplace equation if:

1. for every point = and any twice differentiable ¢ touching u from below at x there holds
App(z) >0 and

2. for every point x and any twice differentiable ¢ touching u from above at x there holds
App(z) < 0.

One of the most important features of viscosity solutions to the p-Laplace equation is that they
allow suitable generalization of the Blaschke-Privaloff-Zaremba theorem, which was observed by
Manfredi-Parviainen—Rossi, see |[MPR10]. The authors proved that given p € (1,00] a function
u is a viscosity solution to the p-Laplace equation in Q C R”™ if and only if u has the following
nonlinear asymptotic mean value property

u(z) = 2 min w4+ max u |+ Ié] u(y)dy + o(r?) (1.5)
B(x,r) B(z,r) B(z,r)
holding in the viscosity sense as r — 0, for all x € Q and constants o = %7 8= Z—ii. Notice,

that o + 8 = 1, hence two first terms on the right-hand side of converge to u(z) as r — 0
and in fact implies that the rate of this convergence is at least quadratic. For p = 2 we
obtain the Blaschke-Privaloff-Zaremba theorem, since for p € (1, c0) viscosity solutions coincide
with weak solutions. The nonlinear asymptotic mean value property is strongly connected to
the so-called tug-of-war games, which is the two players game in an open set {2 C R", with a step
€ > 0 and a continuous payoff function F' : 02 — R. The starting point is a fixed zy € Q. Then,
at k-th turn a fair coin is tossed and one of the players wins a chance of moving from a point xp_1
to xy. If dist(zg_1,0Q) > £, then the player chooses a direction vy € R™ with |vx| < e and sets
Zp = Tp—1+VE+Yk, where yj, is a random noise vector. The game stops when dist(z_1,99) < ¢ for
the first time. The active player can choose the final point x5 € 9 at the distance |xg — z5_1]| < &
and receive F'(xy) payoff from the other player. Both players get zero payoff if dist(zy, 92) > € for
all k£ € N. In this way we obtain a function xg +— u.(zo) describing the payoff for a game starting
at zo. In [PS08] for 1 < p < oo and in [Per+09] for p = oo the authors proved, that for a regular
domain  the sequence (u.) converges to a p-harmonic function with boundary values u|go= F as
€ — 0. The min-max term in corresponds to the choice of the direction by an active player
during the tug-of-war game and the mean value term corresponds to the random noise vector.

The study of results in the spirit of those in [MPR10| has developed in the following way. In
[IKMP12] the authors studied the case of p = 1. The planar case is investigated in [LM16], where it
is proved that in the pointwise sense is equivalent to p-harmonicity of © whenever 1 < p < po.
In [AL16a] this result was extended to the full range of p € (1,00). On the other hand, in [MPR13]
the authors defined a class of p-harmonious functions, i.e. those functions u, for which

up(x) = 21| min Uy + max u, | + 0 Uy
B(z,r) B(z,r) B(z,r)

holds for a fixed > 0, and showed that p-harmonious functions approximate p-harmonic functions
as r — 0 and p € [2,00). The nonlinear asymptotic mean value property of viscosity p-harmonic
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functions has been studied also outside the Euclidean setting, for instance in the Heisenberg group
H;, see [FLM14] and in Carnot groups, see [FP15].

A variant of the p-Laplace operator, better cut our for studying the viscosity solutions is the
so-called normalized p-Laplacian defined as follows
Vu Vu
Vul” [Vul

Ayu
ANy =2
P |Vu|p*2

Notice, that for a function u with Vu # 0 being a solution of the p-Laplace equation is equivalent
to being a solution of the normalized p-Laplace equation. Therefore, being a viscosity solution of
the p-Laplace equation is equivalent to being a viscosity solution to normalized p-Laplace equation,
since test functions in the definition of viscosity solution omit critical points.

A recent result by Ishiwata—Magnanini-Wadade [IMW17] deals with the whole range of p €
[1,00] and a different version of , which seems to suit better the problem of asymptotic mean
value property for p-harmonic functions. Namely, for 0 C R™ the authors work with the so-called
p-mean of a continuous function w : & — R, denoted by u,(r,u)(x) and defined as a unique
number A which minimizes |[u — Al (g, ), Where B(z,r) C Q. The p-means form a large class

for 1<p<oo and ANu= <V2u > for p = 0. (1.6)

of averages, as for p = 1 we retrieve a median of u on B(z, ), the 2-mean coincides with fB (@) ¥

)
and for p = co is equal to %(minB(zyr) U-+Maxp(y ). The main result of [IMW17] is the following:

Let Q C R™ be open, p € [1,00] and u € C(Q). Then the following conditions are equivalent:

1. u is a viscosity solution to ANwu = 0,
2. u(x) = pp(r,u)(z) + o(r?) as'r — 0 in the viscosity sense for every z € Q.

Now, let us define the last of the main objects of the thesis, which is investigated in Chapter [

1.3 Strongly amv-harmonic functions

As mentioned in the beginning of this introduction, see and , the Blaschke—Privaloff—
Zaremba theorem suggests yet one more approach to the notion of harmonicity. Suppose that
(X,d,p) is a metric measure space and a function u € L, (X ). We define the r-laplacian of u as
follows

e WY)duly) — u(z)
2

Ayu(z) (1.7)

r
for z € X. In order to generalize harmonic functions into metric measure spaces using the operator
one should assert that it converges to 0 in some sense. It turns out that, for example, for a
jump function f on the real line A, f — 0 as r — 0 pointwise, but neither in any LP norm nor
almost uniformly. In the sense of measures A, f converges to a § distribution at a jump point.

The properties of the operator A, has been first studied, to our best knowledge, by Burago—
Ivanov—Kurylev in [BIK19] in the context of spectral stability and by Cérdoba-Océriz in [CO20]
from the perspective of minimal surfaces. Recently, Minne-Tewodrose studied in [MT19] pointwise
limits of A,u for u being twice differentiable in weighted Euclidean spaces and on Riemannian
manifolds. Moreover, they proved maximum principle and a Green-type identity in general metric
measure spaces.

On the other hand, Adamowicz—K—Soultanis in [AKS20] defined the class of strongly and
weakly amv-harmonic functions, but also a class of functions with finite amv-norm in the following
way. We say, that a function u € Llloc(X ) is strongly amv-harmonic if A,u converges to 0 almost
uniformly in X. Moreover, we say that u is weakly amv-harmonic whenever A,u converges to 0
as a measure on X. Since it is hard to determine what class of functions one should consider as
the domain of the operator A,, we consider a class of functions with finite amv-norm:

AMVP(X) = {u € LP(X) : limsup || Arul[ 5 x) < 00}
r—0

Additionally, we consider functions with locally finite amv-norm, denoted AMVY, (X)) defined by
changing LP(X) to L? (X) in the above formulation.

loc
In the last chapter of the introduction we gather results presented in this dissertation.
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1.4 Main results

Let us briefly describe the results of this thesis. The discussion is divided into three chapter with
respect to their settings: Euclidean spaces equipped with a weighted Lebesgue measure and a norm
induced metric in Chapter [2 Carnot groups in Chapter [3] and general metric measure spaces in
Chapter [4

In Chapter [2] we prove a characterization of strongly harmonic functions on a metric measure
space (X,d, ), where X = © C R™ is an open set, d is induced by a norm on R™ and the
measure dy = wdz for a positive almost everywhere weight w € Lj, (). The characterization of
H(, d, wdx) is divided into two theorems: a necessary condition and a sufficient condition, the
second one obtained under the analyticity assumption on w.

The necessary condition is described by Theorem and states that every function u €
H(, d, wdzx) is a weak solution of the following system of partial differential equations

> Ag (D*(uw) —uDw) =0,  for j =2,4,...,2m. (1.8)

lo|=j

Here, the number of equations m depends on the regularity of the weight w in the following way:
ifwe Wif(Q), then m = 1 and if w € C’lzokc_l’l(ﬂ) for some natural number k € N, k > 1, then
m = k. The coefficients A, in the system are defined via the c-moments of the Lebesgue measure
on a unit ball with respect to metric d, i.e. A, := (Igl) de(OJ) xdx.

The sufficient condition is presented in Theorem It asserts that, assuming the analyticity
of w, every solution u to system for m = oo, in the sense that there are infinitely many
equations solved by wu, is strongly harmonic in (Q,d, wdz). The assumption of analyticity of the
weight function appears here due to the Pizzetti formula, which is used in the proof of Theorem [2.3]

Moreover, as an outcome of the discussion in Chapter [2] we examine regularity of strongly
harmonic functions obtaining the following three results: In Proposition [2.18] we show that if
w e WEP(Q) N L2, () for some 1 < p < oo, then H(Q, d, wdz) C W,5P(Q). Then, in the lines of
proof of Theorem [2:2] we prove Proposition [2:20] raising regularity of strongly harmonic functions
to VV;’ZQ(Q), whenever w € C’lon_l’l(Q) for some m > 1, m € N. Finally, in Lemmawe show
that if w is analytic, then every strongly harmonic function is analytic as well.

We apply the aforementioned characterizations in the case of metric d induced by IP-norm for

p € [1,00]. We observe, that system (1.8]) for p = 2 and a smooth weight w reads
AulIw + 2(Vu, V(AIw)) =0 for j =0,1,...

Furthermore, in the case of p € [1,00] \ {2}, a constant weight and a planar domain  C R?

we show that H(£2,P,dx) consists of 8 linearly independent functions 1,x,y,xy, 2% — y?, xy? —
3 - - 3
%a zyS - ‘Tsyaljy - %
In Chapter [3| we prove a generalization of Ishiwata—Magnanini-Wadade [IMW17] result to the
setting of Carnot groups. More precisely, in Theorem we prove that for an open subset 2 of a
Carnot group G, p € [1,00] and a continuous function u € C(£2) the following two conditions are

equivalent:

1. w is a viscosity solution to the normalized p-Laplace equation AZZXG“ =0,
2. u(z) = pp(r,u)(z) + o(r?) as r — 0 in the viscosity sense for every x € €, and p, denotes
the p-mean.

The proof of Theorem relies on an auxiliary result (Lemma describing the asymptotic
behaviour of a quadratic function on a Carnot group G. We present the proof of Lemma [3.15] in
two cases: the Heisenberg group H; in Lemma [3.21] and a two-step Carnot group in Lemma

In the last chapter we discuss strongly amv-harmonic functions on general metric measure
spaces (X, d, ). We begin with employing a refined average of a function

2 s
Arufz) =2 / f u(y)dp(y)dt
" Jr/2 J B(z,t)
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to prove the regularity of functions with locally finite amv-norm, see Theorem The claim
is the following: Suppose that X is a complete locally doubling metric measure space, 2 C X is
open, p > 1 and a function u € AMV? (Q). Then, u belongs to the fractional Hajlasz—Sobolev
space M>*(Q) for every a € (0,1). Upon applying the fractional Morrey embedding we show in
Theorem that functions with locally finite amv-norm are locally a-Hélder for every exponent
a < 1—Q/p, where @ is the doubling exponent. Moreover, for strongly amv-harmonic functions
we show the local a-Holder regularity for every exponent o € (0,1). An outcome of the discussion
is an improvement in regularity of strongly harmonic functions obtained in [AGG19| formulated in
Theorem [4.8] which says that strongly harmonic functions are locally Lipschitz if the underlying
space X is complete and locally doubling. Additionally, the space of strongly harmonic functions
of polynomial growth is examined following the Yau’s finite dimension conjecture and Colding—
Minicozzi results. The result is presented in Proposition and states that for a fixed m > 0
and a complete doubling metric measure space X with the a-annular decay property, the space
of all strongly harmonic functions for which there exists C' > 0 and p € X such that |u(x)| <
C(24d(p,x))™ is of finite dimension. Moreover, in the Heisenberg group H; we prove an analogue
of the Blaschke—Privaloff-Zaremba theorem, which, in particular, implies the analyticity of strongly
amv-harmonic functions on Hj.

In Chapter [£.4] we study blow-ups of functions with finite amv-norm in the sense of Gromov—
Hausdorff limits of a rescaling around a fixed point. We develop auxiliary results used in the proof
of Theorem [£.4T} Let © C X be an open subset of a proper locally doubling space X, which is
additionally a length space. Suppose, that p € (1,00) and u € Mllof(ﬂ) NAMV? (). Then, the
tangent function at p-almost every point z is strongly harmonic on the tangent space at x.

Finally, in Chapter we focus on the setting of the weighted Fuclidean spaces, which is the
framework in which we characterize strongly harmonic functions in Chapter 2] Recall, that we
consider an open set ) C R™ equipped with a norm induced metric and a weighted Lebesgue
measure. We divide the discussion into unweighted (i.e. w = 1) and weighted case, where we
consider weights which are locally Lipschitz and positive in €.

In the unweighted case we prove in Proposition that for p € (1, 00) the space of functions
with locally finite amv-norm AMV? () coincides with the Sobolev space Wi’f (Q). Moreover, the
r-laplacian operator converges to an elliptic operator 1div(M Vu) in L} () as r — 0. The matrix

loc
M = (my;) is defined as the matrix of second moments of the Lebesgue measure on the unit ball,

ie. my; = JCBd(O,l) yiy;dy for 1 < 4,5 <mn.
For the weighted case we prove in Theorem that AMV?

e (Q), where Q,, := (Q,d, wdz),
coincides with the Sobolev space Wli’f (€2). Moreover, the r-laplacian operator converges to an

operator 1div(MVu) + (VInw, MVu) in L2 (Q) as 1 — 0.

loc



Chapter 2

Strongly harmonic functions in
Euclidean domains

2.1 Introduction

Let (X,d, ) be a metric measure space equipped with a metric d and a measure p. Fix z € X
and r > 0 and denote the open ball by B(z,r) := {y € X : d(z,y) < r}. In what follows we will
assume that that p is a Borel regular measure with 0 < p(B) < oo for each ball B C X. We recall
the following class of functions.

Definition 2.1 (Definition 3.1 in [AGG19]). Suppose, that (X, d, 1) is a metric measure space and
Q0 C X be an open set. We say that a locally integrable function u : 2 — R is strongly harmonic
in 2 if for all balls B(z,r) € €2 there holds

1
ulz) = ]{3 ) = s /B )

We call a radius r > 0 admissible at some x € Q whenever B(x,r) € . The space of all strongly
harmonic functions in Q is denoted by H(f2,d, u). In what follows we will omit writing the set,
metric or measure whenever they are clear from the context.

The main subject of this chapter is a characterization of strongly harmonic functions on a
certain class of metric measure spaces. Namely, we consider an open subset 2 C R™ equipped with
a norm induced metric d and a weighted Lebesgue measure

dp = wdz,w € L}, .(Q),w > 0 a..

Bose, Flatto, Friedman, Littman, Zalcman studied the mean value property in the Euclidean
setting, see [Bos65;[Bos66; [Bos68; [Fla61; [Fla63; [Fla65; FL62; Zal73]. We extended their appropriate
results with our main result, see Theorem [2.2] below. It generalizes results in [FL62] (see Theorem
below) and in [Bos68] (see Theorem below) in the following ways:

(1) we consider general distance functions induced by a norm, not necessarily the Euclidean one,

(2) we allow more general measures, i.e. the weighted Lebesgue measures dy = wdx, under the
appropriate assumptions on w (see the discussion in Chapter [2.2)).

Theorem 2.2. Let Q C R™ be an open set. Let further (Q,d, ) be a metric measure space equipped
with a norm induced metric d and a weighted Lebesque measure dy = wdz, w € L, (Q), w > 0

a.e. Suppose that there exists m € N such that if m =1 then w € W2’2(Q), and if m > 1 then the

loc
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weight w € C2"~YY(Q). Then it holds that every function u € H(SY, d, wdz) is a weak solution to

loc
the following system of partial differential equations

Z Ay (D*(uw) — uD%w) = 0, forj=2,4,...,2m. (2.1)

oo =4

Coefficients A, are defined as follows:

@ al!
Ay = <| > / x%dr = — il ' / it aprde,
(67 B4(0,1) Q... Qp. B4(0,1)

where B4(0,1) is a unit ball in metric d.

For the sake of simplicity of notation in what follows we will denote B4(0,1) = B(0,1).

Let us briefly compare Theorem for the Euclidean distance d = I2 to Bose’s results [Bos65;
Bos66; [Bos68]. In order to prove the necessary condition (Theorem below) for being strongly
harmonic, Bose assumes the regularity of weight w € C™~1(Q), whereas our methods for showing
Theorem require that w € C™~11(Q). Nevertheless, if d = [? we retrieve the same system of
PDEs as Bose, however this observation needs additional calculations presented in Chapter [2.6.1
On the other hand, in order to prove the sufficient condition for being strongly harmonic Bose
assumes that the weight w is an generalized eigenfunction of the laplacian, see Proposition
In Theorem [2.3] we assume analyticity of weight w in order to prove the sufficient condition. Our
assumption is more general than Bose’s, which is illustrated by Lemma [2:24]

In order to prove Theorem [2.2] we need to establish regularity result which is stated as Proposi-
tion[2.18] Roughly speaking, Proposition[2.18shows that if weight w is locally bounded and belongs
to the space Wllo’f , then all strongly harmonic functions are in VVllocp . The discussion demonstrating
the way how Theorem [2.2] generalizes Theorem [2.14] requires computations. We present them after
the proof of Theorem 2.2} in Chapter 2.6.1]

Our second main result is the following converse to Theorem [2.2)

Theorem 2.3. Let Q C R™ be an open set and (2, d, u) be a metric measure space equipped with
a norm induced metric d and a weighted Lebesque measure duy = wdx. Suppose that weight w is
analytic and positive in ). Then, any solution u to system of equations (2.1)) is strongly harmonic
in Q.

Another, perhaps most surprising results are presented in Chapter where we illustrate
Theorem [2.2] with the following observations:

If p # 2 and n = 2, then the space H(Q,1P,dx) is spanned by 8 linearly independent harmonic
polynomials.

We already know that for any n > 1 the space H(£2,12,dx) consists of all harmonic functions
in Q, and is infinitely dimensional. The result describing dim H(€2,1?,dx) for p # 2 in dimension
n = 3 is due to Lysik |[Lys18a], who computed it to be equal to 48. The problem for n > 3 is open.
It is also worthy mentioning here, that the dimensions 8 for n = 2 and 48 for n = 3 coincide with
the number of linear isometries of the normed space (R™,[P), which is 2"n! and is computed in
[AB12]. For more information see Chapter

In Chapter we present a historical background of the topic. We focus on the results by
Friedman-Littman [FL62] and Bose [Bos65} [Bos66} [Bos68]. The fact that Theorem [2.2] and Theo-
rem [2.3] generalize those by Friedman-Littman and Bose is presented in Remark 2:23] In Chapter
[2:3] we study regularity of strongly harmonic functions. We prove continuity of strongly harmonic
functions in Proposition for general weights w € Lloc and Sobolev W regularity in Propo-
sition for weights w € Wllo’f N LyS.. Chapter is devoted to proving Theorem An
additional outcome of the proof is Proposition [2.20] which says that strongly harmonic functions
are Sobolev WliT’Q regular whenever the weight w € C’l2 (Zl*l’l for some natural number m > 1. In
Chapter we discuss the proof of Theorem and recall the Pizzetti formula. We show, that if
the weight w is analytic, then strongly harmonic functions are analytic as well, see Lemma [2.25
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Finally, in Chapter we demonstrate applications of our main results Theorems and in
the case of  C R?, a metric induced by [P-norm for p € [1, 00} and weight w = 1. We manifest the
main difference between cases p = 2 and p € [1,00] \ {2} by calculating the coefficients A, defined
in Theorem and explaining how it affects system . We also write down the system
for p = 2 and an analytic weight w and show that our results are more general than those of Bose.

At the end of introduction to this chapter let us define basic notions and definitions used
throughout the thesis.

2.1.1 Basic notions and definitions

In this chapter we outline basic notions and definitions used below.
Let V' be a linear space over the real numbers. We say, that a function n : V' — R is a norm
on V, if it satisfies the following conditions:

1. for every & € X there holds n(z) > 0 and n(z) = 0 if and only if z = 0,
2. for every x € X, a > 0 there holds n(az) = |a| n(z),
3. for every z,y € X there holds n(z +y) < n(z) + n(y).

The following notion of a distance function generalizes the notion of a norm. We call a pair (X, d)
metric space, if the distance function d : X x X — R satisfies the following conditions:

1. for every z,y € X there holds d(z,y) > 0 and the equality d(z,y) = 0 holds if and only if
x=y.

2. for every x,y € X there holds d(z,y) = d(y, z),
3. for every z,y,z € X there holds d(z, z) < d(z,y) + d(y, 2).

Recall, that every norm n on V induces a metric d on V' via the relation d(z,y) := n(x —y). If
X C V, then we say that d is a norm induced metric, if there exists a norm n on V such that for
every z,y € X there holds n(z —y) = d(z,y).

Throughout this work we use the multi-index notation: o = (aq,...,a,) € N, o] = a1 +
...+ ay,. Moreover, for two multi-indices o, 5 € N™ we say that § < «if ; < ; foralli =1,...,n
and 8 < « if § < « and there exists ¢ = 1,...,n such that §; < a;. For 8 < o we will write that

(g) = %‘1:73: = g—: and for £ € N we denote (g) = % For more information see Appendix A in
the Evans’ book [Eva98|.
Next, let us consider a function f : R™ — R. For , h € R" we define the difference quotient of

f at z as follows
fla+h)— f(=z)
|| '

We use difference quotients to prove regularity of strongly harmonic functions in Proposition
[2.18] Therefore, we present below a characterization of Sobolev functions via difference quotients.

Apf(z) ==

Theorem 2.4 (Theorem 3, p. 277 in [Eva98|). Let  C R™ be an open set.

1. Suppose that 1 < p < oo, f € WHP(Q). Then for each K € Q
”Ahf“Lp(K) <cC HVfHLp(Q) )
for some constant C > 0 and all h € R™, 0 < 2|h| < dist(K, 0Q).

2. Suppose that 1 < p < co, K € Q, function f € LP(K) and there exists constant C > 0 such
that

||Ahf||Lp(K) <C
for all h € R™, 0 < 2|h| < dist(K,09Q). Then f € WHP(K).

12



Let us recall, that the Fourier transform of a function u € L'(R") is defined in the following
way
F)(©) = [ e ey,
For every function f € L*(R™) N L?(R") its Fourier transform F(f) € L?(R") and for every pair
of functions f,g € L*(R™) N L?(R™) the Parseval identity holds true

f@)g(z)de = [ F(f)(€)F(g)(§)dE.

R R

Moreover, if f € W*2(R"), then for every multi-index o with |a| < k there holds

(i) F(£)(&) = F(D*f)(E)-

2.2 Historical background

Properties of strongly and weakly harmonic functions were broadly studied in [GG09;|AGG19] and
in [AW20] in the setting of Carnot groups. Below, we list out some of those properties especially
important for further considerations.

Proposition 2.5 (Proposition 4.1 in [AGG19]). Suppose that measure p is continuous with re-
spect to metric d, i.e. for all 1 > 0 and x € X there holds limg, )0 p (B(z,7)AB(y,r)) =
0, where we denote by EAF := (E\ F)U(E\ F) the symmetric difference of E and F. Then
H(Q,d,n) C C(Q).

Moreover, the Harnack inequality and the strong maximum principle hold for strongly har-
monic functions as well as the local Holder continuity and even local Lipschitz continuity under
more involved assumptions, see [AGG19] and Theorem It is important to mention here that
similar type of problems were studied for a more general, nonlinear mean value property by
Manfredi-Parvainen—Rossi, Arroyo-Llorente and Ferrari-Pinamonti, see [MPR13} [Llo15}; |AL18;
AL16b; [FP15].

We know that H is a linear space, but verifying by using the definition whether some function
satisfies the mean value property might be a complicated computational challenge. From that
comes the need for finding a handy characterization of class H, or some necessary and sufficient
conditions for being strongly harmonic.

In what follows we are interested in extending results by Flatto [Fla61} [Fla63], Friedman—
Litmann |[FL62], Bose [Bos65; [Bos66; [Bos68| and Zalcman |Zal73]. Below, we briefly discuss these
results. According to our best knowledge, the investigation in this area originate from a work by
Flatto [Fla61|. He considered functions with the following property:

Let us fix an open set 2 C R™ and a bounded set K C R™. Moreover, let u be a probabilistic
measure on K such that all continuous functions on K are p-measurable and for all hyperplanes
V C R™ it holds that u(K NV) < 1, i.e. p is not concentrated on a hyperplane. We will say that
a continuous function u € C'(2) has the mean value property in the sense of Flatto, if

u(z) = / u(a + ry)du(y) (2.2)
K

for all x € Q and radii > 0 such that x +7- K := {z+ry:y € K} C Q. Let us observe that for
K = B(0,1) a unit ball in a given norm induced metric d and p being the normalized Lebesgue
measure on K (the latter meaning that duy = ﬁdm), property is equivalent to the strong
harmonicity of w in Q by the following formula

u(z) = ]{9 )= ]{3 o iy = /K u(z + ry)du(y). (2.3)
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This holds exactly for homogeneous and translation invariant metrics, because only then
B(z,r)=z+7r-B(0,1)={x+ry:y € B(0,1)}.

For such distance functions one can obtain any ball B(x,r) from B(0,1) by using the change of
variables y = #-*. In relation to homogeneous and translation invariant distance let us recall the
following lemma, which is likely a part of the mathematical folklore. However, in what follows we
will not appeal to this observation.

Lemma 2.6. If d is a translation invariant and homogeneous metric on R™, then there exists a
norm ||-|| on R™ such that for all x,y € Q there holds that d(z,y) = ||z — y||.

We recall also a characterization of all such metrics on R™ by using the Minkowski functional,
see |Schl4al. Recall, that a set K C R™ is symmetric if —y € K for every y € K. For any nonempty
convex set K we consider the Minkowski functional.

Lemma 2.7 (p.54 in [Schl4a]). Suppose that K is a symmetric conver bounded subset of R™,
containing the origin as an interior point. Then, its Minkowski functional nx defines a morm on
R™. Moreover, if ||-|| is a norm on R™, then the Minkowski functional ny, where K is a unit ball
with respect to ||-||, is equal to that norm.

Example 2.8. Among many examples of norm induced metrics on R™ are [P distances for 1 <
p < 00. Moreover, let us fix numbers a; > 0 for i = 1,...,n, set a := (a1,...,a,) and 1 < p < 00

and define .
a - |l‘1| P\

bt (3 (1

i=1 v

In case p = 2 all balls with respect to [|-[|5 are ellipsoids with the length of semi-axes equal to a;
in x;’s axes direction respectively.

Remark 2.9. Let us observe that by Lemma there is the injective correspondence between
norms on R™ and a class of all symmetric convex open bounded subsets K of R™. More specifically,
every K defines a norm on R” through the Minkowski functional and vice versa, given a norm on
R™ the unit ball B(0,1) is a symmetric convex open bounded set, hence provides an example of
K. This can be expressed in one more way, namely that all norms can be distinguished by their
unit balls, so to construct a norm we only need to say what is its unit ball. Therefore, further
examples of norms can be constructed for any n-dimensional symmetric convex polyhedron K. All
balls with respect to nx will be translated and dilated copies of K.

The formula is true only if the measure of a ball scales with the n-th power of its radius,
the same which appears in the Jacobian from the change of variables formula z = x + ry. This is
true only for measures which are constant multiples of the Lebesgue measure. Note that does
not coincide, in general, with the mean value property presented in our work, since the Flatto’s
mean value is calculated always with respect to the same fixed reference set K and measure pu,
whose support is being shifted and scaled over 2. Whereas, in Definition 2.I] the measure is defined
on the whole space, and as x and r vary, the mean value is calculated with respect to different
weighted measures. Indeed, in order to see that this case is not covered by the Flatto’s , let
us rewrite the condition from Definition in the following way

wlz) = u d,u|B(w,T)
( )‘/X W) B

This mean value property cannot be written as an integral with respect to one fixed measure for
different pairs of x and r, even when holds.

Flatto discovered that functions satisfying are solutions to a second order elliptic equation,
see [Fla61]. However, from the point of view of our discussion, more relevant is the following later
result.
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Theorem 2.10 (Friedman-Littman, Theorem 1 in [FL62]). Suppose that u has property (2.2) in
Q C R™. Then u is analytic in Q) and satisfies the following system of partial differential equations

> AuDu=0  forj=1.2,... (2.4)

lov|=3

The coefficients A, are moments of measure i1 and are defined by A, := (Ig\) fK x®du(x). More-
over, any function u € C*(Q) solving system (2.4)) is analytic and has property (2.2)).

Remark 2.11. Theorem gives full characterization of H(f2,d) for d being induced by a norm.
Theorem 3.1 in [Fla61] states that all functions having property are harmonic with respect
to variables obtained from x by using an orthogonal transformation and dilations along the axes
of the coordinate system. On the other hand the proof of Theorem shows that the equation
in system corresponding to j = 2 is always elliptic with constant coefficients from which the
analyticity follows.

Flatto as well as Friedman and Littman described in their works the space of functions pos-
sessing property (2.2)). We present appropriate results below.

Proposition 2.12 (Friedman-Littman, Theorem 2 in [FL62|). The space of solutions to system
(12.4) is finitely dimensional if and only if the system of algebraic equations Z|a\:j Apz® =0 for
j=1,2,... has the unique solution z = (z1,...,2n) =0, where z; € C.

Remark 2.13. From the proof of Proposition [2.12]it follows that if there exists a nonpolynomial
solution to (2.4), then the solution space is infinitely dimensional. If the dimension is finite, then
all strongly harmonic functions are polynomials.

A rather different approach to the mean value property and its consequences was studied by
Bose, see |Bos65; Bos66f Bos68]. He considered strongly harmonic functions on 2 C R™ equipped
with non-negatively weighted measure y = wdz, for a weight w € L, () being a.e. positive in
and only a metric d induced by the lo-norm. Under the higher regularity assumption of weight w,
Bose proved the following result.

Theorem 2.14 (Bose, Theorem 1 in [Bos68|). If there exists m € N such that w € C*™T1(Q),
then every u € H(Q,w) solves the following system of partial differential equations

AulNw + 2(Vu, V (A w)) =0, forj=0,1,...,m, (2.5)

where AJ stands for the jth composition of the Laplace operator A with A°w = w. If w is smooth,
then equations (2.5)) hold true for all j € N.

The converse is not true for smooth weights in general, see counterexamples on p. 479 in [Bos65].
Furthermore, Bose proved in [Bos68| the following result, by imposing further assumptions on w.

Proposition 2.15 (Bose, Theorem 2 in [Bos68]). Let w € C?*™(Q) for some m € N, m > 1.
Suppose that there exist ag,...,am_1 € R such that

A"w = apw + a1 Aw + ...+ @y A" .
Then any C? solution u to [2.5) for all j = 0,1,...,m — 1 is strongly harmonic, i.e. u € H(Q,w).

The following result by Bose contributes to the studies of the dimension of the space H (£, 1%, w)
under certain additional assumption on the weight (in particular, assuming that w is an eigen-
function for the laplacian).

Proposition 2.16 (Bose, Corollary 2 in [Bos65]). Suppose that Q@ C R™ forn > 1, w € C?(Q)
and there exists A € R such that Aw = Aw. Then dimH(Q2, w) = co.
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2.3 Regularity of strongly harmonic functions in the weighted
case

In order to prove Theorem [2:2] we need to establish regularity of strongly harmonic functions, see
Proposition There, we show the Sobolev regularity for functions in H(€, d, wdz) depending
on the Sobolev regularity of weight w.

From now on we a priori assume that a function w € L}, (Q) and w > 0 almost everywhere in §.

Let us begin with noting that strongly harmonic functions in such setting are continuous.
Proposition 2.17. Let Q C R" be an open set. Then H(Q2, d, wdz) C C(Q).

Proof. Observe that u(0B(z,r)) = faB(w " w(y)dy = 0. Therefore, by Lemma 2.1 from |GGO09]
measure y is continuous with respect to metric. This completes the proof by Proposition U

Let us observe that the proof of continuity of strongly harmonic functions works for all weights
w € L}, (). However, in order to show existence and integrability of weak derivatives we need to

assume Sobolev regularity of w.

Proposition 2.18. Let Q C R™ be an open set, d be a norm induced metric and a weight w €
WLP(Q) N L2 (Q) for some 1 < p < oo. Then H(Q,d,wdz) C WP (Q).

loc

Before we present the proof of Proposition let us comment on the

Remark 2.19. The necessity of the assumption on regularity of the weight w in Proposition
is not settled. Notice, that the space H(S2, d, wdz) always contains constant functions. When
considering examples of weights w which are neither weakly differentiable nor bounded, the space
H(S2, d, wdz) turns out to consist of only constant functions. Nevertheless, we did not find any
example of a weight, for which there would exist some strongly harmonic non-differentiable func-
tions.

Proof. Fix a compact set K € Q. Moreover, let r = 1dist(K, 0Q). Fix h € R" with |h|< r. Denote
by K' := {z € Q : dist(z, K) < 2r}. Let us observe that due to the first assertion of Lemma 2.1
in [AGG19], i.e. that continuity of x with respect to d implies that the map = — u(B(z,7)) is
continuous in d, there exists 0 < M := inf, ¢ g u(B(z,7)). The difference quotient of u at z € K
reads

lu(z +h) —u(@)] _ 1

N T
I |h|

fB(x-i—h,r) w fB(w,r) w

[Anu(z)| =

)

where we used the mean value property of v € H(Q, d, wdx). Now we add and subtract a term

Joen®

w
and use the triangle inequality to get
w
B(xz+h,r)

L UW o Luw L UW o Luw
‘h| \Ahu(xﬂ < fB(;r:+h,7) . fB(l,’!) + fB(I,T) . fB(l,’!) . (26)
fB(w+h,T) w fB(x+h,r) w fB(a:—i—h,r) w fB(w,T) w
The first term can be estimated as follows
T T uw — xT,r uw 1 1
fB( +h,f) fi( ) = T - /B ) uw—/B uw| < i |uw|
B(z+h,r) B(z+h,r) (z+h,r) (z,r) Blothoa)AB(or)
UW!| 7 oo s
< ””% |B(z + h,7)AB(z,7)|. (2.7)
In order to manage this term we refer to Theorem 3 in [Sch14b] to get that
|B(x + h,7)AB(z,7)| < |h||0B(z,7)| = |hlcn,ar™ (2.8)
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where in the last term the constant ¢, 4 stands for the (n — 1)-dimensional Lebesgue measure of
the unit sphere with respect to the metric d. Computation of ¢, 4 is highly nontrivial and for a
general distance d we only know that 0 < ¢, g < 00.

The second term of reads

S v@)w(y) B S v@)w(y)
fB(I+h,T) w(y) IB(I,T) w(y)

fB x,r |uw‘ (y)
< 1) / w(y)dy — / w(y)dy
fB(m_},—h’r) w(y) fB(gg,T) w(y) B(xz+h,r) B(z,r)

/ (w(y +h) — w(y))dy
B(z,r)

l[uwl| poo () [B (@, 7))
< Ve

luwll oo g1y Cn.ar™ /
< ’ Ay dy, (2.9)
M? B(z,r)

where in the second inequality we used the translation invariance of the metric d and by C,, 4 :=
|B(0,1)] we denote the n-dimensional Lebesgue measure of the unit ball with respect to the metric

d. By gathering together estimates of both terms - . 9)) and applying the standard
inequality (a + b)P < 2P~Y(aP + bP) for a,b > 0 we obtam the followmg

o < 1 ey | Ol p
‘Ahu )| dx < 2 ||uwHLOO(K’ MP + M2p Bl |Ahw(y)| dy dx.
e ’

The first term above is bounded, therefore we only need to take care of the second one. For the
sake of simplicity we omit writing the constant 2P~ M =27 |luw||} .. (K7 C? rP™. Upon applying the

n,

Jensen inequality and Theorem [2.4] (for Q = K’) the following estimate holds true

( / |Ahw<y>|dy) dyde < Coar™?™ [ [ 1B0wlo) dy
Bl K B(z,r)

< O P K| [Vl e -

This integral is finite by the assumptions on regularity of w and Theorem [2.4] applied to weight w
with an observation that w € W1?(K’). Hence, the following estimate holds true

(n=1)  CCZtynr=) || 7|
» —1 P cpr? LP(K')
/|Ahu(z)| dz < 277 luw|[ o (e 1K < P + iVes < 00
K
We apply Theorem to u and obtain that u € W1P(K), which completes the proof. O

We are now in a position to present the proof of Theorem

2.4 Proof of Theorem [2.2]

Before we present the proof of Theorem let us discuss the equations of system . First of
all, by Remark we know that B(0,1) is symmetric with respect to the origin. If |«| is an odd
number, then % is an odd function, hence A, = 0. Therefore only evenly indexed equations of
are nontrivial, although we will prove them for all j < 2[. In fact, the proof of Theorem
can be applied to functions with the mean value property over any compact set K C R"™, which
does not necessarily need to be a unit ball with respect to a norm on R", i.e. to functions with
the following property

/ u(z + ry)w(z + ry)dy,

u(z) = ;
S w(@ +ry)dy
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which holds for all x € 2 and radii 0 < r such that x + rK C Q. In that case in the analogue of
system appear also equations with odd indices.

If the unit ball is symmetric with respect to all coordinate axes, the coefficient A, is zero
whenever some «; is odd. Therefore, in the j-th equation of occur only differential operators
acting evenly on each of variables. Examples of norms for which B(0,1) is symmetric with respect
to all coordinate axes include the I? norms for p € [1, o0], but also by Lemma one can produce
more examples.

Proof of Theorem[2.4 Let @ C R™ be an open set, metric space (€, d, wdz) be as in assumptions
of Theorem m € N. Then, if m =1 then w € WZQOCQ(Q) and if m > 1 then w € Cif:fl’l(Q).
Then, following the reasoning of (2.3, for € Q and 0 < r < dist(x, 99) there holds

u(z) / w(y)dy = u(z) / w(x+ry)r'dy = / u(z+ry)w(z+ry)r'dy = / u(y)w(y)dy,
B(z,r) B(0,1) B(0,1) B(z,r)

where the middle equality holds true by the mean value property of u. Without the loss of generality
we may assume that B(0,1) := {z : d(z,0) < 1} satisfies B(0,1) C {z : ||z]2< 1}, since we will
consider only small enough admissible radii in the mean value property. The assertion is a local
property, therefore we may restrict our considerations to the analysis of the behaviour of v on a
ball B" C Q with dist(B’,9Q) = ¢ > 0 for some fixed ¢ > 0. Furthermore, let B be a ball concentric
with B’ with 2¢ distance from 9€). We redefine u and w in the following way

u(r) = u(@)xp (z)  w(r) =wx)xp (@)

The function % is continuous in B and if m = 1 then the weight @ is in the space W22(B)
since B € €. Analogously if m > 1 then w € C?*™~b1(B). Let p € C§°(B). Then for all z € B,
y € B(0,1) and 0 < r < ¢ it holds u(x + ry) = @(x + ry). Since p(z) = 0 outside of B we have
that for all x € R™ there holds

a(z)e(x) / w(z 4 ry)dy = o(x) / w(z + ry)w(z + ry)dy. (2.10)
B(0,1) B(0,1)

For the sake of simplicity below we still use symbols u and w to denote u and w, respectively. We
integrate both sides of (2.10)) with respect to € R™ to obtain

R[u(x)tp(:c) (B(O/J) w(z + ry)dy> dx :R[ o(x) (B(O/J) u(z + ry)w(z + ry)dy) dzx. (2.11)

Observe, that the Fourier transform of functions
e, [ wlrrdn [ et rdy
B(0,1) B(0,1)

exist and the latter two are L?(R™) integrable in variable x. Therefore, we apply the Parseval

identity in (2.11]) and obtain

JFG@r ([ wsrman)©ic= [FA@F( [ a4 o) ©as
Rn B(0,1) R™ B(0,1)
(2.12)
Here F(f)(€) := f]R" e~ &) f(y)dy stands for the Fourier transform of f at & € R™. The following
formula holds for any f € L}, .(Q):

loc

RIS = Y8 qyy. .
f( /B e y>dy> ©) = F(N)(E) /B o (2.13)
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Indeed, upon applying the Fubini Theorem and the change of variables z := x + ry we obtain

F ( [ooges ry)dy) €= [ et ( J ry)dy> o
B(0,1) n B(0,1)
= / (/ e @8 £z + ry)dw) dy
B(0,1) \Jr»
= / erv:€) (/ e Ty (o 4 ry)dx> dy
B(0,1) Rr
/ eir(w:€) </ ei<z’£>f(z)dz> dy
B(0,1) n

| R
B(0,1)
U

5)/ e”'(y’g)dy.
B(0,1)

We apply formula (2.13]) twice: for f = w and f = ww and employ respectively to the left- and
the right-hand side in (2.12) to arrive at the following identity:

/ J’E(w)(éf)f(w(«s)( / e”@@dy)df: / f(so)(«f)f(uw)(f)( / e”<y’5>dy>d€- (2.14)

B(0,1) R™ B(0,1)

Let us observe that both sides of (2.14) are smooth functions when considered with respect to
r and this allows us to calculate the appropriate derivatives by differentiating under the integral
sign. Namely, we differentiate (2.14]) with respect to r by j times (j < 2I):

[Fea@rwe( [aenrerva) i [Fer@ruwe( [oenye o)

R B(0,1) R» B(0,1)

For r = 0 this identity reads

/ z‘jf(sma)(ww)(g)( / <£,y>jdy>d§ / z‘jf«oxof(uw)(@( / <£,y>jdy>d€- (2.15)

R B(0,1) R~ B(0,1)
Note that
[ cort= [ @nsorenra= [ 5 (Dera= ¥ e o
B(0,1) B(0,1) B(0,1) lol=i la|=j

Using the above observations, equation transforms to
| ¥ 4 Fon@rw)©de = [ ¥ 4 FA@F@)Od. (217
Rn la|=7 Rn lal=3
Let us focus on equation (2.17) for j = 2:
> 4ai) FEMOF@)E)d = [ 37 Aalie) FTAEF () €)d6.
R™ |a]=2 R™ |a|=2
which can be rewritten in the following way

S AT (Pu)(E) - (i€) F(w)(€)de = / S A F@)E) - Fluw)(€)de.

Rn lal=2 Rn la|=2
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Hence

| ¥ aFe0®  Forw)@ds = [ 3 AF D@ - Fuw)()ds (2.18)

Rn lal=2 Rr lal=2

We apply the Parseval identity in (2.18]) and move the expression on the left-hand side to the
right-hand side to arrive at

Z Ay (D%(2) - u(z)w(z) — p(z)u(z) D%w(x)) dx = 0. (2.19)
Rn |o|=2

Notice, that (2.19) is a weak formulation in B of the equation

= Z Aq (D(’(uw)(x) - u(x)Do‘w(x)) =0, (2.20)

|| =2

where the operator L is defined by and in the case m = 1 this observation ends the proof.

If m > 1, then in order to complete the proof we need to etablish higher regularity for function
u. We intend to employ Theorem 8.10 in |[GTO01]. Let us observe, that by Proposmlon“functlon
u € VV1 2(Q) The following holds true

jal=2
"3 et X X (i)t

1Bl=1

Observe, that by the hypothesis on the regularity of w, coefficients appearing in the operator L
are in C?™~21(Q). Moreover, L is strongly elliptic: Indeed, take & € R™ and consider the second
order terms of L. By (2.16]) we obtain for all y € Q that

Aaw f=w z,&)%dx > w x, €)%dx, )
5 Awute” =iy / o 6% = 0ty /|x|2§€< o (2.21)

where the last estimate holds with some € > 0 since d is equivalent to the Euclidean distance, as
every norm on R™. Next, observe that

é‘ 2
24y = ||¢||2 N ol
/MJ“”@ g '5“2/|x|2§8<w7 o) do=slelB

where 6 > 0 is defined by the above equality and does not depend on ¢ due to the symmetry of
the Euclidean ball. Indeed, let us apply the change of variables z = Rx, where R is a rotation

matrix such that RT “5”2 = e1. Then,

€ \2
0 :2/ <x,> dz =/ 22dx.
|l <e [1€]]2 I2]l2<e

Therefore (2.21)) takes form:

D Aaw(y)E® = buw(y)l€]3, v € Q. (2.22)

le]=2

Therefore the operator L is strongly elliptic and we are allowed to apply Theorem 8.10 in|GTO01]
to obtain, that u € W"?(1).

loc
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Now we are in a position to complete the proof. Observe, that in (2.20) we showed that «
solves the equation of system (2.1]) for j = 2 and we need to show that w is as well a solution to

remaining equations of (2.1)), i.e. for j =4,6,...,2m. Let us analyze (2.17)) similarly to (2.18) by
applying the Parseval identity and move the expression on the left-hand side to the right-hand

side in order to recover the following equation

/ 3 Aapla) (Do‘(uw)(x) . u(x)Do‘w(x))dx =0 for p e CX(B),

R lof=j

which is a weak formulation of the following equation

Z Aq (Da(uw) - uD“w) =0.

lal=j
The proof of Theorem [2.2]is, therefore, completed. O

One of the immediate consequences of the proof of Theorem [2.2] is the following regularity
result.

Proposition 2.20. Let 2 C R™ be an open set, d be a norm induced metric and w be a weight
such that w € C2™~1Y(Q) for some m € N, m > 1. Then H(, d, wdz) € W2™(Q).

loc loc

2.5 Theorem 2.3t The converse of Theorem 2.2

Since both Theorems and Proposition give not only the necessary, but also the
sufficient condition for the mean value properties in the sense of Flatto and Bose, respectively, our
next goal is to find an appropriate counterpart of these results. In case of nonconstant weights
Proposition 2.15] imposes an additional PDE condition on w, hence we expect an analogous con-
dition. From the point of view of our further considerations, the following generalized Pizzetti
formula introduced by Zalcman in [Zal73], will be vital.

Theorem 2.21 (Theorem 1, [Zal73]). Let u be a finite Borel measure on R™ with compact support
and F(§) = fR" e~ "V du(y) be the Fourier transform of the measure p. Suppose that f is an
analytic function on a domain Q C R™. Then the following equality holds

- [l +ry)duly) = [F(=rD)f(x), (2.23)

for all x € Q and r > 0 such that the left-hand side exists and the right-hand side converges. The

symbol D is given by D := —i 6%1, cee aﬁn

Remark 2.22. Formula is the main tool used in the proof of Theorem hence we need to
assume analyticity of weight w. Due to a result by Lysik [Lys18b] the Pizzetti formula on Euclidean
balls is valid exactly for analytic functions. Therefore, dropping the analyticity assumption of w
would require finding a different proof of Theorem [2.3

Remark 2.23. Theorem by Friedman-Littman is a special case of our Theorems [2.2] and
for w = 1. Proposition by Bose is generalized by Theorem [2.3] due to the following lemma.

Lemma 2.24. Suppose that w € C?'(Q) solves the following equation
Aw+ a1 A7 w4 e Aw + agw = 0, (2.24)

where all a; € C fori = 0,1,...,1 — 1 and A’ is the i-th composition of the laplacian A and
1=1,2,.... Then w is analytic in §2.
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Proof. We prove the lemma by the mathematical induction with respect to [. Recall the following
fact (see p. 57 in |[Joh55]): Suppose that w € C?() solves the following equation

Lw+ Aw = o, (2.25)

where L is elliptic with analytic coefficients and ¢ is analytic in 2, A € C. Then w is analytic in
Q.

If I = 1, then we use the above regularity fact with L = A, ag = A and ¢ = 0. Now let us
assume that the assertion holds for I — 1 and consider w as in (2.24). By adding and subtract-
ing the appropriate terms we may rewrite this equation as follows with any A € C and given
ag, A1,y ...,a;—1 € C:

0=A"1(Aw+ Aw) + (a1-1 — A2 (Aw + M) + (a1-2 — Maj—1 — N)) A3 (Aw + Iw) + ...
+ (a1 — Mas — A ) (Aw + Aw) + (ao ~ a1 — Maz — (.. .))))w.

Since the factor in the last w-term is a complex polynomial in A, one can choose such A, so that
this last factor standing by w in the equation vanishes (e.g. take A to be one of the roots of w).
We use the assumption for [ — 1 to obtain that Aw + Aw is an analytic function, denoted by ¢,
i.e. Aw+ Aw = ¢. This observation together with the regularity observation allow us to conclude
the proof. O

Lemma 2.25. Suppose that Q C R™ is open, w is a positive analytic function and d is induced
by norm. Then any u € H(Q, d, wdzx) is analytic as well.

Proof. By Theorem function u is a weak solution to the equation for j = 2 of system (2.1)).
In (2.22) we show, that this equation is strongly elliptic. We apply the regularity result (2.25)) to

obtain that u is analytic. O
Now we are in a position to prove Theorem

Proof of Theorem[2.3 We need to show the following equality
u(x) / w(z +ry)dy = / u(z + ry)w(z + ry)dy, (2.26)
B(0,1) B(0,1)

where B(0,1) is a unit ball in metric d. In order to prove (2.26) we use the generalized Pizzetti
formula for a measure p being the normalized Lebesgue measure on the unit ball. Then

- —itea) gy = N (5D i gy BLO) <~ (1) o~ (D
o= = / o € S E S e 3 Sl e

! !
j=0 J: J: la|=j5 aeN” !

where A, = (Iz\) fB(O,l) y*dy. We apply Theorem twice: to w and uw to obtain

o

w(z + ry)dy = — A, D%w(x), 2.27

/| oV FTI= 3 T (x) (2.27)
e

/ w(x + ry)w(z + ry)dy = Z T—'AQDO‘(u(m)w(x)), (2.28)
B(0,1) a€eNm |ex!

Multiply (2.27) by u(x) and subtract from it (2.28]) to obtain the following:

u(z) / w(z + ry)dy — / u(z + ry)w(z + ry)dy
B(0,1) B(0,1)

plal
= Y T a (u(@)D*(w(x)) — D*(u(x)w(x)))

S5 3 A (u()D*(w(a) ~ D (ula)u(2))) =0,
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where in the last step we appeal to (2.1). Thus u satisfies the weighted mean value property and
the proof is completed. O

2.6 Applications of Theorem and Theorem

In this chapter we illustrate Theorem and Theorem by determining the space H(S2, d, dz)
in case of the distance function d being induced by the [P norm and a constant weight w = 1.
Our goal is to show that whenever p # 2 and n = 2, the space H(€2, [P, dzx) consists of 8 linearly
independent harmonic polynomials. We already know that H(€,?, dz) consists of all harmonic
functions in €2, which differs significantly from the previous case. Moreover, in this chapter we
describe system for p = 2 and smooth w and compare with the equations from Theorem
Our computations are new both for H(,1P,dx) with p # 2 and for p = 2 and a smooth
weight.

Let us consider the space R™ with the distance P for 1 < p < oo and a smooth weight w.
First, we calculate coefficients A, . By the first paragraph of Chapter we only need to consider
multi-indices « with even components. The integral formula (called the Dirichlet Theorem), see
p. 157 in [Edw22] and also Lemma [3.16] allows us to infer that

e ()

A, =2" o] L atnde = 2 " (e = Y P (2.29)
« a Lo p a)r (\a|+n+p) ’ '
P

[ et cm20)

where I" stands for the gamma function. Notice, that coefficients A, for j = 2 are constant by
symmetry of balls in the [P norm. Therefore, the equation of system (2.1)) for j = 2 translates to

- 02 02
; <6mf(uw) - Uam%(w)) =0,

or equivalently to
wAu + 2VuVw = 0. (2.30)

Let us recall that since is an elliptic equation with smooth coefficients, then every weak
solution is smooth and solves in a classical way. Therefore, H(, P, w) C C*°(2) and the
system can be understood in the classical sense. In order to describe further equations we
need to divide our calculations into more specific instances: p = 2, p = oo and remaining values
of 1 <p< .

2.6.1 The case of weighted [? distance

In this chapter we intend to show, that Theorem [2.2]is a generalization of Theorem [2.14] In order
to demonstrate this we show that for p = 2 system is equivalent to 7 see Theorem
Recall that the coefficients A, in take the following form (including the case j = 2 discussed
in the beginning of Chapter

) [T, (257
Ay = (a)r(aléné)) (2.31)

Furthermore, recall the following two formulas concerning the gamma function: For any k£ € N

there holds
r <’“) = \/7;(72:2)” and T (k+ 1) _ R

2 3 2 4k k)"
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We use the first formula in the denominator of (2.31]) and second in the numerator of (2.31)) to
obtain that

la|+n+1

e s (Y
o Vr(la] +n)!t 2% ') \a/(a|+n)! _:1(%)!'

K2

Therefore, the j-th equation of system (2.1]) can be written in the following form

0= Z Aq (D*(uw) — uD%w)
|a|=j,0; €2N
| ot o)
- ¥ A [ i (D® (uw) — uDw) (2.32)
! 1 (i " o) :

almimean 01! an! G+t 25 (F)!
Wittt i

- 7J U (E) (D* (uw) — uD*w).

Next, observe that for any f € C?(Q) its I-th Laplace operator can be written in the following
form

o? 0?
Af=(-5+. D% 2.33
1= () - > G (239
where the multinomial formula has been applied. Finally by (2.32)) and (2.33]) we conclude that in
the [%-case system (2.1)) is equivalent to system
Al(uw) = uAlw, forl=1,2,... (2.34)

In fact (2.34)) is equivalent to (2.5). To that end observe that A(uw) = wAu + 2VuVw + uAw.

Upon joining this with the equation of (2.34) for I = 1 we obtain the first equation of (2.5).
Further equations of (2.5)) follow from ([2.34)) and the following computation:

uAMw = A(A (uw)) = A(udlw) = Aullw + 2(Vu, V(AMw)) + uAT w

Therefore,
Aullw + 2(Vu, V(Alw)) = 0 for1=0,1,2,...

and we end this part of discussion by concluding, that by above considerations our Theorem
is a generalization of Bose’s result, see Theorem

Moreover, by Theorems and we know that H(€Q,[?, wdx) consists exactly of solutions
to the following system of equations

AulIw + 2(Vu, V(AIw)) =0,  forj=0,1,.... (2.35)

Let us observe, that u solves also infinitely many other systems of equations, obtained from (2.35)
by excluding I € N initial equations

AulI Ty 4 2(Vu, V(AT w)) = AudT (Alw) + 2(Vu, V(AT (Alw))) = 0, for j=0,1,....

Therefore, u is strongly harmonic in countably many metric measure spaces (2,12, Alwdz) for
all [ € N. In other words, function u has infinitely many mean value properties, with respect to
different weighted Lebesgue measures di = Alwdz for all | € N, whenever Alw are positive.

2.6.2 The case of [? distance for p ¢ {2,000}

Strongly harmonic functions on Q C R™ equipped with the [P-distance and the Lebesgue measure
behave quite differently for p € {2,00} than for p = 2. In what follows we demonstrate that
only finitely many equations of system (2.1)) are nontrivial, and that in fact all of functions in
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H(2, 1P, dz) are harmonic polynomials. For the sake of simplicity we consider case n = 2, and
u depending on two variables = := x; and y := x5.

We now focus our attention on equations of system for j > 2 since the equation for
7 = 2 is described in . We examine the differential operator R; := Z|a\:j An,D*. We already
showed that for p = 2 operator Rs is equal to A up to a multiplicative constant. Recall formula

(2.29) for n = 2:

 TIr (=2

= () () TEED)

Let us observe, that for |a|= 4 those coeflicients attain only two different values:

, whenever a = (4,0) or a = (0,4). This coefficient stands by 88—;4 and

2 3)2
(2) A, =6 (%) FF((LBGy if & = (2,2). This coefficient appears by #;/2 in operator Ry.

Therefore, R4 takes a form

e () GG G ) oG (o))

which, up to a multiplicative constant, reduces to operator A% = 68—;4 + 86—; + 2#;!2 if and only
if the following function f (and so, a parameter p) satisfies condition

4\2
rG) o
P
P P
By the previous considerations this holds true for p = 2. We will show that f(p) # % for other

values of p € [1,00). Let us differentiate f with respect to p. Recall, that the formula for derivative
of the gamma function stays:

I'(z) = I'(2) (—i —v=> (k i o ,1)) =T(2)¥(2),

k=1

where 7y is the Euler constant and ¥ is the digamma function defined by the above equality, for
more details see [AS64]. We use this identity to compute the following

er (3)"0 (2) (C3)r ()r ()

fl(p) =




Since f is positive for p € [1,00), we only need to investigate the sign of the second factor in the
above formula:

6 3 ) ) 1 1
()3 5)
p p p p p p

1 & 8k
= — - > 0.
2 ;p(k+ Sk +2)(k+ )

Therefore, f is monotonically increasing on [1,00) and attains value 1/3 exactly at p = 2. We
conclude our computations with the following;:

(2)r(20) "r (3 a or p 2.

()0 (52) " () (3) (20 (faidley —2) wtie) dorn 2

We are now in a position to apply Theorem and Theorem Function v € H(Q,1?,dz) if and
only if it satisfies the system of equations (2.1) with w = 1. Therefore, (2.30]) reads

Ry =

Au =0, (2.36)

hence u is harmonic, and its bilaplacian vanishes. Moreover, u has to satisfy equation of system
for j = 4, i.e. Rqu = 0. Since bilaplacian of u vanishes, therefore, u is in fact solution to
Ugayy = 0. Let us observe, that differentiating twice Au with respect to = and y respectively we
obtain

Ugzzr + Ugzyy =0 and  Upgyy + Uyyyy = 0.

Therefore, both 4,40 = 0 and uyy,, = 0, which means that for each fixed value of y function
u(x,y) is a polynomial in x of degree at most 3 and analogously for a fixed z function u(z,y) is a
polynomial in y of degree at most 3. Then there exist a;(y) and b;(z) for ¢ = 0,1, 2,3 such that

u(z,y) = ao(y) + a1 (y)x + az(y)2z? + az(y)2z® = bo(x) + by (2)y + ba(2)y? + bz(z)y>. (2.37)

In what follows we omit writing the arguments of a; and b;. Simple calculations give us that

Usawe = b5 + b5y + b5V + 05y =0, (2.38)
and
Uyyyy = agl) + a§4)x + ag4)x2 + ag4)x3 =0. (2.39)

Now at each fixed = in (2.38) the polynomial in y has to have all coefficients equal to 0 due to
the Equality of Polynomials Theorem, hence b§4) =0 for i = 1,2,3,4. Similarly, at (2.39)) we set

that a§4) = 0 for all i = 1,2, 3,4. Therefore, all of a; and b; are polynomials of degree at most 3.
Moreover, we know that gy, = 0. We calculate this derivative in (2.37) to get

0 = Uggyy = 2a5 + 6zal = 2b5 + 6yby.

Thus, once again we obtain that a = 0 and b} = 0 for i = 2,3, so ag, a3, by and bs are in fact of
degree at most 1. By the above considerations we conclude that u is a linear combination of the
monomials

Ly, ay, 2%, 2% ay?, ay’, 2%y, 2%y, 4%, o7, (2.40)
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which solves equation ([2.36]). Therefore, u has to be a harmonic polynomial of the form described
by (2.40). The part of u generated by {1, z,y,zy} is already harmonic and for that reason we only
need to consider u being a combination of the remaining monomials in (2.40)), i.e.

u = 01:172 + 02x3 + 63a:y2 + C4zy3 + 65932@/ + 061:3y + C7y2 + cSyS.
Inserting u to (2.36]) we get the following
0=2(c1 + ¢7) + 22(3c2 + ¢3) + 62y (ca + ¢6) + 2y(cs + 3cs),

and once again by appealing to the Equality of Polynomials Theorem we obtain that u € H(, [P, dx)
if and only if

3 3
u € span {1,x,y,xy,x2 — % ay? — %,xy?’ — 23y, 2%y — yg} . (2.41)

Finally, let us observe that in equations of system ([2.1)) for j = 6 there appear only the following
operators

o° o° o° o°

026" 0xtdy?’ 0x20yt’ Hys’
which all vanish on w in the form as in (2.41)). The triviality of equations for j > 6 follows
immediately. Therefore, we summarize our discussion with the following inclusion:

3 3
H(2, 1P, dz) = span {1,30, y, xy, x> — 1y, xy? — %,xy?’ — 23y, 2y — y?)} ) (2.42)

Now let us discuss the case p = oco.

2.6.3 The case of [* distance

In order to complete our illustration of Theorem [2.2] and Theorem [2.3] we need to consider the
remaining case, i.e. characterize functions w in H(Q,P,dz) for p = oco. In this case B(0,1) =
[—1,1]™ in {*® norm. Therefore, we obtain the following formula for the coefficients A, in (2.1)):

al) /1 o /1 (Ia> 2"
A, = it Ton = _—-
( « —1 1 —1 « szl(az + 1)

Then, after inserting A, and dividing by the 2™ factor, system (2.1 converts to the following
|af 1
D% = 0.
Z‘ (a (@ + )l (anr 1) "

As in the previous chapter we restrict our attention to case n = 2 and write out the equation for
J =2t §(uge + uyy) = 0. Hence u is a harmonic function. Equation for j = 4 is the following

1
(Uzmrz + Uyyyy) + “Upzyy = 0’

120 6

and can be reduced to A%u + 20Ugzyy = 0. This, combined with an analogous discussion to the
one ending the previous chapter leads us to the conclusion that holds true also for p = oco.

Finally, in the remark below we discuss the case of dimensions n > 2 and a general question
of dim H(Q, 1P, dx).

Remark 2.26. Let us consider an open connected set 2 C R?, metric d induced by the [? norm
for 1 < p < o0, p# 2 and u being the Lebesgue measure. Due to computations summarized in

(2.42) we know that:

3 3
Z Y
H(Qvlp,dx) = Spall {any?xy»xQ - yQ,xy2 - ?axyg - x3y>$2y - 3} .
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Notice, that the dimension of H(€,I?,dx) is equal to 8. As mentioned in the introduction, in R3
Lysik [Lys18a] computed dim H(€, 1P, dx) = 48. Moreover, in case of p = 1 and p = oo, when
the unit ball is cube-shaped, Iwasaki [Iwal2] proved that dim H (€2, ?, dz) = 2"n!. Those numbers
coincide with 2™n! - the number of linear isometries of (R™,[?), which is discovered in [AB12]. We
believe that there is a link between the dimension of the space H(f, d, 1) and the number of linear
isometries, still to be examined.
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Chapter 3

Asymptotically p-harmonic
functions on Carnot groups of
step 2

3.1 Introduction

In Chapter 2 we studied functions with the mean value property and its consequences, whereas in
this Chapter we will focus on an so-called asymptotic mean value property. In the last decade there
has been a growing interest in studying a generalized mean-value property originating in [MPR10)]
and [MPR12], called the asymptotic mean-value property or amv-property for short. It allows to
characterize solutions to harmonic, p-harmonic and more general equations of elliptic and parabolic
types. Related are applications of p-harmonic functions in statistical Tug-of-War games, see for
instance [MPR10| and [PS08]. The studies in [MPR10| allow, in the simplest case, to weaken the
classical characterizations of a harmonic function u in R™ as follows:

u(x) :][ u + o(e?), ase—0.
B(z,e)

It is important from the point of view of our studies below, that the amv-property can be shown
to hold for the viscosity solutions to the normalized p-harmonic equation Aév u = 0 in R™ for all
1 < p < co. Namely, in [MPR10] it is proven that u(x) = (e, u) + o(e?), as ¢ — 0, where (€5 u)
is the linear combination of the mean value and the min-maz mean:

N n—+ 2 1p—2 .
Hp(Esu) = u+ - max v+ min u | .
n+p B(z,e) 2n+p B(z,e) B(z,e)

Similar means characterizing p-harmonic functions have been found in [HR11; [HR13|, by using
the median of a function, see also [KMP12|]. The results in [HR11] yield the amv-property for all
p but for n = 2 only, while results of [KMP12| provide the amv-property for n > 2. Moreover,
the mean-value property for solutions to general elliptic equations with nonsmooth coefficients is
studied in [CT76].

The amv-property has also been investigated beyond the Euclidean setting, see [FLM14] for
results in the first Heisenberg group Hy, |[LY13] for the higher order Heisenberg groups H,, and
|[FP15] for the setting of general Carnot groups.

A new approach to the asymptotic mean-value property has been recently proposed in [[MW17|
(see also [BM19| for relations with statistical games). More precisely, in [IMW17], the authors
proved that every viscosity solution u to the normalized p-laplacian in an open set Q C R™ for a
given 1 <p < o0 (Deﬁnition, can be characterized using an asymptotic mean-value property
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in terms of the function u, (e, u)(z), defined as the unique minimizer of the following variational
problem

Hu - /U‘P(sa U)HLP(m) = )\El]g”u - A“Lp(m)a

where B(z,e) C Q denotes the ball centered at x with radius . This notion encompasses the
median, the mean-value and the min-max mean of a continuous function, see [IMW17] for details.

In this chapter we present generalization of the results of [IMW17] to the setting of an arbitrary
Carnot group of step 2, including the first Heisenberg group Hj.

Let G be a Carnot group of step k (Definition . Denote by Aﬁ g the subelliptic normalized
p-Laplacian (see (3.4) and (3.5)) and by p,(e,u) the generalized median of a function u defined
uniquely as in The theorem below stays that a viscosity solution of AﬁGu = 0 can be
characterized asymptotically by the minimum g, (e, v). This provides one more, intrinsic, way to
characterize p-harmonic functions via a variant of the asymptotic mean-value property.

Theorem 3.1. Let 1 < p < oo and let Q C G be open. For a function u € C°(Q) the following
are equivalent:

(i) u is a viscosity solution of A;IXGU =0 in Q;
(i) u(z) = py(e,u)(x) + o(e?) as € — 0, in the viscosity sense for every x € Q.

We present the proof of this theorem in two special cases: (1) for G being the Heisenberg
group and (2) for any two-step group G, see Chapter The proof in a general case is presented
in [Ada+20|. The main tool used in the proof is Lemma where the asymptotic behavior
of minimizers pu, is described for quadratic polynomials on balls, see Chapters and for
the proofs of Lemma [3.15] in the setting of the Heisenberg group and Carnot group of step 2,
respectively. As presented in Remark our results generalize those obtained in the Euclidean
setting in [IMW17].

3.2 Carnot groups

In what follows we briefly recall the definition and some standard facts on Carnot groups, see
[BLUOT} |Cap+07; |Gro96; Mon02| for a more detailed treatment.

Definition 3.2. A finite dimensional Lie algebra g, is said to be stratified of step k € N, if there
exist linear subspaces Vi,..., Vi of g such that:

g:‘/l@@Vk; and [VUVYZ]:V;-&-I ’L:L,k—l, [‘/17Vk]:{0}

The symbol [-,-] stands for the Lie bracket in g. We denote by v; the dimension of V; for i =
1,2,.... k.

A connected and simply connected Lie group (G, *) is a Carnot group if its Lie algebra g is
finite dimensional and stratified. We also set

ho:=0, h;:= Zvj and m := hy. (3.1

Jj=1

Observe, that any stratified Lie algebra is nilpotent. Every Carnot group G of step k is iso-
morphic via the exponential map Exp : g — g as a Lie group to (R™,0) where o is the group
operation given by the Baker-Campbell-Hausdorff formula, see Definition 2.2.11 and Theorem
2.2.13 in |BLUO7). More precisely, the Baker-Campbell-Hausdorff formula in Carnot groups solves
equation Exp(X) * Exp(Y) = Exp(Z) in Z for any given X, Y € g = R™. The solution Z defines
a group operation o on R™ which depends only on finite number of compositions of Lie brackets
of X and Y and can be expressed as follows

k n P1 q1 Dn n—1
XoY::Zﬂ 3 (ad X)P' (ad V)% .. (ad X)P» (ad V)4 ~1Y

pla! o patan! Y00 (95 + g5)

: (3.2)

n=1 pit+qi>1
1<i<n
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where (ad X)Y := [X,Y]. Terms up to 4-th order on the right-hand side of (3.2)) are the following

Xo¥ =X +Y + 35X Y]+ 15 (XX Y] + (LY X)) - 5 DY)+

The inverse element to X with respect to o is —X and the neutral element of o is 0.

From now on we use the above construction of isomorphisms without mentioning it explicitly.
Every element z of group G is identified with appropriate element X of the Lie algebra g and also
with an appropriate x € R™, since the Lie algebra g is isomorphic to R™. For each z € G we
define left the translation 7, : G — G by the formula

T2(y) ==z oy.
For each A > 0 we define a dilation éy : G — G by the formula
On(z) =0a(z1, ..y xm) = (AN @1, ., A%y,

where each o; € N is called the homogeneity of the variable z; in G and it is defined by o; := 4,
whenever h;_1 < j < h;, cf. . Observe, that vector basis of R™ can be constructed from the
vector bases of subspaces V; for i = 1,...,k so that the homogeneity of variable x;, which is a
coefficient of the element of the basis of V;, is equal to the index 1.

We have discussed the group structure of Carnot groups, now let us define the metric structure
in Carnot groups. For this purpose, let us recall the following notion of pseudonorm, see Definition
5.1.1 in [BLUOT7].

Definition 3.3. We call a function NV : G — [0,00) a pseudonorm on Carnot group G, if the
following conditions hold true

1. N is continuous with respect to the Euclidean topology,
2. N(0x(z)) = AN(z) for every A > 0 and z € G,

3. N(x) > 0 if and only if @ # 0,

4. N(x) = N(z71) for every x € G.

We say, that a function d : G x G — [0, 00) is a pseudodistance on Carnot group G, if the following
conditions hold true

1. d(z,y) = 0 if and only if = y,
2. d(z,y) = d(y,z) for all z,y € G,

3. there exists a constant C' > 0 such that for all z,y,z € G there holds pseudo-triangle
inequality
d(z,y) < C(d(z, 2) + d(z,y)).

We endow Carnot group G with a pseudonorm inducing pseudodistance by defining

k NS
o= 1D, a®)ei= (3 0|7 ) (3.3)
j=1

d(z,y) =y~ o zlg,

where ) := (x5, ,41,..., @) and ||2()|| denotes the standard Euclidean norm in R ~hi-1.
For more information on the pseudo-triangle inequality we refer to Proposition 5.1.8 in [BLUOQ7].
We define the pseudoball centered at « € G of radius R > 0 by

B(z,R) :={y€G: |y 'ox|c< R}.

We illustrate the concept of Carnot groups with the following important examples.
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Example 3.4 (The Euclidean space R™). The Euclidean space is an abelian group, hence all Lie
brackets are trivial and R" is a 1-step Carnot group. Therefore, the Lie group multiplication * and
the operation o described above coincide and are the same as the standard addition + of vectors
in R™. Analogous observation applies to any group which is a linear space endowed with a the Lie
bracket equal zero for all pairs of vectors.

Example 3.5 (The Heisenberg groups H,,). The n-dimensional Heisenberg group G = H,,, is the
Carnot group with a 2-step Lie algebra and the orthonormal basis { X7, ..., Xa,, Xo,41} such that

g1 =Span{Xy,...,Xon}, @2 =Span{Xani1},

and the only nontrivial brackets are [X;, X,,+;] = Xop41 fori=1,... n.
In particular, if n = 1, then the Heisenberg group H is often presented by using coordinates
(71,2, 23) € R? and multiplication o is defined on R? by

1
(z1,72,73) 0 (Y1,Y2,¥3) = (1 + Y1, T2 + Y2, 23 + Y3 + §($1y2 — T2y1)).
The pseudonorm given by
(21, 22, 23)||= ((aF + 23)* + 23)"/*

gives rise to a left invariant distance defined by dg, (p, q) = ||[p~¢|| which is called the Heisenberg
distance. A dilation by 7 > 0 is defined by 6, (1, 2, r3) = (ro1,rra,7?23) and the left invariant
Haar measure )\ is simply the 3-dimensional Lebesgue measure, moreover §d\ = r*d)\. It follows
that the Hausdorff dimension of the metric measure space (Hy,dm,, ) is 4, and the space is 4-
Ahlfors regular, i.e., there exists a positive constant ¢ such that for all balls B with radius r, we
have %r‘* < H*(B) < er*, where H* denotes the 4-dimensional Hausdorff measure induced by dy, .
For further discussion on the Heisenberg group see Chapter [4.3.3]

Proposition 1.3.21 proved in [BLUOT7], shows that the Lebesgue measure is the Haar measure
on Carnot groups.

Proposition 3.6. Let G = (R™,0) be a Carnot group. Then the Lebesgue measure on R™ is
invariant with respect to the left and the right translations on G. Precisely, if we denote by |E| the
Lebesgue measure of a measurable set E C R™, then for all x € G we have that |xroE|= |E|= |Eox|.
Moreover, for all A > 0 it holds 5\(E)|= A\?|E|, where Q := Z;":l V0.

A basis X = {X;,...,X,,} of g, is called the Jacobian basis if X; = J(e;) where (e1,...,em)
is the canonical basis of R™ and J : R™ — g is defined by J(n)(z) := J-,(0) - , where J,,
denotes the Jacobian matrix of the left-translation 7.

Let us recall the following classical proposition describing the Jacobian basis on Carnot groups,
see [BLUOT|, Corollary 1.3.19] for a proof.

Proposition 3.7. Let G = (R™,0) be a Carnot group of step k € N. Then the elements of the
Jacobian basis {X1,...,Xm} have polynomial coefficients and if hj—1 < j < h;, 1 <1<k, then

Xj(2) =05+ 3 o)) (2)0,
i>h
where agj)(x) = az(-j)(ajl, .oy Th,_,) when hy_q <i < hy, and az(-j)(é,\(x)) = )\"f‘_"jagj)(x).
The following definition is one of the key concepts of the analysis on Carnot groups. Let
X ={X1,...,X,,} be a Jacobian basis of G = (R™,0). For any function u € C*(R™), we define
its horizontal gradient by the formula

h1
VVlu = Z(X,u)Xz

=1
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and the intrinsic divergence of u as

h1

divy, v = Z X;u.

i=1
Remark 3.8. In the setting of the Heisenberg group we follow the notation convention and denote
Vau:= Vy,u.

Moreover, for 2 < j < k, we set Vy, u := Zh]_71<i<hj (X;u)X;. The horizontal Laplacian Agu
of a function 4 : G — R is defined by the following

h1
Agu := Z Xz?u.
i=1

A priori, one studies solutions to the Laplace equation under the C?-regularity assumption. How-
ever, as in the Euclidean setting, it is natural to weaken the required degree of regularity and
consider weak solutions belonging to the so-called horizontal Sobolev space. For further details we
refer to e.g. [CDG96; MMOT|.

The following result describes the Taylor expansion formula in the Carnot groups, see [BLU07,
Proposition 20.3.11] .

Proposition 3.9. Let Q@ C G be an open neighbourhood of 0 and let w € C*°(Q). Then, the
following Taylor formula holds for any point P = (M 22 . (k) € Q:

1
w(P) = u(0) + (Vv,u(0), 8V )gos + (Viyu(0), @) + (DY u(0)2D), 2Dy +0(PI1*)

' 2 1<ij<hy

is the so-called symmetrized horizontal Hessian of u.

Next, we recall the definition of the main differential operator studied in this chapter. For
p € [1,+0oc] and a function u € C? the subelliptic normalized p-Laplace operator is defined at
points where Vy, u # 0 in the following way

. diV\/1 (|Vvlu‘p_2vVl ’LL)

Algu = Tyl if 1<p<oo (3.4)
1
and
VV u VV u
AN = {D¥**u e L . 3.5
~eu = (O e ) )

In this chapter we work with viscosity solutions to the subelliptic normalized p-Laplace equation
discussed in Definition Notice, that we use there the definition of the subelliptic normalized
p-Laplace operator at those points, where the horizontal gradient of the function to which Aé\” G is
applied is nonzero.

Note that for p = 2, Aé\qu = Agu is the so called Kohn-Laplace operator in G. Thus, the p-
Laplace operator is the natural generalization of the Laplacian. Furthermore, the co-Laplacian can
be viewed as a limit of p-Laplacians in the appropriate sense for p — co. Among its applications,
let us mention best Lipschitz extensions, image processing and mass transport problems, see e.g.
the presentation in [MPR10] and references therein.

In the case of the non-renormalized p-Laplacian, notions of a viscosity solution and a weak
solution agree for 1 < p < oo, see [JLMO1] for the result in the Euclidean setting and [Bie06] for
the Heisenberg group. Since the normalized p-Laplacian is in the non-divergence form, the concept
of viscosity solutions is more handy than weak solutions. Let us now introduce this notion.
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Definition 3.10. Fix a value of p € [1,00] and consider the subelliptic normalized p-Laplace

equation
Afgu=0 in  QcCG. (3.6)

(i) A lower semi-continuous function w, is a viscosity supersolution of (3.6)), if for every z¢ € Q,
and every ¢ € C?() such that Vv, ¢(x¢) # 0 and u — ¢ has a strict minimum at zy € €,
we have Aé\j@qb <0in Q.

(ii) An upper semi-continuous function u, is a viscosity subsolution of (3.6)), if for every z¢ € €,
and every ¢ € C?(2) such that Vv, ¢(z0) # 0 and u — ¢ has a strict maximum at x¢ € €,
we have Alo¢ > 0 in Q.

(iii) A continuous function u is a viscosity solution of of (3.6)), if it is both a viscosity supersolution
and a viscosity subsolution in (2.

To our best knowlege the concept of viscosity solutions was first introduced by Crandall and
Lions. The main idea comes from regularizing PDE by adding a viscosity term eAwu in order to
regularize the equation and then letting ¢ — 0. For an comprehensive survey on the topic see
[CIL92| and for a more recent begginer’s guide see [Koi04].

Next, we define one of the central objects of this chapter. Fix an openset Q C G,let 1 < p < oo
and let u be a real-valued continuous function in 2. For a given x € €, choose € > 0 so that
B(z,e) C Q, we define the number p,(e,u)(x) (or simply p,(e,u) if the point z is clear from the
context) as the unique real number satisfying

lu = 1p(e, Wl 1o (5 o) = Wbl = All 1 5 ) (3.7)

The following properties of p,(e,u)(z) have been proved in [IMW17] for the setting of compact
topological spaces X, equipped with a positive Radon measure v such that v(X) < co. Here we
apply results from [IMW17] to X = B(z,e) C G and v the Lebesgue measure, cf. Proposition

In Theorem below, we summarize results proven in Theorems 2.1, 2.4 and 2.5 in [IMW17].

Theorem 3.11. Let 1 < p < oo and u € C(B(x,¢)).

(1) There exists a unique real valued p,(e,w) such that
flu — Np(@ U)HLp(m): Iglel]gllu - )‘HLp(B(z,E))'

Furthermore, for 1 <p < oo, u,(e,u) is characterized by the equation
/ [u(y) = pp(e, w)["~* (u(y) — pp(e,w)) dy =0, (3.8)
B(x,e)

where for 1 < p < 2 we assume that the integrand is zero if u(y) — pp(e,u) = 0. For p = oo
we have the following equality:

1
Loo (&, 1) = 3 ( min u + max u) . (3.9)

B(z.e)  Blae)
(2) If 1 <p < oo then it follows that
A e ) ey ey e e
for any u,v € LP(B(z,¢)). Moreover, if u, — u in LP(B(z,)) for 1 < p < oo and un,u €

CY(B(z,e)) for p = 1, then ppy(e,un) — pp(e,u) as n — oo, the same is true for any
p € [1,00] if {un} € C%(B(z,¢)) converges uniformly on B(x,e) as n — oo.
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(3) Let u and v be two functions which, in the case 1 < p < 0o, belong to LP(B(z,¢)), and in
the case p =1, belong to C°(B(xz,¢)). If u < v a.e. in B(z,¢), then p,(e,u) < py(e,v).

(4) pple,u+c) = pp(e,u) + ¢ for every c € R.
(5) pp(e, cu) = cupy(e,u) for every c € R.

Observe, that by (3.8) there holds ps(e,u) = fB(m owand 1 (e, u) is a median of u over a ball

B(z,¢). Recall, that A € R is a median of function u over a set A if the measures of sub- and
super-level sets at level A are equal.
The following is a generalization of [IMW17), Corollary 2.3] in Carnot groups of step k:

Corollary 3.12. Let u € LP(B(z,¢)), for 1 < p < oo, or in C°(B(z,¢)) for p = 1. Let uc(z) =
u(xd.(z)) for z € B(0,1), then
pip(e, u) () = pap(1, ue)(0).

Proof. For every A € R and 1 < p < oo it holds:
0= N anoy = [ €)= AP de
B(z,e)

_ cortrton / e (€) — AP de
B(0,1)

= gur2vatdho )y, )\HZJ;P(B(O 1)

and
v = Al Lo (B(z,e))= lue = ML= (B(0,1))
and the conclusion follows by (1) in Theorem O
Next we state carefully what is meant by the statement that the asymptotic expansion of the

function w in terms of p, holds in the viscosity sense, see (3.7) and Definition First, we need
the following auxiliary definition.

Definition 3.13. Let h be a real valued function defined in a neighbourhood of zero. We say that
h(x) < o(2?) as z — 0T

if any of the three equivalent conditions is satisfied:

h
a) limsup @
r—0+ z

<0,
b) there exists a nonnegative function g(x) > 0 such that h(z) + g(z) = o(2?) as z — 0T,

h+
c) lim (2x) <0.
rz—0t T

A similar definition is given for h(z) > o(z?) as z — 0T by reversing the inequalities in a) and
¢), requiring that g(x) < 0 in b) and replacing h*t by A~ in C)B

Let f and g be two real valued functions defined in a neighbourhood of zy € R. We say that f
and g are asymptotic functions for x — xg, if there exists a function h defined in a neighbourhood
Vo of 2o such that:

(i) f(z) =g(z)h(z) for all z € Vy, \ {zo}.
(ii) limgy_z h(x) = 1.

If f and g are asymptotic for x — xg, then we simply write f ~ g as * — x.

L As usual, we denote by ht(z) := max{h(x),0} and h~(x) := — min{h(z),0}.
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Definition 3.14. A continuous function defined in a neighbourhood of a point x € G, satisfies

u(@) = py(e,u)(@) + o(€),
as ¢ — 07 in the viscosity sense, if the following conditions hold:

(i) for every continuous function ¢ defined in a neighbourhood of a point « such that u — ¢ has
a strict minimum at x with u(z) = ¢(x) and Vy, ¢(z) # 0 , we have

$(x) 2 pp(e, 9)(x) + o(e?), ase— 0F.

(ii) for every continuous function ¢ defined in a neighbourhood of a point = such that v — ¢ has
a strict maximum at z with u(z) = ¢(z) and Vy, ¢(x) # 0, then

6(2) < yle, B)(@) + o(€?), s e — 07

3.3 The proof of Theorem (3.1

In order to prove Theorem we need the following key lemma. The proof of the lemma in full
generality is presented in |[Ada+20]. In the next part of this thesis we present statements and
proofs of special cases of this lemma in two cases: G being the Heisenberg group and a general
Carnot group G of step 2. The Heisenberg group is a model example of a Carnot group of step 2,
hence understanding the proof in this case is a first step towards the more general case.

Lemma 3.15 (cf. Lemma 3.1 in |[Ada+20]). Let G be a Carnot group of step k. Moreover, let
0 C G be an open set and x € Q be a point such that B(x,e) C Q for all small enough € < gg(x).
Let 1 <p < oo and £ € R\ {0}, n € RY2. Let further A be a symmetric vy X v1 matriz with trace
tr(A). Moreover, consider the quadratic function q : B(xz,e) — R given by

a(y) = (@) + (& (@7 y) Do + (0, (27 )P )zee + %<A(~”fly)“)a (@ 'y)M)rer,  y € Bla,e),

(3.10)
where (z= 1)V and (z71y)? are the horizontal and the vertical components of =y, respectively
and {-, Ygv1 and (-, )gv2 denote the Fuclidean scalar products on R** and RV2, respectively. Then
it follows that

A, Epor
e, 0)(o) = ala) + <% (1) + (p = 9SG ) o), (3.11)
where
Vg p+2f;11 Jvj v, p+ ]:11 en
1 B (Q(kkl)!’ 2(k—1)! + 1) k-1 B <J2k'7 % + 1)
c:=c(p,v1y...,0) = H

2 _ k—1 v v — jili’vi
(“”1)3( by P 2+ij+1) j_28<%,w+2“+1>

22— 2(k—-1)! 2!

and B (z,y) denotes the Beta function B (x,y) = fol t*=Y(1—t)¥=Ldt for all x,y > 0. Furthermore,
if u € C?(Q) with Vy,u(x) # 0, then

pp(e, u)(z) = u(x) + CAZIXGu(x)EQ +0(?), as e—0". (3.12)
In the proof of Lemma [3.15] we employ the following integral formula.
Lemma 3.16. Let ag,...,a, be real numbers such that a; > —1 fori=1,...,n. It then follows
that . _—
/ 2l dy = ;Hii;fzz ) (3.13)
I(—=—)

Tn

where T, = {(xl,...,xn) ER a2+ ... +22 <1, 2;>0 fori= 1,...,n} and T' denotes the
gamma function.
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Proof of Lemma[3.16 Let a,b > —1. Upon applying the change of variables t = sin’ x, we obtain
the following equation:
z 1
2 . b / a b / (a +1 b+ 1)
sin® x cos’ xdx = t2(1 —t)2 ———— B ,—
/0 0 -1 2Vt \/1 - 2 2
where B stands for the beta function.

Now we are in a position to calculate the left-hand side of (3.13). We apply the spherical
coordinates

T1 = T COS Y1
To = r8in (1 COS P2

T3 = 7 sin 1 Sin @9 Cos 3

Tp—1 = TSN SINEYs - ... COSPYy_1
T, =Trsin;sings - ... sinp,_1
with the Jacobian determinant |J|= 7"~!sin"~ 2p1sin" 3y - ... - sing,_y and the spherical

coordinates varying as follows: r € (0 1), ¢; € (0,7/2) for i =1,...,n — 2. The result is

Tn

itn=3 L cos®n ot g, _q sin®” @n_l] dpy ...dp,_1dr

— 1 18 Z?:Zai—i_n_l ap+1 IB 2?23042“"71—2 as +1
_n+§j L2 2 ) 2 2 T2

58 (Oln—Fl’Oln_l—Fl)’

- cos™? o (sin @2)2;:3

2 2
which is equal to the right-hand side of (3.13)) upon using the well-known formula B(z,y) =
L(x)I(y) 0
C(z+y) *

Let us comment about the differences between the above Lemma and [IMW17, Lemma
3.1].

Remark 3.17. (1) The quadratic polynomial ¢ in formula (3.10) is defined for any Carnot
group of step k and differs from the original one studied in R", cf. [IMW17, Lemma 3.1].
The formula for ¢ reflects the dependence of ¢ on the first two layers of G.

(2) The geometry of gauge balls in Carnot groups is far from Euclidean and nontrivial in com-
parision: balls are flattened at the characteristic points (at poles) and possess less symmetry
than balls in R™. A noticable difference in comparison with [IMW17] is the appearance of the
Beta function which is not present in the Euclidean case and can be viewed as consequence
of the stratification in the geometry.

(3) Our proof for the case p = oo differs from the corresponding one in [[IMW17], as it requires
appealing to results in [FP15]. Indeed, the geometry of gauge balls in general Carnot groups
makes obtaining limits in and a subtle and highly nontrivial task, see the proof
of Lemma 1.6 in [FP15] and the discussion following its formulation in [FP15] on pg. 207.

Remark 3.18. The formula describing the constant ¢(p, vy, . ..,v;) is complicated and not easily
simplified using the properties of the Beta function.

Example 3.19 (The Euclidean space RY). If G is the Euclidean space RY then e(p,v1, ..., Uk)
agrees with the constant computed in [IMW17], namely
1

N Sy
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When the Lemma, [3.15| is proven, the proof of Theorem relies on careful use of Definition
3.10] and Definition [3.14]

The proof of Theorem [3.1} Let B(z,r) C Q be ball and let us fix u € C°(Q) and ¢ € C?*(B(z,r))
with Vy, ¢(x) # 0. The asymptotic formula (3.12]) implies that

o(z) = pple, o) () — clp,v1, . .. ,Uk)A:fXG (x)52 + 0(52)7 as € — 0. (3.14)

Suppose that u is a viscosity solution, in the sense of Definition to the equation Ai)\{@u =0
in . Thus, in particular, u satisfies parts (i) and (ii) of Definition Since u is a viscosity
supersolution of Af)\f@u = 0 in ©, then at point z, for ¢ as above such that u — ¢ has a strict
minimum at z and u(z) = ¢(x), it holds that AYcé(x) < 0. Therefore, from (3.14) we obtain

$(@) > pp(e, u)(@) +o(e?), as =0,

which proves that ¢ at x satisfies part (i) of Definition By using the fact that w is also a
viscosity subsolution (and so w satisfies part (ii) of Definition we show that inequality in
part (ii) of Definition holds as well. This proves that u(x) = (e, u)(x) + o(?) as € — 0 in
the viscosity sense.

Now we will prove the converse. Suppose, that u(z) = p,(c,u)(z) + o(e?) as ¢ — 0 in the
viscosity sense. If u — ¢ attains a strict minimum at x, then by Definition it follows that

d(x) > ppy(e, d)(z) + o(e?) as e — 0. Using this result in (3.14)), we get

Aﬁ@@b(ﬁﬁ) — :U’P(Ead))(z) — ¢(l‘) _|_0(1) < 0(1),

e(p, vy, ..., vg)e2

as € — 0, and hence A;j\f@qb(x) < 0. We apply a similar reasoning in the case u — ¢ has a strict
maximum at x. This proves, that u is a viscosity solution of Aé\{@u =0in Q. O

Remark 3.20. Mean value formulas similar to the ones proved in Theorem have been used
in [LMR20] to study random walks and random tug of war in the Heisenberg group. In [LMR20],
the authors implemented the approach of Peres-Sheffield [PS08| to provide a game-theoretical
interpretation of the p-Laplacian in the Heisenberg group, they also characterized its viscosity
solutions via an asymptotic mean value expansion similar to the one proved in [MPR10]. We
expect that our result could be used to generalize [LMR20] to general Carnot groups.

3.4 Lemma in the Heisenberg group Hj

In this chapter we state and prove the special case of Lemma [3.15 when the Carnot group G is
assumed to be the Heisenberg group.

Lemma 3.21. Let Q C H; be an open set and x € Q be a point such that a ball B(x,e) C Q for
all small enough radii e < eq(z). Let 1 < p < oo and £ € R?\ {0}. Let further A be a symmetric
2 X 2 matriz with real coefficients. Moreover, consider the quadratic function q : B(z,e) — R given
by

1

q(y) = a(@) + (& (@ 'Y)n) + wlz " y)y + §<A(I’1y)h, (z7'y)n), y € Blx,e), (3.15)

where (x7'y), and (x~'y), are the horizontal and the vertical components of x~ 1y, respectively
and w € R is fized. Then it holds that

(e q) = a(a) + 2C(p) (tr(A) -2 <j‘§|§>) oe?), (3.16)

o 2
forC(p) = (p+2)2(p+4) EE%;) . Furthermore, if u € C?(Q) with the horizontal gradient Vv, u(x) =

Vau(x) # 0, then it holds
pp(e,u)(z) = u(x) + C(p)Aé\{IHhu(ac)E2 +o(e?), as €—0. (3.17)
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Proof. In the proof we follow the steps of the proof of Lemma 3.1 in [IMW17]. However, since
the setting of Carnot groups differs from the Euclidean one, the computations are to some extent,
more demanding and nontrivial.

We begin with computing u,(e,q). For z = (21,22,23) € B(0,1) =: B we introduce the
following

02 = a@on(2), w2 = FETID g o(e) = (6, (o1, 2) = (620
We know that p,(e, ¢)(x) = pp(1,¢-)(0) by Corollary Then, by parts (4) and (5) of Theorem

[3:10] we see that
p(e; q)(z) — q(x)
€

= ,Up(lvvs)(o)-

Let us observe, that
ve(2) = % ((f,ée(z)h> + %(Aée(z)h, dc(2)n) + a(5€(z)3> = (& zn) + %(Azh, zn) + wezs, (3.18)

which shows that v, converges uniformly to v as ¢ — 0 on B. We appeal to the second part of
claim (2) in Theorem to obtain that g, (1,v:)(0) — pp(1,v)(0) as € — 0. Recall that the
characterization of A = y,,(1,v)(0) given by in Theorem states that if p € [1,00), then
A is the unique number such that

/B (€3 — AP2((€, ) — A)dy = 0.

On the other hand
/ (€, yn) P2 (€, yn))dy = 0,
B

which follows from the symmetry of the unit ball and the following natural change of variables

Q(y1,y2,¥3) = (—y1,92,93), |Jal=1, @(B)=B.

It now follows that y,(1,v)(0) = A =0.
If p = oo, then by (3.9):
1

o (1,0)(0) = 3 (i, ) + max(s, on) ) = 5 (eI =

Next, we split the discussion into the cases depending on the value of p. Let us define

v - up(s,q)(;) —q(x)

3.4.1 Casel:1l<p<oo

For the sake of brevity we introduce a function f(s) = |s|P~2s. Then, upon applying (3.8) to
tp(1,v:)(0) = 7. we obtain

/ f(ve(z) —eve)dz = 0.
B
By using (3.18)) this can be transformed to the following expression:
1
/ f ((f, zn) +e€ <2<Azh, Zn) — Ve + w23>> dz = 0. (3.19)
B
Without loss of generality we may assume that |{|= 1, since otherwise we can consider the quadratic

function ¢ = ¢/|¢|. Let us apply the change of variables z = (21, 22, 23) = (R(y1,¥2),y3) in (3.19),
where R is a 2 X 2 rotation matrix
R = |:£1 _52:| )

& &
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Notice that RT¢ = e; = (1,0,0). Set C = RT AR, then (3.19) reads

/ f (yl +e (;(Cyh,yh) — 7%+ wys)) dy = 0.
B

Since fB f(y1)dy = 0, it follows that for all £ > 0, we have:

é/Bf (y1 +e (;(Cyh,ym e +wy3>> — fy1)dy = 0.

Therefore, by the Fundamental Theorem of Calculus, we have:

/B [/01 f <y1 + te (;<Cyh7 Yn) — Ve + wy3>> dt} (;(Cyh,yh> — 7 + wy3> dy=0. (3.20)

Equality (3.20]) implies that v, is a weighted mean value of the function %(C’yh, Yn) + wys over B
with respect to a weighted Lebesgue measure w(y)dy for

1
1
w(y) = / I <y1 +te (2<Cyh,yh) — 7+ wy3)> dt, ye€B.
0
The weight function w is nonnegative since f’(s) = (p — 1)|s|P=2> 0. Therefore, 7. is bounded by
€= H%<Cyhayh> + wyBHLOO(B)'

Let us consider any subsequence of (7.) converging to v as ¢ — 07, which for the sake of
brevity, we also denote by (7). Let us consider two cases. If 2 < p < oo, then for all y € B we

obtain
t, 1 1
/f y1 +te §<Cyh,yh>—%+wy3 dt §<Cyh7yh>—%+wy3
0

1 p—2
<2c(p— 1)/
0

dt < 2¢(p — 1)(1 4 2ce).
Therefore, by the dominated convergence theorem the sequence (v.) converges to

1
Y1 + te <2<Cyh,yh> — Ve + wys)

o = lim 7. = Jply P72 (5(Cyns yn) + wys) dy (3.21)
0 - e—0 '€ fB|y1|”_2dy . .

Let now 1 < p < 2. Fix 0 < € < 1 and split the integral (3.20) into two parts: over the set
Gy := BN {|y1|> 0} and Fy := BN {|y1|< 6}. Observe that for all y € Gy and for all ¢ > 0
satisfying 2ce < 6, we have the following;:

! 1 1
/ I <y1 +te <2<Cyh,yh> — % + wy3)> dt <2<Cyh,yh> —Ye + wy:a)
0

< 2¢ ||y |—2¢e)P 2.

Moreover,
lim/ ||y1|—2cs|p72dy:/ |y1\p_2dy</|y1\p_2dy, (3.22)
e—0 Gy Gy B

where the inequality holds uniformly for all 8 € (0,1). Furthermore, the last integral turns out
to be finite which can be seen from the explicit calculation below in (3.23)). Hence, by applying
Theorem 5.4 in [IMW17] to X = Gy with v being the Lebesgue measure, we obtain the following:

. ! 1 1
hr%/ / f’ <y1 + te <2<Cyh; yh> — Ve + wy?,)) dt <2<Cyh7yh> — Ye + wy:,)) dy
E— GG 0

1
= / (p— 1)y |P~? <2<Cyhayh> + wys —70) -
Go
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Observe that here the upper bound in allows us to conclude that the limit as § — 07T is
finite. We now focus on the part of the integral in involving the set Fy. Since |Fy|= fFe 1dy,
then upon writing this integral as in (3.23), one sees that |Fy|= c(k), and so |Fy|— 0, as § — 0T.
Moreover, it suffices to consider § = 205 and the related fF Hy1|—2cs|pf2 dy. We again appeal
to integral ((3.23] - ) and reduce our computations to finding

/ (2cz — |y )"~ dyn,
D(0,7)N{|y1|<2ce}

D(0,r) denotes the disc centered at 0 with radius r. However, direct computation shows that this
integral is of order e?P~!, which then allows us to let ¢ — 01, and in turn conclude (3.21)).

In order to approach the proof of (3.11)), we first need to compute integrals in (3.21f). We
begin with computing the denominator of (3.21). Once this is completed, the computation of the

numerator will be more straightforward.

1
= / P 2dy = / / P 2dydys | dys, (3.23)
B -1 D(0,¥/1—y2)

where B = {(y1,92,93) : V¥ +y3 < /1 — y3}. In general we have

r27y ) r \/@ Ly
/ ly1 [P 2dyrdys = / / ly1 [P~ dy1dys = 4/ / Y1 dyidys
D(o,r) —r r27y 0o Jo

_ 4rP 1 _
:p—l (Tz—yz) 21dy2:pi1/0 (l—zz)pTldz (3.24)

2rP 1 2rP 1 p+1
= 31— )T dt = B =
p_l/ )T = 2 (2, ! )

where B stands for the beta-function. Here we also use the change of variables: yo = rz in the
second line and 22 =t in the last line. Inserting this into I we obtain

2 1 p+1 ! o 2 4 1 p+1\ [! o 2
I=—"B|=-,—/= 1-— dys = = 1-— d
p_13<27 5 )/1( y3)*dys p—1B(2’ 5 /0( y3) T dys

_2 1 p+1 _%_%_2 1 p+1 1 p+4
_13(2 ! )/t (1-1) dt—p_18<2, : >3(2,4 )

Next we consider the integral in the numerator of (3.21f), namely

1
J = / ly1|P~2 <2<Cyh»yh> +wy3> dy.
B

I\IOtiCG7 that fB y3|y1|p_2: 0. Let C = |:;)L IC):|’ then <Cyh’yh> = ay% + 2by1y2 + cy% Therefore,

2J=a/ Iyll”dy+2b/ Iyll”’zylyzdy%/ Iy P y5dy .
B B B

J1 J2 J3

Observe, that by the symmetry of B the middle integral Jo = 0. We deal with J; and J3 analogously
to I computing the following integral

rzfy2 4 r —
/ ly1 [Py dyrdys = 4/ yg/ dyrdys = —— | Y3t —y3) T dye
D(0,r) p—1

0

QP2 o 9rP+2
= /22(1—,22)%612: ! / F(1— ) at
0 0

p—1 p—1
72#”8 3 pt1
Cop—1 27 2 ’
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where again we used the change of variables y» = rz and 22 = t. Notice, that ([3.24) works for

an arbitrary p > 1. We use this observation to obtain that fD(O T)|y1|pdy1dy2 = 2;:1 B (%7 p—;?’)

Next, we focus our attention on .J; and Js:
2 1 p+3\ [! o\ 22 4 1 p+3 /1 b2
Jy=—DB(=,— 1-— 1 dys = Bl = 1-— d
1= 208350 [ a-wFan= s (5050 [a- @ Fan

2 1 p+3 vy pt2 2 1 p+3 1 p+6
-~ Bz 22 1— dz = - 27
p—&—lB(Z’ 2 >/0 273 2) T dz p—l—lB<2’ 2 >B<2’ 4

2 3 p+1\ /! o pt2 2 3 p+1 1 p+6
== B2 1- dys = ° S BT
& p—18(2’ 2 )/1( ya) * dys p—1B(2’ > )8 22

We sum up our calculations and upon dividing J by I we arrive at the following:

_J 5 1p+6 15(1 P2) + ;5B (3. B
R A S LI D

27 2

(3.25)

In order to simplify the fraction in (3.25) we need to recall the following property of the beta
function: B(z,y +1) = 4 B(x,y) and B(z + 1,y) = ;7 B(x,y) which follows from the relation
between the Beta and Gamma function and the identity F(m—f—l) = zI'(x). We apply these identities

to get
1 3 1 1 1 3 1 1 1 1
sy _ptlgflptl)y g2 ptly_ 1 g(lprtl)
2 2 pr2o\2 2 > 2 ) T pr2o\2 2

We apply these formulas in the numerator of (3.25) to obtain the following

1 p+6 1 p+1 EERR )]
cen o)

2" 4 2° 2 ) HB(5,52)B (5,47
_ <—w+cBe—%J_ alp—1)+c T (29’

20+2) B(3,2%)  20+2) T(E)r(EP)

ey
_9 ¢ 4
(p+2 p+4 < T (&) >

In order to finish this part of the proof, we express coefficients a and ¢ of matrix C in terms of
matrix A and the horizontal vector £. Recall that C' = RT AR, which implies that

a=Elan + 2&6sa1a + E3aze  and ¢ = Earr — 2&12a12 + Efass.

Therefore, a = (A, €) and ¢ = tr(C) — a. Noting that tr(C') = tr(A), we conclude that

_2um—2an£>+tMA><F(¢T)>2
_ Al

p+2p+d)  \T (2

Then, upon substituting & with £/|¢| we arrive at the assertion (3.16)).
We now consider the second assertion of the lemma, namely the asymptotic formula (3.17)) for
pp(e,u) and u € C%(€2). Suppose € > 0 is chosen so that B(z,e) C 2. Consider the function g(y)

as in (3.15)), with

ou

q(z) =u(z), €=Vgu(x), A=Viu(z), and 7= 26‘ (z).
3
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Notice that with this notation (and by the assumption & # 0), it holds that

(4¢,6)
ISE

Set uc(2) = u(xd:(2)) and ¢-(2) = q(x6-(2)). Since u € C?(Q), it follows that for all t > 0,

there exists £(t) > 0 such that for every z € B and all € € (0,2(¢)) it holds |u.(z) — g.(2)|< te2.

Furthermore, by claims (4) and (5) of Theorem we have p, (e, q % te?)(x) = p,(e, q)(z) £ te2.
These observations together with Corollary and Part (3) of Theorem allow us to obtain

the following estimates:

ANz ule) = tr(A) + (p - 2)

pp(e,q) — u(x)
e2

Applying (3.16]) we obtain

pp(e, ) —u(x) _ pple, q) — ulz)

3 < 5 +t.

—t<

N e bn(E:9) —u(x)
Cp)Aym,u(z) —t < IIIEIl}glf s
< limsup M < C(p)Af,\leu(x) +t,
e—0

which implies the assertion (3.17) for 1 < p < oc.

3.4.2 Case 2: p=o00

We need to show that there exists the limit of the following expression

- M (3.26)
- % (222 [<§>Z/h> +e (wyg + ;(Aymywﬂ +max |:<€7yh> +e (wy3 + ;(Ayh,yﬁﬂ )

Let us define a function g : Hy — R with g(y) = (£, yn) +wys + %(Ayh, yn). Observe further, that
by z := d0.(y) there holds

. 1 1 .
min [<€,yh> +¢ (wys + (Ayh,yh>)] =— min g(z),
yeB 2 € 2€B(0,9)

and

1 1
max |:<£ayh> +e <wy3 + <Ayh,yh>)] = - max g¢(z),
yEB 2 € 2€B(0,¢)

and it follows that

Ve ! < min g¢(z) + max g(z))

T 222 \ LB 2€B0,9)

Furthermore, notice that Vi g(0) = £ # 0. Therefore, we apply Lemma 3.1 and 3.2 in [FLM14] to
obtain, that for all small enough ¢, there exist points PM = (zM yM M) and P™ = (2™, y™,t™)
in 0B(0,¢) with the following properties:

max g = g(z,yM,t2), min g = g(a?, y", t7").

g V7€
B(0,¢) B(0,¢)
Moreover,
M M m ,m
lim Feo¥e) _ &g @) € (3.27)
e—0 3 |§| e—0 € |£|



We use these to estimate (3.26]) in the following way

1 m m 1 . 1
5z (") +9(=P") < o5 <Z€r§£€)g(2)+z€rr;?;fs)g(2)> < 5z (9P + g(=P2")
(3.28)
Compute
53 (0(PM) +g(=PM)) = g (A y2), (2, y2)) + (A=, ), (=2, —y21))
L (w14
() ()

We treat the left-hand side of (3.28) similarly to conclude that

£ (A6, 6)
2 [¢?

fioo(2,q) = q(x) + + o(e?).

We are now in a position to show the second assertion of the lemma, namely the asymptotic

formula (3.17) for p,(e,u).
Let € > 0 be such that B(z,e) C Q. Consider function ¢(y) as in (3.15)) with

a(e) = ul@), €=Vaulz), A=Tiu@), w=2-"().
T3

Notice that with this notation

(4¢,6)
(S

Set ue(z) = u(xd.(2)) and ¢.(z) = q(x6(2)). Since u € C*(2) it holds that for all n > 0 there is
e =&(n) > 0 such that for every z € B and all € € (0,&(n)) it holds

Ayl u(r) = tr(A) + (p - 2)

lu(2) — ge(2)|< ne®.

Furthermore, by parts (4) and (5) of Theorem we have p,(g,q £ ne?)(z) = py(e, q)(x) £ ne.
These observations together with Corollary and Part (3) of Theorem allow us to obtain

the following estimates:

By applying (3.16]) we obtain

—u(x . £,q) —u(x
C(p) Ay, u(z) —n < hgg)lf% < llr?jélp% < C(p)Apiz, ulx) +n,

2 r(e5e) ’
where C(p) := (p+2)(p+4)< (F)) .

3.4.3 Case3:p=1

Recall, that by the discussion at the beginning of the proof of Lemma“ cf. - the unique
number 7. for p = 1 is defined with the following equation

€ €
Hz € B:(§zn) + §<Azh»zh> +wezz < evetl={z € B: (& 2n) + §<Azh,2h> +wezg > 7.}
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We apply the same change of variables via the matrix R, as described in the paragraph following
formula (3.19)) (for the sake of simplicity we still use the variable z) and divide both inequalities
by € to arrive at

{zeB:—= —|— <C’zh,zh> +wzz < }=|{z€B:— —|— <C’zh,zh> + wzz > Ve - (3.29)

We again assume that |¢|=1 and let C = RT AR, where R denotes the rotation matrix as defined
in the discussion following (3.19)). Equation (3.29) means that for each fixed & > 0, 7. is the median
w1 (1, h) =: py(h) of the function h : B — R defined with the following formula

z 1
h(z) := —1 + = <C’zh,zh> + wzs.
Denote by ¢ := H%(C’zh, zh||Loo(B) < 00. Let us observe, that by monotonicity of y; and property
(4) in Theorem we obtain the following estimates
2
1 (— + wzs + c’) (3.30)
€

Z1 /
M1 (?+w23) +c,

z 1
Ve = 1 (1 (Czh, zn) + w23>

IN

and

—_

2
> (i + w23 — c’) (3.31)
€

= (Z—l + w23> —c.
€

Ve = 1 (1 + = (Czn, 2zn) + w23>

Let us observe, that for all € > 0 we have
<1 2!
{z € B: ;—szg <0}=|{z€B: ?—szg > 0}.
since the two quantities are equivalent under the change of variables z — —z. It then follows that
z
M1 (;1 + sz) = 07

and estimates (3.30) and (3.31]) reads —¢’ < . < ¢. Hence 7. is bounded, and after passing to a
subsequence, there exists vy := lim._g 7e.
Now let us apply the following change of variables to both sides of (3.29)

(21,22, 23) = (€21, 22, 23) =: €211 + Z,

where Z := (0, 29, z3). The Jacobian of this transformation is constant, hence it cancels out on
both sides and (3.29)) becomes

~ 1
e € B e + < 1 o+ (5(Clemn ) (om0 wia ) <)
X (3.32)
=z eR®: |eziey + Zlm, < 1, 21+ <2<C’(5z1,z2), (ez1,22)) + w23> > e H-

Let us denote by B := {(z2,23) € R? : |(0, 22, 23)|s5, < 1} and consider a function F : {z € R? :
lezier + Z|m, < 1} — R defined by

F(z) =2 + (;(C’(szl, 29), (€21, 22)) + w23> .
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For small e, we are going to represent the intersection of the boundaries of sets in (3.32)), i.e., the
surface {F(z) = v. : |ez1e1 + Z|lm, < 1}, as the graph of a function of the form Z — g.(2)e; + 2

where g. : B — R.
Let us observe, that the derivative F,, can be estimated from below:

F. (2) =14 ¢€%c1121 + eciozp > %
for € sufficiently small. This follows from |ez1e1 + Z|g, < 1 and the fact that
—e(|ern| + |erz]) < €2er121 + ecraza < e|enn| + |erz)-
Hence, for a fixed Z € B the function z; — F (z1€1 + Z) is monotone increasing and, therefore,
has an inverse denoted h. z(t). It follows that F'(h. z(t)er + Z) =t and ge(2) = h. z(7.) is a point

in the intersection of the boundaries of sets in (3.32)). Furthermore, let us observe that, possibly
after passing to a subsequence, the following limit exists for all z € B

1
ge(2) = 70 — §c22,z§ —wzz ase— 0. (3.33)
Indeed, for all Z € B the equation F (ge(2)e1 + Z) = e equivalently reads:

9o(2) + 5{C(ege(2),22), (692(2), 2)) + w3 = 7z

From this we get that

1 - -
9:(2) + 5 (5201195(2) + 2ec129:(2) 22 + 02225) + wzz = Ve,

which for fixed Z and ¢1; # 0 is the following quadratic equation in g.(Z):

2
~ €7C11
92(2)

B 1
+9:(2) (1 + 2eci222) + 50222’% +wzz — 7. =0.

Therefore, g.(Z) has to be either equal to

o —l—2ecipzm + \/(1 + 2ec1222)% — 2e2¢1; (2c2222 + wag — )

9:(2) = e2cpy ’

or equal to

9:(2) =

—1 —2eci920 — \/(1 + 2ec1222)% — 2e2¢1; (2c2222 + w2z — )

€2cqy

Observe, that the second solution is of order e~2 and hence does not lie in the set
{z:]ege(2)er + Zlm, < 1}

for ¢ — 0%. We consider the first solution, which after simplification reads

2 (e — Leoozd — wa2s)

9:(2) =

\/(1 + 2661222)2 — 262011 (%cng + wzz — ’}/5) + 1+ 2ec1929

If ¢17 = 0, then
1

9e(2) (1 + 2ec1222) = Ye — 502225 — wzs.
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Therefore, we conclude (3.33)). Thus, we can represent the measures of the sets appearing in (3.32))
as integrals, and obtain the following

[ min {02 (3), Ge(5)} + Ge(2)] d5 = / (Ce(3) — max {g.(5),G-(5)}] d7,  (3.34)
B B

Ge(2) ::é \J1—22 — 22

The function G is the non-negative solution z; to the equation |ez1e1 + Z|g, = 1 describing the
boundary of B. Observe, that ([3.34) is equivalent to

where

/ [min {g.(2), Gc(2)} + max {g-(2), G:(2)}] dZ = 0. (3.35)
B
Applying the dominated convergence theorem to the case ¢ — 07 in ([3.35) we obtain that

1
/ (70 — —cCpp2s — ng,) dz =0. (3.36)
B 2
The symmetry of B shows that J53wzs =0 and so (3.36) becomes

C22

22dz. (3.37)
2 /B

Y =

Let us calculate the above integral

(1— 23)4 1 9 3
/ dz = / zgdzgdzg / / zgdzgdz;g = / —(1- zg)zdz;g
{zd+422<1} (1-22 13

t_z22 3 1 2 71
== 1— d =3 1—¢t)at 2dt==-B|-,=-|.
3/0( )tz 3/0( )it 3B<4’2)

We follow the above reasoning to compute the measure of B in the following way

1

(1-z3)3 L 1 ti=z2 L 1 1 51
|B|7/ / ldzydzs = / 2(1 — 223)7dzs :32/ (1—t)it 2dt = 2B ()
1— z3)4 -1 0 472

We sum up the above calculations to rewrite (3.37)) in the following way

Therefore,

5) (rA . <A£,s>>
g\ e )

which follows from the same argument used in the case 1 < p < oo, and the same reasoning allows
us to conclude (3.11]) and (3.12) for p = 1 as well. Thus, the proof of Lemma is completed for
all 1 <p < . O

3.5 Lemma in the Carnot group of step 2

In what follows we are going to prove Lemma in the setting of Carnot groups of step 2. In
order to obtain this result, we need to find a generalization of Lemma for Hy. Observe, that
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a reasonable counterpart of the formula for the quadratic function g would arise from the Taylor
expansion in step 2 Carnot groups. In the next lemma we deal with a step 2 Carnot group G
(recall Definition for k = 2). For the sake of brevity let us denote by n := vy and k := vy the
dimensions of subspaces V7 and V3, respectively. Recall, that we compute the distance to 0 of an
element x = (x(l), m(z)) =(T1,--,Tn, Tnt1,- -, Tn+k) € G by using formula :

1
4

1
d0.2) = (@3 +..+22) + o2+ o+ 220) " = (le Ol + 121 )
Then, the following result is a generalization of Lemma [3.21] to the Carnot groups of step 2.

Lemma 3.22. Let G be a Carnot group of step 2. Moreover, let Q) C G be an open set and x € Q)
be a point such that ball B(xz,e) C Q for all small enough radii ¢ < eg(x). Let 1 < p < 0o and
¢ € R"\ {0}, n € R¥. Let further A be a symmetric n X n matriz with real coefficients. Moreover,
consider the quadratic function q : B(x,e) — R given by

a(y) = a(@) + (& (a7y)D)rn + (0, (@7 y)P)gr + %(A(x’ly)(”, (') M)z, y € B(x,e),
(3.38)
where (x7 1)) and (x=y)?) are the horizontal and the vertical components of x~ 'y, respectively.
Then it holds that

(e, q) = a(x) + EC(p,m. k) (tr(A) A <"|1§|’f>) o), (3.39)

for C(p,n, k) := 2(n1+p) B(;H%Q;. Furthermore, if u € C?(Q) with Vv, u(z) # 0, then it holds

wp(e,u)(z) = u(x) + C(p)AiXGu(x)EQ +o(e?), as e—0. (3.40)

Proof. The proof goes verbatim to the proof of Lemma We begin with computing (e, q).
For z = (21, 2(?)) € B := B(0,1), where B denotes the unit open ball in G:

B= {zER”"‘k t( ) 2, <1}
we introduce the following

(2) —q(x
() = ez, vl = EEAD and o) = 6 (1, s = 162
We know that 11, (e, q)(z) = pp(1, ¢-)(0) by Corollary [3.12] Then, by points (4) and (5) of Theorem

we see that

pip (e, Q)(:) —a(@) _ 1p(1,v2)(0).

Let us observe, that

) = 2 ({6010 4 A8 8} + (0,0,

(3.41)
= (6 2M) + 2 (4=, 20) + £(n, 22).

Therefore, v. converges uniformly to v as € — 0 on B. We appeal to the second part of claim (2) in
Theorem [3.11] to obtain, that (1, v:)(0) — 41,(1,v)(0) as € — 0. Recall that the characterization
of A = pp(1,v)(0) given by in Theorem states that if p € [1,00), then X is the unique
number such that

/B (€™ — AP2((€. 5 D) — Ay = 0.
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On the other hand
[ e i =0
by symmetry of the unit ball and the change of variables
q)(y(1)7y(2)) = (_ylv_yQa"'7_yn7yn+1a"'7yn+k)a |J<I>|: ]-7 q)(B) = B.
Therefore, p,(1,v)(0) =A=0.
If p = oo, then by (3.9):

(=[€[+Igh) = 0.

N =
N |

oo (1,0)(0) = (m;n<€,y(”> n mgx<s,y<l>>) _

Subsequently, we define

_ Hp(5,9)(x) — q(x)
Ye = 5 :
9

3.5.1 Casel:1<p<x

For the sake of brevity let us introduce a function f(s) = |s[P~2s. Then, upon applying (3.8) to
tp(1,v:)(0) = e, we obtain

/ f(ve(2) — eve)dz = 0.
B

By using (3.41)) this can be transformed to the following expression:

/Bf (<g, W) ¢ (;(Az(l),z(l)> — e + (n, 2(2)>)> dz = 0. (3.42)

Without loss of generality we may assume that |£|= 1, since otherwise we can consider the quadratic
function § = ¢/|¢|. Let us apply the change of variables z = (2(V), 2(2)) = (Ry(™,4?) in (3.42),
where R is a n x n rotation matrix with RT¢ = e;. Set C = RT AR, then ([3.42)) reads

/Bf (zn te <;<0y(1),y(1)> — e + <n,y(2)>>> dy = 0.

Therefore, by the Fundamental Theorem of Calculus, we have:

1
1 1
/ U f <y1 +te <2<Cy(”,y<”> 7+ <n,y<2)>>> dt} <2<Cy(”,y(”> — 7+ <n7y(2)>) dy = 0.
B LJo
(3.43)
Equality (3.43)) implies that 7. is a weighted mean value of the function %(C’y(l), y Oy + (n,y@)
over B with respect to a weighted Lebesgue measure w(y)dy for

! 1
w(y) = / ! (y1 T te <2<Cy(”,y“)> — e + <n,y(2)>>) dt, y€B.
0

The weight function w is nonnegative since f’(s) = (p — 1)|s|P=2> 0. Therefore, 7. is bounded by
c:= [3(Cy D, yD) + (0, yD)|| Lo ()
Let us consider any subsequence of (v.) converging to 79 as ¢ — 0%, which for the sake of

brevity, we also denote by (7). Let us consider two cases. If 2 < p < oo, then for all y € B we
obtain

! 1 1
/ f (yl T te <2<Cy(”,y(”> -7+ <n,y(2)>)> dt <2<Cy(”,y(”> -7+ <n,y(2)>) ‘
0

1 p—2
< 2¢(p — 1)/ dt < 2¢(p —1)(1 4 2ce).
0

1
y1 + te <2<0y(1), y W) — 7. + (n, y(2)>>
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Therefore, by the dominated convergence theorem the sequence (v.) converges to

Sl P2(3(Cy D,y D) + (n,y@)) dy
fB|y1|p72dy

Let now 1 < p < 2. Fix 0 < # < 1 and split the integral (3.43) into two parts: over the set
Gy := BN {|ly1|> 0} and Fy := BN {|y1|< 0}. Observe that for all y € Gy and for all ¢ > 0
satisfying 2ce < 6, we have the following:

1 1
‘/ f (yl 1 te <2<C M y®y — 4 + <n,y(2)>)> dt <2<Cy(”,y(”> -7+ <n,y(2)>)‘
0

< 2¢||yy|—2¢ce|P 2.

Yo = C}lg(l) Ve = (3.44)

Moreover,
lim/ ||y1|—205|p72dy:/ |y1|p_2dy</|y1\p_2dy, (3.45)
=0 /g, Go B

where the inequality holds uniformly for all # € (0,1). Furthermore, the last integral turns out
to be finite which can be seen from the explicit calculation below in (3.46)). Hence, by applying
Theorem 5.4 in [IMW17] to X = Gy with v being the Lebesgue measure, we obtain the following;:

1
. 1 1
ahi’%/g /0 f (y1 +te <2<Cy(1), y ) = + (n, yw))) dt <2<Cy(”, y ) = + (n, y(2)>> dy
0
/1
= /(; (p =Dy |” 2<2<0y“)7y(”> + (n,y®) —’Yo) :
0

Observe that here the upper bound in allows us to conclude that the limit as § — 07T is
finite. We now focus on the part of the integral in involving the set Fy. Since |Fy|= |, 7, 1y,
then upon writing this integral as in (3.46), one sees that |Fy|= c(k,n, k)0, and so |Fy|— 0, as
6 — 0T. Moreover, it sufﬁces to con51der 9 = 2ce and the related | Fo. Hy1|—2cs|p ~? dy. We again
appeal to integral (3.46)) and reduce our computations to finding

/ (2ce — [ya )"~ dy ™.
B0, RN (I |<2e5)

However, direct computation shows that this integral is of order eP~!, which then allows us to let

€ — 07, and in turn conclude (3.44)).

In order to complete the proof, we only need to compute the above two integrals. We begin

with the denominator of (3.44]), cf. (3.23)):

I= / by Pdy = / ( / ly 1|”dy<1>> ay®, (3.46)
B (0,1) 2 (0,4/1—[ly@|2)

where B;(0,r) stands for a ball in R! for I € {k,n} centered at 0 with radius 7 > 0. Upon applying
the change of variables and Lemma [3.16] with a; =p — 2 and a; =0 for i = 2,...,n we have

/ [P~ 2dy ™) = TMH/ [P~ 2dy ™) = 7“"“722“/ Yo 2 dy
B, (0,r) B, (0,1) T

n

:,’,n+p—2r(p21>r( ) 1. (347)

1
2
r(3%)
We apply in I with r = {/1 — [ly@|? to obtain
—1 1 n—1 n+p—
;T (pT)nF () / (1 _ ||y(2)||2) +p=2 @,
ret) Jeon
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Since the integrand is a radial function, we apply the spherical coordinates and obtain that

F(p%l)r(%yhl oS ' 2\ ntp=2 1
I= 1—r%) 2 " dr
e T, 0
2\Fk+n 1 ( - )1 B n+§72 % ) 2
T 2/0 - 525 (1= r2)
VAT (251 (k: n+p+2>
= B(=, 222

rEr) oz

Next we consider the integral in the numerator of (3.44]), namely

1
J = / Iylp‘2(2<0y(”7y(1)> - <777y(2)>> dy.
B

Notice, that [5(n,y®)|y1[P~2= 0. Let us denote the coefficients of matrix C' as follows C' =
[¢ijli,j=1,....n, then

2J—611/\y1|”dy+zc”/|y1\p yzygderZc”/Iyll” 2
\—,_/

i#]

Jo J3

Observe, that by the symmetry of B every integral term of the sum Jy vanishes. We will handle
J1 and Js analogously to I. First, we compute the following integrals

L)L) LT ()
p—2 ?d (1) — prtp 2 2 2 = PP 2 , fori=2,...,n
Syt 25t I (25) o (522)
(3.48)

where we again use Lemma for oy =p—2,; = 2 and a; = 0 for the remaining j # ¢; we also
apply familiar property of I functions: T'(1 + s) = sI'(s) for s = 1. Moreover, notice that (3.47)
works for an arbitrary p > 1. We use this observation to obtain that

n+pf" 1 (P+1)
PiyH = )
/Bnm,r)lyl' g I (™5+2)

We are in a position to complete the computations for J; and Js:

ﬁnilr (%) H (z)H . dy (2)
B (0,1) Y

J1=c11

D(52) s
ﬁnilr (%) 27 /1 PR = |
=c11 — (1 —=r*)"= " dr
D(=52) T(3)

_, A (e B(k n+p+4>
Yr(eE)r(s) T\ 4 ’

where in the second line we used the fact that the integrand is radial and the spherical coordinates
can be applied simplifying the integrand. Similarly, by (3.48) we get

ﬁﬂlr(pzl)/ N o)
ZCZ’L QF (p+n+2) B (0 1) (1 Hy || ) dy

_Z VT (P (R ndpd
T (EE )\ 4 )
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We collect the above calculations to arrive at

JJ1;J32F(;/E:F;)1( B<k n+i+4><111“< ) %Z ( )>

5) =
VAT () (Bt ptd p-
B 2F(p+n+2)p(g)6< 4 > a -
VAT () (k m4ptd
= e (5252250 tento -2+ w(©).

Above, we again appeal to the same property of Gamma functions as in (3.48). We sum up our
calculations and upon dividing J by I to obtain the following

et B (5 ) (enlp - 2) + 1(C)

Yo =5 = — -
T N n
e 8 (42 )
P(m2) B, mipd

In order to finish this part of the proof, we express the constants ¢1; and tr(C) in terms of matrix
A and the vector £. Recall that C = RTAR and RT¢ = ey, which implies that

c11 = (Cer,er) = (CRTE, RTE) = (R(RTAR)RTE, &) = (AL, €)

and due to the orthogonality of R there holds tr(C) = tr(RT AR) = tr(A). Therefore, we conclude

that
L B(b

= S (e (M8 O = 2) + ()

Then, upon substituting £ with £/|£| we arrive at the assertion (3.39)).
We are now in a position to show the second assertion of the lemma, namely the asymptotic

formula (3.40) for p,(e,u).
Let & > 0 be such that B(z,e) C Q. Consider function ¢(y) as in (3.38)) with

g(x) =ulz), €=Vyulz), A=Viu(z), n=2Vyu(z).

Notice that with this notation

ANgu(z) = tr(A) + (p— 2) </|1§|2£>

Set uc(z) = u(xd:(2)) and ¢-(z) = q(x6-(2)). Since u € C*(Q) it holds that for all ¢ > 0 there is
e = g(t) > 0 such that for every z € B and all € € (0,¢(¢)) it holds

luc(2) — g (2)|< te?.

Furthermore, by parts (4) and (5) of Theorem we have (e, q + te?)(z) = py(e, q)(z) £ te*.
These observations together with Corollary and part (3) of Theorem allow us to obtain
the following estimates:

o) —ule) o) —ulx) _ pyle,a) — ul)
g2 - g2 - g2

+t.
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By applying (3.39) we obtain

C(p,n,k)Aﬁ{Gu(as)—t < lim inf Hp(€:0) = ulz) < lim sup Hy(€,0) = ulx) <C

N
&0 g2 0 g? (p,n, k) A Gu(@) +,

ntpt4
4

where C'(p,n, k) :=

B(k
1 2
2(n+p) B(%, 2212)

3.5.2 Case 2: p =00

The main difference between this case and the proof presented in Chapter [3.4.2]is hidden in the
auxiliary results to which we refer. While in Chapter we refer to the work of Ferrari-—Liu—
Manfredi (Lemma 3.1 and 3.2 in [FLM14]) concerning the Heisenberg group, here we have to use
a more refined result by Ferrari-Pinamonti (Lemma 1.5 and 1.6 in [FP15]) valid in general Carnot
group.

Recall that for p = oo there holds

_ Hoo(e,9) — g(2)

= o (i (60 & (1.9 + Ay (3.49)

yeB

+ max [<§,y“>> +e <<nay(2)> + ;<Ay(1)’y(1)>)} )

yeB

e

In order to show that there exists the limit of v, we define a function g : G — R with g(y) =
(€ yD) + (n,y?) + F(AyM,yM). Observe further, that by d.(y) =: z there holds

. 1 1 .
min | (€)= (9 + 5y )| =2 min gz,
yEB € z€B(0,¢)
and ) )
w1690+ (00 + S5 0) )| = 2 max (o),
yEB € z€B(0,¢)

Furthermore, notice that Vy, g(0) = £ # 0.

Before we apply Lemma 1.5 and 1.6 in [FP15] let us comment on the differences between these
results and Lemma 3.1 and 3.2 in [FLM14] which we applied in the proof of analogous case in
Chapter Lemma 3.1 in [FLM14] and Lemma 1.5 in |[FP15] assert existence of points P ps
and P ., (see below) and their proofs are the same. The main difference lies in the asymptotic
results: Lemma 3.2 in [FLM14] is rather straightforward (the main tool used in the proof is the
method of Lagrange multipliers), while the proof of Lemma 1.6 in [FP15] is much more technically
involved, which is due to a complicated geometry of general Carnot groups. We apply Lemma 1.5

and 1.6 in [FP15| to obtain, that for all small enough ¢, there exist points P py = (yglz)w,ygg/[)
and Pr ., = (yg)n7 yg)n) in 0B(0,¢e) with the following properties:
max g = g(Pe pr),  min g = g(Pzm).
B(0,¢) B(0,¢)
Moreover,
1)
=0 &[] =0 e €1 '

We use these to estimate (3.49)) in the following way

1
922

- (g(Pa,M) +g(_PE,M)) :

(3.51)

1 1
53 9(Pem) +9(=Pem)) < 55 | min_g(z) + max g(z) | <
2¢? ( : ( : )) 2¢? z€B(0,e) z€B(0,e)
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Compute

1 1
55 (0(Pean) +9(=Pea)) = 15 (A v + (40—

2e
1 1
1 < Ayi,& yi,R4> o 1{A€,€)

2 [¢?

Y )

2 € €

We treat the left-hand side of (3.51)) similarly to conclude that

52
poo(e:q) = q() + <f|1§|72§> +o(e).

3.5.3 Case 3:p=1
Recall, that for p = 1 the unique number ~, is defined with the following equation (cf. (3.41))):

1
o€ 85 (6sW) e (00,20 4 (1.5) ) <enc)
— e € B (e} e (A, 50 4 (1,59 ) > el

Let us apply the change of variables as described in the paragraph following formula (3.42)) (for
the sake of simplicity we still use the variable z) and divide both inequalities by e to arrive at

z 1 z 1
{zeB: ?1 + §<cz<1>,z<1>> + (0,2 <~} ={z € B: ;1 + 5<cz<1>,z<1>> +(n,2) > 7.}

(3.52)
As previously we assume that |¢|= 1 and denote C = RT AR, where R denotes the rotation matrix
as defined in the discussion following (3.42)). Equation (3.52)) means that for each fixed € > 0, 7.
is the median u(1,h) =: p1(h) of the function h : B — R defined with the following formula

1
h(z) i= 2+ 5(C2M,20) + (0, 22).
Denote by ¢ := H%(Cz(l),z(l)HLoc(B) < 00. Similarly to the reasoning in the proof in Chapter

we observe that by monotonicity of p; and property (4) in Theorem we obtain the
following estimates

(3.53)

and

(3.54)

As in the proof for p =1 in Chapter it holds that for all € > 0 we have

21 21
|{z € B: . +(n,2) <0}|={z € B: - + (n,2®) > 0},

and so pu; (2 + (n,2(?))) = 0. By estimates (3.53) and (3.54) we get that —¢’ < . < ¢’. Hence all
v, are bounded, and after passing to a subsequence, there exists vg := lim._.g 7e.
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We apply to both sides of (3.52)) the following change of variables
(21,225 -, 2, 2P) > (€21, 22, 23, - . . , 20, 2 D) =t €211 + 3,

where Z := (0, 22, ..., 2zp, 2(2)). The Jacobian of this transformation is constant, hence it cancels
out on both sides and (3.52]) becomes

1
H{z € R™: |ez1eq + Zlg< 1, 21+ <2<C(62161 + 2(1))7 (ez1€1 + 2(1))> + (n,z(2))> < Ye H
1
=|{zeR™:|ez1e1 + Zlg< 1, 21+ (2<C(€2’161 + 2(1)), (ez1e1 + 2(1))> + <77,z(2)>) > e H-
(3.55)

Let us denote by B := {(22,...,2n,2®) € R™ 1 : (0, 22,...,2n,2?)|g< 1} and consider a
function F : {z € R™ : |ez1e; + Z|g< 1} — R defined by

F()i= 21+ (5(Clenen + 30), (emer + 20) + (1.5 )

For small e, we are going to represent the intersection of the boundaries of sets in , i.e., the
surface {F(z) = 7. : |ez1e1 + Z|g< 1}, as the graph of a function of the form z — gs( )61 +z
where g. : B — R and e1 = (1,0,0,...,0) € Rk,

Let us observe, that the derivative F,, can be estimated from below:

N =

F.(z)=1+ ez + e(c1222 + €1323 ... + C1pzn) >

for € sufficiently small. This follows from |ez1e1 + Z|g< 1 and the fact that

n n
—€ Z|Cli|§ e2c1121 +e(c1aza + 1323 - + C1p2n) < €Z|Cli|-
i—1 i—1

Hence for a fixed 2 € B the function z; — F (z1e1 + %) is monotone increasing and therefore
has an inverse he z(t). It follows that F'(h. z(t)e1 + 2) =t and ¢.(Z) = he 3(7.) is a point in the
intersection of the boundaries of sets in . Furthermore, let us observe that, possibly after
passing to a subsequence, the following limit exists for all zZ € B

1
9:(2) = 70 = 5{CZD, 2V) — (5,2) as e — 0% (3.56)

Indeed, for all Z € B the equation F(g.(%)e1 4+ Z) = 7. equivalently reads:

1

5 (Clege(Z)er + 20), (ege(R)er + 2V)) + (0, 2®) = e

9:(2) + 5

From this we get that

1
0:(9)+ 5 <g " 262%95 (o z<1>>> T {n,2®) =5,
which for fixed Z and ¢17 # 0 is the following quadratic equation in g.(Z):

_ e 1
g2 () 5 Lt 0.3 <1 + 252chz¢> 5 (€2, 0y 4 (n, 2@y — 4, =0.

Therefore, g-(Z) has to be either equal to

—1—2e) " seniz+ \/(1 +230, C1z‘2i)2 —2e2¢11 (3(C2M,Z) + (n,2)) — )

52011

9:(2) =

)
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or equal to

—1—=92¢ Z?:2 C1i%i — \/(1 + 2¢ Z?:2 clizi)z — 282611 (%<02(1)7 2(1)> + <’f], 2(2)> — 'Ys)

82011

9:(2) =

Likewise for G = H; and p = 1 we observe, that the second solution is of order =2 and therefore

does not lie in the set {z : |eg.(2)e1 + Z|g< 1} for ¢ — 0F. We consider the first solution, which
after cancellation reads

&) 2 (7. — 3(C20, 21)) — (1, 2()))

ge\2) = .
\/(1 + 2e Z?:2 Cu‘Zi)2 — 262011 (%<C’Z(1), 2(1)> -+ <’I7, 2(2)> — ’)/E) + 14 2e 2?22 C1i%;

If ¢11 = 0 then

. - L) =
9=(%) (1 + 252011-21-) =Y — §<CZ(1)>Z(1)> — (n,2%).

i=2
Therefore, we conclude (3.56]). Thus, we can represent the measures of the sets appearing in (3.55)
as integrals, and obtain the following

/ min {ge (3), Ge(2)} + Ge(2)] dz = / (Ge(?) — max {g.(5),Go(2)}] d7,  (3.57)
B B

where

- 1
G:(2) ::E\/\/1—(zg+1+...+zg+k)—(z§+...+zg).

The function G, is the non-negative solution z; to the equation |ezie; + Z|g= 1 describing the
boundary of B. Observe, that (3.57) is equivalent to

/é [min {g(2), G- ()} + max {g.(3), G.(3)}] d2 = 0. (3.58)

Applying the dominated convergence theorem to the case ¢ — 07 in (3.58) gives the following
1
[ (70 - 5<Oz<1>, zMy —(, 2(2)>> dz =0. (3.59)
B

The symmetry of B shows that J5(n, 2)) =0 and so (3.59) becomes

1
=75 ]{é<cz<1>,z<1>>d2.

Due to symmetries of B the right-hand side can be written as

1 & ][ )
Yo =5 D cii f_ zdz. (3.60)

Observe, that the calculation of the above integrals is essentially covered in (3.44)) and that due
to symmetries of B they do not depend on the choice of i. Recall, that (1) = (z2,...,2,) and
32 = (Zn41, - - s Znt+k). Let us go ahead the computations in case i = 2:

/ 22dz = / / 22 dzMdz?
B

B (0,1) Bn_1(0, % /17“2(2)”2)
n—1 1
= [ [ ) T s (- ) e e

B (0,1) B,—1(0,1)
nt1

_ / (1—”2(2)H2)Td,§(2)/3 o B,
n—1\Y,

B (0,1)
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where we applied the change of variables formula zo = y21/1 — [|Z(® H

(o112 (o112
YU 2 = w1 59
in the inner integral. We apply Lemma to calculate the second integral of

3 ln—2
[T i
B,,—-1(0,1)

Let us proceed with the first integral in

(3.62)
I 1 n41
[ (=) Tae = [ g s @ @ar
0 JoBL(0,r)
By (0,1)
1
= |0B(0,1)] | (1—r?)" T lar
- ° . (3.63)
:72/ (1—t) 7 =t 2dt
r(=2) Jo 2

_ kn3 (k n+ 5>
o (nt2) 9 4 |
or ()2
where we used the change of variables t :=r

we need to compute the following integral

Notice, that in order to calculate the measure of B

B / (11207 o dz(2>/ 1d5 ™, (3.64)
anl(oal)
B (0,1)
which is analogous to (3.62)) and (3.63]). Therefore, we conclude that
=t
v
1dg™ = |B,1(0,1)]
/Bnl(o ) (=)

(3.65)

T ks k n+3
22 >4d(2)—78 22T 3.66
[ G-l (B (3 (3.56)
By (0,1)
We sum up observations (3.61)—(3.63]) and (3.64)—(3.66|) to rewrite in the following way

_1 krb ok ng5\TD(HT(5)"7 o (ng
0T gor (2" \20 4 +

) p(m) &
U (%) kndB (5 288) 5 ;c
which upon simplification reads
__ B(."P)
T Y B (L, = gcu
Therefore,
Yo = — tr(A) — )
DB o

which follows from the same argument used in the case 1 < p < oo, and the same reasoning allows
3.39) and (3-40)
all1<p<

us to conclude and (3.40) for p = 1 as well. Thus, the proof of Lemma [3.22]is completed for
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Chapter 4

AMY harmonic functions on
metric measure spaces

4.1 Introduction

This chapter is based on results obtained in |[AKS20]. The results presented here are obtained in
the setting of locally doubling metric measure spaces, which is more general than those studied
in Chapters [2| and [3] For the courtesy of interested reader at the end of this chapter we briefly
describe those results from |[AKS20], which for the sake of consistency are not discussed entirely.

Let us define the central object of this chapter. Let X = (X, d, 1) be a metric measure space

and function u € L}, (X). The r-laplacian of u is defined as follows

U —u(z
APu(z) = Ayu(z) = M z € X, (4.1)
r
where upg(, . stands for the mean-value of u over a ball B(z,7).
In this chapter we consider the notion of strongly asymptotically mean value harmonic func-
tions, often abbreviated to (strongly) amv-harmonic functions, arising from assuming that the

following limit exists almost uniformly
lim A,u =0,
r—0

see Definition below. Recall from Chapter [2] that classical mean value property states that, in
a Euclidean domain 2, a harmonic function u satisfies A,u(z) = 0 for all 0 < r < dist(x, 9), cf.
Definition 2.I] and Definition .7

It turns out that harmonic functions rarely enjoy the mean value property outside the Euclidean
setting, see the discussion in Chapter [2.6] summed up by an observation, that the space of strongly
harmonic functions in R? with respect to [P-norm is finite dimensional for p # 2. Instead of
considering the mean value property as in Definition [2.1) we believe that it is better to study
functions which satisfy an asymptotic mean value property, where the pointwise limit r — 0
in vanishes. For example, harmonic functions in the smooth Riemannian manifolds have
asymptotic mean value property, whereas the mean value property for harmonic functions on
manifolds is known to hold on the so-called harmonic manifolds. The Lichnerowicz conjecture,
proven for manifold dimensions 2-5, characterizes harmonic manifolds as either flat or rank-one
symmetric, see Example 4 in [AGG19] and references therein. The converse statement, namely
when the asymptotic mean value property implies that a function satisfies the appropriate Laplace
equation is known as the Blaschke-Privaloff-Zaremba (BPZ) theorem, and will be discussed in
more detail below. Apart from the classical setting, the r-laplacian also arises in approximation
problems of Riemannian manifolds by graphs [BIK13|, and the mean value property plays a role
in geometric group theory in Kleiner’s proof of Gromov’s polynomial growth theorem [Klel0].
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In the setting of Carnot groups the r-Laplacian and its relations to the subelliptic harmonic
functions have been studied, for instance, in [AW20; FLM14; FP15]. Furthermore, Theorem 1
in |CO20] indirectly relates the amv-harmonicity to functions with bounded variations. Namely,
the result characterizes C''-minimal surfaces S by observing that a certain piecewise constant
function fg is amv-harmonic in the sense that A,.fs — 0, as r — 0 on S. Moreover, the proof
of [CO20, Theorem 1] uses the relation between the amv-harmonic operator and a nondegenerate
1-Laplacian: div( V/\/ 1+1V[?)

In the setting of Helsenberg groups we obtain a BPZ-type result, whereby pointwise vanishing
of the limit 7 — 0 in for a continuous function implies harmonicity and thus strong amv-
harmonicity, see Chapter

In metric spaces with a doubling measure we consider strongly amv-harmonic functions and
prove that they are Holder continuous for any exponent below 1, see Theorem [£.I8] This result
is in fact true for a larger class of functions with finite L>° amv-norm, which we introduce below.
Moreover, using the method of refined averaging, we obtain an auxiliary regularity result for
strongly harmonic functions in Theorem [£:8] For a complete discussion we refer the reader to
Chapter [I.3] where we also study the finite dimensionality of the space of strongly harmonic
functions with polynomial growth.

In Chapter [£.4] we discuss Hajlasz-Sobolev functions in amv-harmonic class with their blow-
ups. We show that at almost every point such blow-up satisfy the global mean value property
(Theorem [£.41)), which in general is very rare, see the discussion above. Theorem can be
seen as an infinitesimal connection between amv- and strong harmonicity, and may serve as an
obstruction to having many amv-harmonic functions on metric spaces that are too irregular.

As a toy model, we study amv-harmonicity in weighted Euclidean spaces, where it becomes
evident that the connection between weak amv-harmonicity and energy-minimizers breaks down
in the presence of weights. This is related to the failure of the r-laplacian to be asymptotically
self-adjoint. Nevertheless, in the weighted Euclidean spaces, we obtained more concrete PDE
description of the amv-harmonic functions, see operator , Theorem and Chapter for
full discussion of the results.

Let us now describe the results from |[AKS20], which we are not included in this Chapter.

First of all, a weaker version of amv-harmonicity is considered, namely we say that a function
u € L3(X) is weakly amv-harmonic if lim,_ o fX pAyudp = 0 for every compactly supported
Lipschitz function .

Moreover, the results of |[AKS20] are obtained for the setting of RCD spaces. The notion of
the RC'D spaces (Riemannian curvature dimension spaces) grows from the synthetic approach
to curvature bounds and the idea of introducing the unifying notion of a curvature in metric
measure spaces. The origins of RC'D spaces go back to works by Otto, Villani, Sturm, Ambrosio,
Gigli, Savare to mention just few names and in recent 5-10 years, the area of RCD and CD
spaces has become one of the most rapidly developing areas of analysis and geometry on metric
measure spaces. It combines techniques of Ricci curvature and the Riemannian geometry (with the
Bochner identity as one of the cornerstones), heat semigroups with functional analysis, measure
theory and the optimal transportation theory. The precise definition of the RC'D spaces requires
introducing, among others, the entropy functional and the Wasserstein distance and will not be
used in our work. Instead, for the definition and further properties of the RC'D spaces we refer to
extensive literature on the subject, e.g. [Amb18; |AGS14b} [AGS14a} |Gigl5; [LV09; [Stu06at [Stu06bj
Vill6]). For our needs let us emphasize that one of the key features of the RC'D spaces is that
the natural Sobolev space W2 is a Hilbert space (infinitesimally Hilbertian), which equivalently
can be expressed in terms of the linearity if the harmonic heat flow and the fact that the Cheeger
differential is a quadratic form, see e.g. [AGS14b; AGS14a).

Let us denote by 8V the Bishop—Gromov density defined with

_ (B (2)) _
0y (x) := TNtV 0N (x) = }I_)Y%GN( z).

We say that an ROD(K, N)-space (X,d, ) is non-collapsed, if 0N (z) < 1 for p-almost every
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x € X. We say that X has vanishing mm-boundary, if the signed Radon measures %du for
0 < r < 1 are uniformly bounded in the total variation norm, and converge weakly to zero as
r — 0.

In [KS93|, the authors defined a Sobolev space of functions with values in a complete metric
space X by considering the so-called Korevaar—Schoen energy for u € L%OC(X ):

2

1
E?g(u) = sup limsup/xgo(x)i]{s . "

PEC(X),0<p<1 70

In this setting it is proved in |[AKS20] that harmonic functions on non-collapsed RCD spaces
with vanishing metric measure boundary are weakly amv-harmonic. Moreover, the relation between
the Korevaar-Schoen energy and the r-laplacian is obtained and the connection between weakly
amv-harmonic functions and local minimizers of the Korevaar-Schoen energy is attained.

In the next chapter we introduce preliminary notions and definitions used throughout this
chapter.

4.2 Preliminaries
Given a subset F' C X of a metric space and r > 0, we denote
N.(F)={z € X : dist(z,F) <r}and N,.(F)={z € X : dist(z, F) <r}

the open and closed r-neighbourhood of F' (note that N,.(F) need not be the closure of N,.(F)
unless X is a length space). For x € X, we denote by B(z,r) := N,.({z}) and B(z,r) := N,.({z}),
respectively, an open and closed ball centered at x with radius r. The Lipschitz constant of a map
f:(X,d;) — (Y,dy) between metric spaces is

._ dy (f(x), f(x))
P = s = ey)

A measure ;1 on a separable metric space X is called locally doubling if, for every compact
K C X, there exists rx > 0 and a constant Cx > 0, such that N, (K) is compact and

w(B(z,2r)) < Crp(B(,7)) (4.2)

for every x € K and 0 < r < rg. If p is locally doubling, for every compact K C X there exists a
constant Cg > 0 for which

n(B(y,r)) 7\ @
WZC(—) ., ye€B(x,R), 0<r<R<rg, (4.3)

R
where () = log, Ck. If the constant C'x = C), can be chosen independently of the set K C X, and
K = 00, we say that u is doubling, and the number @ = log, C,, is called the doubling exponent
of u.
The following definition is due to Buckley, see [Buc99, Section 1], and is stronger than the
doubling condition.

Definition 4.1. Let (X,d, 1) be a metric measure space with a doubling measure 1. We say that
X satisfies the a-annular decay property with some « € (0,1] if there exists A > 1 such that for
all z € X, r>0and € € (0,1) it holds that

p(B(z,r)\ B(x,r(1—¢))) < Ae®u(B(z,r)). (4.4)

If @ = 1, then we say that X satisfies the strong annular decay property.

60



Example 4.2. The Euclidean space satisfies strong annular decay property. Metric measure spaces
with strong annular decay property include geodesic metric spaces with uniform measures and
Heisenberg groups H" equipped with a left-invariant Haar measures. By |[Buc99, Corollary 2.2], a
length space with a doubling measure has the a-annular decay property for some « € (0, 1] with «
depending only on a doubling constant of the measure. In fact, it is enough for the metric measure
space to be the so-called (o, 3)-chain space to conclude that it has the §-annular decay property,
see Theorem 2.1 in [Buc99).

From now on a metric measure space X = (X, d, p) is a separable metric space (X, d) equipped
with a measure p that is finite and nontrivial on balls, i.e. 0 < p(B) < oo for all balls B C X.
Now we are in a position to define the central object of this chapter.

Definition 4.3. A function u € L}, .(X) is strongly amv-harmonic, if
L [|Arull oo ()= 0

for any compact set K C X. Here A,u denotes the r-laplacian of u, see (4.1)).

In general metric measure spaces there is no natural limit operator of A,. as r — 0. Therefore,
it is highly non-obvious what should be a domain of such an limit operator. We define the space
of functions with finite amv-norm.

Definition 4.4. Let (X, d, 1) be a metric measure space and p € [1, 00]. We set
AMV?P(X) :={ue LP(X): |u|lamve< oo},

where
Jullantvei=Tim supf| Ayl o)

T

is the amwv-norm of u. Moreover, we define the class of functions with locally finite amv-norm:
AMV] (X) consist of functions u € L} (X) for which limsup, o[ Ayul (k) for every compact
set K C X.

Remark 4.5. Observe, that any strongly amv-function has locally finite amv-norm, but the
converse is not necessarily true. Let us consider a domain X = 2 C R"™. In Proposition we
see that functions with locally finite amv-norm coincide with the space VVIQOS (Q), while by the
Blaschke—Privaloff-Zaremba we know, that if for a continuous function u :  — R its r-laplacian
converges pointwise to 0, which holds true for strongly amv-harmonic functions, then the function

is harmonic, hence analytic.

4.2.1 Doubling measures and averaging operators

Let (X, d, 1) be a metric measure space and r > 0. Given a locally integrable function u € L}, .(X),
we denote by

Abu(z) = ][ udp, =€ X,
B(z,r)

the r-average function of u. Whenever the measure  is clear from the context, we will omit writing
the measure in the superscript. Note that

ATU(J?) = UB(z,r);

we will use the two notations interchangeably, depending on whether we want to view the average
as a number, or an operator on a function space. Indeed, the function A,u : X — R is measurable,
and A, defines a bounded linear operator A, : L'(X) — L*(X) if and only if a, € L>°(X), where

_ du(y) .
a'f’(x) B L(z,r) M(B(yvr»’ €
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Moreover, in this case the operator norm satisfies | A,|| 1 1= ||ar| L=, see [Ald19, thm 3.3]. This
is true in particular when p is a doubling measure. On the other hand, it is true that by the
Lebesgue differentiation theorem

u(zx) = lir% Ayu(z) for almost every = € X

if p is infinitesimally doubling, cf. [Hei+15, Remark 3.4.29].

If X is doubling as a metric space, then there exists C' > 0 so that ||A.||r—r»< C for every
r >0 and every 1 < p < oo, cf. |[Ald19, thm 3.5]. However, A, is not a self-adjoint operator; the
formal adjoint A} of A, is given by

u(y)du(y)

, reX,
(z,r) M(B(y,?"))

(42 u(w) = Apu(o) = [
B
for u € L}OC(X ). Indeed, a direct computation using the Fubini theorem yields that
/ vAyudp = / uArvdp, we LP(X), ve LY(X),
X X

where 1/p+1/q=1.
We may write the r-laplacian using the averaging operator as

Au—u
Ayu = —z uwe L (X).
We denote by
Afu —
A:u = #7 u € Llloc(X>’
r

the formal adjoint of the r-laplacian. Note that if A, : LP(X) — LP(X) is bounded, then A, :
LP(X) — LP(X) and A : L9(X) — L%(X) are both bounded, where 1/p+1/q = 1.

Remark 4.6. While most results are formulated for metric measure spaces, the results encompass
the case of an open set 2 C X in the introduction. Indeed, an open subset 2 C X of a metric
measure space can be regarded as a metric measure space Q = (Q,d|q, |q). In particular, if X is
locally doubling, then Q is locally doubling.

4.3 Refined averaging and strongly harmonic functions

In Chapter [2] we broadly studied strongly harmonic functions in the weighted Euclidean case. In
this chapter we intend to refine regularity of such functions on metric measure spaces by showing
their local Lipschitz regularity assuming merely the doubling property of the underlying measure,
see Theorem [I.8] We also prove a dimension bound on the space of strongly harmonic functions
with polynomial growth in the spirit of the celebrated result of Colding—Minicozzi |[CM97b| con-
firming Yau’s conjecture, see Proposition Our approach emphasizes the role of the averaging
operators.
Let us rephrase Definition [2.1| equivalently using the notion of r-laplacian, cf. Chapter [2.1

Definition 4.7. Let X = (X, d, 1) be a metric measure space. We say that a function u € L}, .(X)
is strongly harmonic (or has the mean value property) if

A,u=0on K
for any compact set K C X and r < rg :=sup{p > 0: N,(K) is compact}.
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Throughout the chapter we abbreviate the mean value of a function u € L}, .(X) over a ball
B(x,r) as follows:

up(x) = Apu(z) = ]{3( )u(y)dy.

If X is a complete doubling metric measure space with doubling exponent ), and 2 C X domain,
then recall that by H(Q2) we denote the space of strongly harmonic functions on Q. Note that, if
u € H(Q), then by the very definition it holds that

u(z) = Aru(z), z€Q, r <dist(z, X\ Q).

4.3.1 Local Lipschitz continuity of strongly harmonic functions

In this chapter we show that the mean value property yields higher regularity than obtained in
[AGG19|. If a measure p has the a-annular decay property (see Definition , then |[AGG19|
Theorem 4.2] shows that strongly harmonic functions are a-Holder continuous. Below, we will
prove that in fact strongly harmonic functions are Lipschitz continuous even when the doubling
measure does not satisfy the annular decay condition.

Theorem 4.8. Let Q) C X be an open subset of a complete locally doubling metric measure space
X = (X,d,p), and uw € L}, (Q) a strongly harmonic function on Q2. Then w is locally Lipschitz
and satisfies the bound

C
LIP(u|B(zy.rm) < — inf][ |u — cldu 4.5)
(lB(eo,n) < - inf o) (
whenever B(zg,3r) C .

The idea of the proof of Theorem [4.8]is to consider a refined averaging process, wherein we
average over the radius as well as the space variable. Given a function u € L} (X) we define

Aru(z) = % / RECES % / B (ﬁ ( )u(y)dy) dt, zeX (4.6)
T T x,t

For x € X and r < R we introduce the following notation
Ar,R(x) = B(xa R) \ B(xV T)

for a closed annulus centered at x, with inner radius equal to r» and outer to R. We use the
convention that B(x,r) =0 for » <0 and A, g(z) = 0 if » > R. The following elementary lemma
will play a crucial role in proving that A"wu is locally Lipschitz.

Lemma 4.9. Let f € L} (Q) be a nonnegative function and x € Q. Let 0 < r < R < oo, and

loc

—00 < dy <dy < oo Then

R
] i dt < (dy —dy) [ fdn
r JAipdy ttdy (T) Artdy, Rtdy ()

Proof. Let us fix x € Q and define function g : R — R as follows: g(¢) = 0 for ¢t < 0 and

) 0 for t <0,
g =
fB(x,t) fdu for t > 0.

Notice, that ¢ is a nondecreasing function.
Let usfix t e R. If R+ dy; < r+ds, then R—r < dy — dy and the following estimate follows
trivially

R R
/ / Fdpdt < / / fdudt < (da — dy) / fdp.
r JAitdy t4ds (T) v JArtd) Rtdy(T) Artdy,R+dy (@)
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Conversely, if R+ d; > r + da then the following estimate holds true

R R R+-do> R+dy
/ / fdu dt = / gt + d2) — gt + dy)]dt = / gdt — / gdt
r At+d1‘t+d2 (I) T r+ds r4+dy

R+d2 r+dsa
- / gdt / gdt < (ds — dy)g(R + da) — (ds — d)g(r + dy)

R+d1 +d1
=(d2 —d1)/ fdp,
Artdy, R+dy (%)
which ends the proof. O

Now we are in a position to prove Lipschitz regularity of A™u.

Proposition 4.10. Let (X,d,p) be a locally doubling metric measure space, u € L} (X). Let

loc

K C X be compact and rxg > 0 such that (4.2) holds for r < rx. Then, for any r < ri, the
function A"u is Lipschitz on K and, for any ¢ € R, satisfies the Hajlasz type estimate

r

Cd(z,
Aru(z) — Aru(y)|< 40D (f u—cdu+ § - Cldu> 7 (4.7)
B(x,2r) B(y,2r)

for any pair of points x,y € K with distance d(x,y) < r. The constant C depends only on the
doubling constant of the measure p on K. In particular

C
LIP(A"u|(z0,r)) < —][ |u — c|dp
r B(zg,3T)

whenever B(zg,3r) C X is compact.

Proof of Proposition[{.10. We begin with the prove of the second part of the hypothesis, i.e.
the Lipschitz estimate assuming the first part (4.7). Let K = B(zo,r), ¢ € R and assume that
x,y € B(xo,r) with d(x,y) < r. Then (4.7) directly yields

Cd(zx, Cd(x,
ju(z) — u(y)|< CLDY) f o uddnt fjudan) < M][ Ju — cldp.
r B(z,2r) B(y,2r) r B(x0,3T)

If d(z,y) > r, then d(x, zo) + d(y, zo) < 2d(z,y), and thus

[A"u(z) — A"u(y)|<|A u(z) — A"u(zo)|+|A"u(y) — A"u(zo)|
C(d(ﬂ?,xo) —|—d(y,a:0)) —c
= r ][B(zo,Sr)|u |d'u
LGd,y)

][ lu — c|dp.
r B(zo,3r)

Now it suffices to prove (4.7)). Let K and r be as in the claim and denote by Ck the doubling
constant of p in K. Given x,y € K with d := d(z,y) < r and r/2 < t < r, we have that for the
symmetric difference of two balls it holds

B(l‘,t)AB(y,t) - At—d,t-‘rd(x) C N27'(K)' (48)

Indeed, let us take a point z € B(z,t)AB(y,t). Then either (1) d(z, z) < t and d(y, z) >t or (2)
d(z,z) >t and d(y,z) < t. In case (1) d(z,2) <t <t+d and d(z,z) > d(y, z) — d(z,y) >t —d,
hence z € Ay_g4a(x). In case (2) d(x,z) >t >t —d and d(x, z) < d(y,z) +d(z,y) <t+d. The
second inclusion is trivial.
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Let us fix ¢ € R and follow the reasoning in the proof of [AGG19|[Propostion 4.1]:

][ (u—C)du—][ (u— c)du
B(z,t) B(y,t)

W(B(e, ) AB(y.1)) o | o
< W(Ble, )u(Bly. 1)) /B<,,,t>' et B ) /BWMB@,@ dp

Let us apply (4.8)) to the right-hand side

|ur(2) —wi(y)| =

(A aita(x)) u— ¢ b u—c
w(B(z,1))u(B(y,1)) /B(y,t)| Wt B D) /At_d,t+d<z>| o

Use the doubling property of p on K and the assumption § < ¢t < r to obtain p(B(xz,t)) >
&H(B(x,r)) and u(B(y,t)) > &u(B(y,r)). This together with monotonicity allows us to con-
clude

|ut(2) — wi(y)] <

us () —u C%{M(At_d’t+d(x)) u—c 701{ U—c
o) = 1S ST S o Sy, (89

Notice, that by Lemma [£.9| for f =1, d = d and dy = —d there holds

/ | FA ) S 2 A )
r/2

Let us integrate both sides of (4.9) with respect to ¢t € (r/2,7) and apply the above observation
r 2d012(/j/(14,,./2,d ’r+d($>) QdCK
ug(x) — ug(y)|dt < : / u—cldp+ ———— / u— c|du
/m' @) W)l < B ) T B, ) =

B(y,r) Arjo_arya(T)

<2dC% ][ \ufc\du+][ |lu—cldu |,
B(y,2r) B(x,2r)

where in the last inequality we once again appeal to the doubling property (4.3) of u, inclusion
Arj2—drtd(x) C B(x,2r) and the monotonicity of integral. We sum up the above observations

. 2 (7 4C%d(x,
|Au() — Amu(y)|< = / () — ()]t < 2D (f fu — eldys + ][ Ju - Cldu>7
B(y,2r) B(z,2r)

" Jr/2

proving assertion (4.7]). O

Proof of Theorem[].8 By considering the metric measure space (€2,d, /o) we may assume that
Q = X, cf. Remark Since u is strongly harmonic for every compact K C X, there exists
rx > 0 so that u = u,, on K for all » < rg. In particular,

u=A"uon K

whenever r < rg. The Lipschitz continuity of u and the estimate (4.5)) then follows by Proposi-
tion |4.10 ]

Remark 4.11. When X is complete and p is globally doubling, strongly harmonic functions
satisfy u = ug on X, for any R > 0. Consequently (4.5)) yields

C
B(z,3R)
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Remark together with Harnack’s inequality [AGG19][Lemma 4.1] imply, in particular, that
there are no non-constant strongly harmonic functions of sublinear growth. A function u is said
to have sublinear growth, if

1
limsup —= sup |u|=0
R—o0 B(z,R)
for some, and hence any p € X.

The following observation can be considered as a counterpart of Cheng’s result for harmonic
functions with sublinear growth on complete manifolds with nonnegative Ricci curvature, see
Corollary 1.5 in [Li06], and it is also related to the celebrated Phragmen-Lindeldf theorem.

Corollary 4.12. Let (X,d, 1) be a doubling metric measure space. If u is strongly harmonic and
has sublinear growth, then it is constant.

In the next chapter we discuss regularity of amv-harmonic functions.

4.3.2 Regularity of amv-harmonic functions

In this chapter we prove Hajlasz—Sobolev and Hoélder regularity of functions with finite amv-norm.
Let us define local fractional Hajtasz—Sobolev spaces.

Definition 4.13. Let (X,d, ) be a metric measure space, and 1 < p < 00, 0 < @ < 1. The
local fractional Hajlasz—Sobolev space M?(X) consists of Borel functions w € L} (X) with the
following property: there exists a null set N C X and, for every compact K C X, a non-negative
function gx € LY (X) and rg > 0 with N, (K) compact, and

lu(z) — uw(y)|< d(z,y)*[9x (z) + 9 (v)], =,y € K\ N, d(z,y) <rk.

To our best knowledge the fractional Hajlasz—Sobolev functions were firstly defined on Eu-
clidean sets by Hu [Hu03| and then on metric spaces by Yang [Yan03|. The main motivation is to
study a counterpart of Sobolev spaces on fractals. These spaces help to investigate the geometry
of fractals from inside the set and enable to study analysis on fractals. For example, Hu showed
that there exists a > 1 such that M®2(S) is dense in C(S), where S is the Sierpifiski gasket in
R™.

We recall the fractional sharp mazimal function, see [HK98| pg. 606], as follows. Let 0 < o < 00,
R>0and u € L}, .(X). Then

MfRu(m) = sup r*‘)‘][ |u—up(gr|dy, =€ X.
0<r<R B(xz,r)

We denote by Mﬁu = M#Ru and M#u := M7 _u. Moreover, we denote by M the Hardy—
Littlewood maximal function and by Mg the restricted maximal function

Mu(z) = sup][ luldy, Mpgu(z):= sup ][ |u| dps.
B(x,r) B(=z,r)

r>0 0<r<R

Throughout this chapter X = (X, d, i) denotes a locally compact and doubling metric measure
space with doubling exponent ). We begin by considering the refined average A™ : L} (X) —

loc

LIP;oc(X) defined in (4.6). We employ an iterative argument, which is based on the following
observation.

Proposition 4.14. Let Q C X be a domain, and u € AMV?(Q). Then u € Mllo/cz’p(Q). Moreover,
if ue M>P(Q) for some o € (0,1), then u € M, *(Q), where

2-1/p
Y )
37a71/p>a

66



Proof. Let K C € be compact, and define
1
Rk = 6 min{dist(K, X \ Q)?,r%, 1},

where 7 is given by the locally doubling condition (4.2)). Let x,y € K satisfy d(z,y) < Rg. For
any rx > r > d(z,y) there holds

lu(z) — u(y)|<|u(z) — A"u(z)[+|uy) — A"u(y)|+[A"u(z) — A"u(y)|

Cd(z,y)

r 4.10
SW/U&M@HMW@mﬁ+f()WWM&MM (4.10)
0 B(xz,3r

r

where the third term is estimated using Proposition with ¢ = up(y 3, and the first two terms
are treated in the following way

r T t2
dt = 2r / 1)) di

2

ulw) - A"u(e) < > [

T

wm—ﬁmﬂwwww>

<or / Au(z)| dt < 2r / |Agu()| dt.
3 0

By choosing r = d(z,y)"/? > d(z,y) we obtain

lu(z) — u(y)|< d(z,y)"?[g(z) + g(y)],
where

o(z) =2 / |Avu(a)|dt + CME._u(x).
0

Moreover, suppose that u € M P(Q2), and let gx be the Hajlasz gradient and 7k the scale in
Definition .13l Define

1
Ric = ¢ min{7, dist(K, X'\ Q)3—e-1l/r p2y
From (4.10) we obtain that as long as 6r < 7x and d(z,y) < Rk, then

r 1/p x
ute) w0 ([ (8w P+ammP)  + O Aargie(o) + A 0]

(4.11)

Indeed, applying the Hélder inequality to the first term in the right-hand side of (4.10]) we obtain,
up to a multiplicative constant, that

T T % p—1 9 1 T ;
7"/ |Apu(z)|dt <7 </ Au(x)|p> rr =r’"r (/ |Au(m)|p>
0 0 0
Whereas the second term in (4.10]) is estimated using the Hajlasz inequality, up to a multiplicative
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constant, in the following way

d(x,
M ][ |u - uB(z,3r)|d:u‘
r B(z,3r)

- ][B( (w) ]{Bw) w(2)du(2)| dp(w)

d(z,y)
]{B(a: 3r) ][B(:I: 3r) — u(2)| du(z)dp(w)

][ ][ A, 2)* (91 () + g (2))dp(2)dp(w)
B(z,3r) J B(z,3r)

<o f f(T2) o)+ oot

<C - [AﬁrgK( )+ Aergx (v)].

S

We choose 7 in (4.11)) such that

T2—1/p _ d(l‘7y)

Tlfa ’
ie.
r=d(z,y)/B-e1n) < T}(/(?’_a_l/p) < Tk,
to obtain
[u(@) — u(y)|< Cd(z,y)* [9(z) + 9(y)]
where
O/ — 2— 1/}9

3—a—1/p

and

i 1/p
g(x)=C (/o |Atu(x)|pdt> + CMi, gk ().

We iterate Proposition to improve regularity of functions from AMV? (Q).

loc

Theorem 4.15. Let Q2 C X be an open subset of a complete locally doubling metric measure space
X =(X,d, ), and let u € AMVY (Q). Then v € MP(Q) for every 0 < a < 1.

loc

Proof. Define ap = 1/2 and

2—-1/p
o =——"—— n>0.
n+1 3 Oy — 1/p =
We see that «,, is an increasing sequence and converges to 1. By Proposition £.14] we have that
u € M[EP(Q) for every k. The claim follows. O

Theorem [£.15] is not quantitative, because it does not give an explicit bound on the fractional
Hajtasz—Sobolev gradient in terms of the amv-norm of the function u. We apply the regularization
A"u to function u € AMVY, (X) to prove the following result which more explicitly describes the
Hajlasz gradient of u.
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Proposition 4.16. Suppose that X is a locally doubling metric measure space, function u €
AMV? (X) and zo € X. For each k € N there exists 1, > 0 and g, € LP(B(zo,7k)) such that

B(xo,r,]:/(kﬂ)) =: By, is compact and

|u(m) - u(y)|§ d(x7y)k/(k+1)[gk(x) + gk(y)}v T,y € Bk \ E7

where E is a null set.

Proof. Let x,y € B(xg,70) where B(xo,?)ré/Q) C Q. For any r < ré/z

lu(z) —u(y)| < Ju(z) — A"u(z)|+u(y) — A"u(y)|+[A"u(z) — A"u(y)]
2 [ 8l + 18l +147u(@) - A7u(y)

r

we have

IN

IA

" Cd(z,
<o [ au@) + i+ DL umdas @)
0 r B(z,3r)

cf. Proposition Choosing r = d(x,y)'/? we obtain

|u(x) - u(y)|§ d(xay)l/z[gl(x) + gl(y)}’ T,y € B(an 7‘0),
where

1/2

0
g1(z) = C/ |Aul(x)dt + CMﬁ/Qu(:U).
0 0
We have that g; € LP(B(x,70)), since
172

Pdp < Crlp= D2 [ Agul? (z)dp(z) dt+C M, rd

grdp < Crg |Avul” (z)dp(x) dt+ (M7 pu(x))Pdp(z) < oo.
B(CEQ,TU) 0 B(I(},To B(I(},’l"o) TO

To iterate this process, suppose the claim in the proposition holds for k£ € N. Let 0 < r,41 < rg be
such that B(zg, 31",(£:1)/(k+2)) C Q. For x,y € B(xg,rr) we get, using (4.12)) with ¢ = u(x), that

% .
) ~u)| < Cr [ 1) 1+ S O )+ )t
i/ N
< Cr/o [|Awu|(z) + |Avu(y)|]dt + Cl(i((kfl;))/\/l 251 gk ().

Here, M 551 gx(x) denotes the restricted Hardy-Littlewood maximal function for radii 0 < r <

<
T

k+1

72 . Choosing 7 = d(z, y)*+1/(k+2) we obtain

lu(z) — u(y)|< Cd(x,y)(kﬂ)/(kﬁ) [9k+1(x) + ger1(y)], =,y € B(xo, k),
where
172
G (2) ;:/ (Aul(@)dt + M2 gi(x) € LP(B(xo,14)).
0 0
0

Let us recall the fractional Morrey embedding theorem, see part i) and iii) in [Yan03|[Corollary
1.4].

Proposition 4.17. Let X be locally compact doubling metric measure space. Suppose, that B C X
is a ball such that on B there holds (4.3)) with doubling exponent Q. Suppose that 0 < «a < 1,
0 <p<ooandap> Q. Then, there holds the following embedding

M*P(B) C C*~ 5 (B).
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We apply the Morrey embedding theorem for fractional Hajtasz—Sobolev spaces and Theorem
to prove Holder regularity of strongly amv-harmonic functions.

Theorem 4.18. Let Q C X be a domain in a doubling metric measure space with doubling
ezponent Q. If p > Q and u € AMV] (Q), then u is locally a-Hélder continuous for every
a < 1—=Q/p. Moreover, any strongly amv-harmonic function on § is locally a-Hoélder continuous
for any a € (0,1).

Proof. Let us fix a ball B C €, an exponent o« < 1 — % and function u € AMVY, (). Then, by

Theorem we get that u € MPP(B) for any 8 € (0,1). We choose 3 so that a < 3 — % and

Bp > Q. Apply Proposition to obtain that u is § — %—Hélder continuous on B and hence
a-Holder continuous on B.

In order to prove that a strongly amv-harmonic function u is Holder continuous we only need
to observe, that w € AMV? (Q) for every p € (1,00) and use the first part of the hypothesis. [

loc

4.3.3 Improving the regularity: the Blaschke-Privaloff-Zaremba theo-
rem for the amv-harmonic functions on the Heisenberg group

In this chapter we are going to present, that strongly amv-harmonic functions beyond the Eu-
clidean setting may posses higher regularity, than Holder continuity proven in the previous chap-
ter. Namely, we discuss the so-called Blaschke-Privaloff-Zaremba theorem (the BPZ theorem, for
short). In its classical version in the setting of Euclidean spaces, see e.g. [Llol5, Theorem 2.1.5],
the BPZ theorem asserts that given an open set in R™ a continuous pointwise amv-harmonic func-
tion solves locally the Laplace equation. Thus, the pointwise nullity of the amv-harmonic operator
lim,_, o+ A, improves the regularity of amv-harmonic functions to being analytic. Below we show
that this is also the case of amv-harmonic functions in Heisenberg group H;. For the convenience
of the reader we briefly recall the setting of the Heisenberg group, cf. Example [3.5]
Our model for H! is the group (R?,0) where the group law is given by

1
(1,22, 3) © (Y1, 92,y3) = (@1 + Y1, 32 + Y2, 23 + Y3 + 5(3313/2 — T2y1)).
By using this group law, one introduces a frame of left-invariant vector fields which agree with the
standard basis at the origin:

0 1 0 0 1 0 0
Xl .—aitxl—ixgail.:}, XQ —@"‘5.]3‘1671.37 X3 = 87‘%3

The Kordnyi—Reimann distance is a metric defined by

din (z,9) := ||y *x||m, where ||(z1,22,23)|m= /(z}+23)2 + 22

Let pg € H; and R > 0. An open ball in Hj centered at pg with radius R with respect to metric dgn
is defined as follows: B(po, R) := {p € H; : ||p~'pollm < R}. The subelliptic Laplace operator Ag,
on the Heisenberg group is defined as Ay, u := X?u+ X2u and in the local coordinates (z1, o, 73)

. _ 92 8% 1.2 2\ 8% o 9?2 N ) P
reads Ag,u = 97 + D2 + 5 (x{+23) 922 ~ 272,075 +%1 57,5, - Solutions to the subelliptic Laplace

equation are C? due to results e.g. in [Cap97] and [MMO7]. The Dirichlet problem on Koranyi—
Reimann balls for the continuous boundary data has the classical C?-solution for harmonic sub-
elliptic equation in Hy, see [GV85|. The subelliptic Laplacian on H,, is hypoelliptic, which improves
the regularity of harmonic functions to being real analytic. Hovewer, it is shown in [HH87], that
for H,, for n > 2 balls in the Carnot-Carathéodory distance are not regular at the characteristic
points. Therefore, due to the approach we take in the proof of Theorem below, we will restrict
our discussion to the case of H; and balls with respect to the Kordnyi—Reimann distance.
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Theorem 4.19 (The Blaschke-Privaloff-Zaremba theorem in Hy). Let @ C Hy be a domain in
the first Heisenberg group Hy equipped with metric dgr and let f : Q2 — R be a continuous amuv-
harmonic function in Q. Then f is a sub-elliptic harmonic function, i.e. for all x € Q it holds
that

. 1
T A, f(z) = oA, f(2) =0.

The constant - is computed in [FLM14, Lemma 3.3]. Notice, that in [FLM14] the authors
choose different vector fields X and Y, but their proof and hence the constant is independent on
that choice.

Proof. In the proof we follow the original idea of Privaloff developed for the setting of R™,
see |Pri25, Theorem II|. Let py € Q and B = B(po, R) be a ball centered at pp with radius
R > 0 such that B C 2. Theorem in |[GV85] allows us to infer that the sub-elliptic Dirichlet prob-
lem on B with the boundary data f has the unique solution, denoted by u, such that u € C(B)
and u = f|pp. Set ¢ = f —u. Then ¢ € C(B) and ¢|yp= 0. The assertion will be proven if we show
that ¢ = 0 in B. We argue by contradiction. Namely, suppose that there exists ¢ € B such that
#(q) # 0 and without the loss of generality we assume that ¢(g) < 0. Let us define the following

function on B

(9) (II(p‘lpo)H%z—W)

2 R? ’
where ||(p~po) i ||r2 stands for the Euclidean length in R? of the horizontal part of point p~1py €
Q. It follows that F € C(B), F|ap> 0 and that F(q) < 0. Hence, there is ¢, € B such that
F(qm) = ming F (in fact, ¢, € B). Moreover, A, F(¢y,) > 0 for all < R and by direct compu-
tations we verify that

F(p)=¢(p)+¢

-1 2 p2
ArF(gm) = Ard(gm) + ¢(2q) A, ((p po)illp— R > (gm)-

R2

Therefore, upon applying the definition of A,., we arrive at the following estimate

—1 2 _ P2
0 8 F(an) = Brflan) — Arugn) + A, (L2l

Let us denote the coordinates of p and pg as follows: p = (z,y,t) and pg = (20, Yo, to). Then

o(q) Au (Il(plpo)Hllﬁz—W) (4m) = o(q)

2 R2 = 58 (@ =20)* + (4 = 90)°) (gm)-

Recall, that
02 0? 0?2
o Yozor T Toyor

0 9% 1
+ o+ -(@®+9?)

Ay, = 25
BT ez T2 Ty

Therefore, in our case the sub-Laplacian reduces to the Laplacian in R?

Am, ((x - z0)? + (y — y0)2) (gm) = A ((x — z0)? + (y — yo)Q) (gm) = 4.

Since f is assumed to be strongly amv-harmonic and u € C?(B), the definition of amv-harmonic
functions together with [FLM14, Lemma 3.3] imply that upon r — 07 it holds that A, f(gmy) — 0
and A,u(gmn) — 0. Moreover, by applying [FLM14, Lemma 3.3] again we obtain that

-1 2 p2 1 -1 2 p2 9
lim 2@ A (1P po)ullg (gn) = LD A (>~ po) Iz (gm) = 2219
r—0+ 2 R? 3 2 R? 3T R?

since above we assume that ¢(q) < 0. In a consequence, we get that 0 < §f—§§3 < 0 contradicting
our assumption. The proof of the theorem is completed. O

In the next chapter we prove, that the dimension of the space of strongly harmonic functions
of polynomial growth is finite.
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4.3.4 Mean value-harmonic functions of polynomial growth

Colding and Minicozzi proved in [CM97a;|CM97b] a conjecture of Yau on the finite dimensionality
of the space of harmonic functions in the sense of solutions to the Beltrami—Laplace equation with
polynomial growth of degree m by showing that, in a Riemannian n-manifold M of non-negative
Ricci curvature holds the following bound

dim H™(M) < C(n)m"™ ™ .

This result has been extended to Alexandrov and RCD-spaces, see [Huall; HKX16]. An argument
of Li [Li97] uses the doubling property and the mean value inequality of subharmonic functions
to obtain the estimate

dimH™(M) < C(n)m® (4.13)
for manifolds with a measure satisfying (4.3) with doubling exponent @) and a uniform Poincaré
inequality. By the latter we mean that there exists a constant C' > 0 such that for every function

. . 2 2

u € Wb (M), point z € M and radius r > 0 there holds fB(w,T) |u— up(zm| < Cr? fB(ZM) [Vul”.
The estimate (4.13]) remains valid in the context of strongly harmonic functions on doubling spaces.
In fact a modification of the same argument improves the bound (4.13)) if p satisfies an annular

decay property, cf. Definition We follow the strategy in [Li97|, see Lemmas and
below, and present the modifications needed for our result.

Definition 4.20. A function u € H(X) is said to have growth rate at most m for m > 0 if there
exists p € X and C' > 0 such that for all x € X there holds

u(@)|< C(1 + dy(2))™,

where d, : X — R is the distance function « — d(p,xz). We denote by H™(X) the space of
u € H(X) with growth rate at most m.

Remark 4.21. This definition is independent on the choice of point p € X. Indeed, suppose that
u € H™(X) for some p € X and take any ¢ € X. Then, the following estimate holds true

lu(x)] < C(1+d(p,z))™ < C(1+d(p,q) + d(g,z))™

d(g,z) \" m m
) < O )" 1+ dla)™
Therefore, u € H™(X) as well for the choice of point ¢ and a constant C" = C'(1 + d(p, ¢))™.

Notice, that for every m > 0 space H™(X) is nonempty, because it contains constant functions.
In case of X being a harmonic Riemannian manifold the class H™(X) consist of harmonic poly-
nomials of degree at most m. Moreover, if X is a Carnot group, then H™(X) contains spherical
harmonic polynomials of degree at most m, see [AW20)].

<C(1+dp,q)™ <1 +

Proposition 4.22. Let (X, d, 1) be a complete doubling metric measure space with doubling expo-
nent Q :=log, C,, > 1, and suppose p has a-annular decay ({.4). Then, for any m > 0, we have
that

dimH™(X) < Cm°9~*,
where the constant C = C(Q, «) depends only on Q and «.

Doubling measures on length spaces always satisfy an annular decay property for some «, see
the discussion following Definition .1} Thus, Proposition [£:22) implies the following corollary.

Corollary 4.23. Let (X,d,p) be a complete geodesic doubling metric measure space with @ > 1.
Then there exists § > 0, depending only on a doubling exponent @, so that

dimH™(X) < C(Q)m<~?.
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Let (X, d, 1) be a complete doubling metric measure space, where p has a-annular decay. Given
R > 0, we define a bi-linear form

Ag(u,v) := / uvdp,
B(p,R)

for u,v € H(X). Note that Ag is symmetric and positive semidefinite. It follows from the proof
of [Huall|[Lemma 3.4] that, for any finite dimensional vector subspace V' C H(X), there exists a
radius Ry > 0 so that Ag is an inner product on V for every R > Ry.

In order to prove Proposition [£.22] we need the following auxiliary results.

Lemma 4.24. Let V be a k-dimensional linear subspace of H™(X). For anyp € X, 3> 1,0 >0,
Ry > 0 there exists R > Ry such that if uy,...,ur is an orthonormal basis for V' with respect to
the inner product Agr, then

k

2 2

ui + ... Ftup)du > ———5—.
/B(%R)( 1 k) [F2m+Q+o

Proof. The proof of [Li97, Lemma 2] for manifolds carries over to the setting of metric measure
spaces under our assumptions, because it is based only on linear tools and the measure growth con-
dition . See also [Huall| Lemma 3.7], where the lemma is proven in the setting of Alexandrov
spaces, and [HKX16, Lemma 5.2] for the formulation of the lemma in the RC'D*(0, N) spaces. [

Lemma 4.25. Let V be a k-dimensional linear subspace of H™(X). Then, there exists a constant
C = C(Q) such that for any base uy,...,up of V, anyp € X, R > 0 and any ¢ € (0, %) it holds
that o

sup / lajus + ...+ akuk|2d,u.
B(p,R) 2_1J B(p,(1+¢€)R)

Yo
Proof. We follow closely the proof of [HKX16|[Lemma 5.3]. Fix ¢ € B(p,r) and define V, := {u €
V :u(q) = 0}. The subspace V;, C V is of codimV; < 1 since, if u,v € V, then u — ula)y ¢ Vg

v(q)
There exists an orthogonal change of variables A on V' such that A(u;) :==v; foralli =1,...,k

with v; € V, for i =2,... k.
We recall the relevant part of [AGG19|[Proposition 3.1]: if f € H(X) and F : f(X) — R is
convex, then F o f is subharmonic, i.e. for all z € X and r > 0 there holds

F(f(x)) > ]1 F(F(y))duy).

B(z,r)

We apply this result for f = v; and F(s) = s? to obtain that

Yuw =Y o=@ f e

k
Z a;ui(z)

1
= B (0 R ) - ey

=1 7

We apply (4.3)) to obtain that

(B(g, (1 +e)R —dy(q) 1 ((1 +e>R—dp<q>)Q.

WBp(+oR) -~ 2\ (1+oR

Therefore,

1 - c? ( (1+¢)R >Q
1(B(q,(1+e)R—dy(q))) ~ u(Blp,(1+e)R)) \(1+e)R—dy(q))
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Hence, upon integrating (4.14]), we arrive at

k
> Ar(uj,uy)
j=1

__¢ Cdyle)) ¢ .
=u(B.R)) </B<,7,R> <1+5 R) du<q>> (4.15)

. sup / |(11U1 + ...+ akuk|2d,u.
S 21 B (oR)

i=1 1

Denote
fZ[O,H‘)R, f(t):(1+€7t)7Qa

and note that the claim follows directly from (4.15) and the estimate

C
f T RS (4.16)

To obtain (4.16)), note that f is smooth, the derivative f'(t) = Q(1 +¢ —t)~9~! is positive, hence
f is increasing and thus

/ F(dy/R)dyi = / T B R) N {q € X : fo(dy/R)(q) > A})dA
B(p,R) 0
= [ FGuBE.R)Nd, > sRYds

after a change of variables f(s) = A. The a-annular decay implies
w(B(p, R) N {dy = sR}) = p(B(p, R) \ B(p,sR)) < C(1 = 5)"u(B(p, R))

and therefore

1 1
][ f(dp/t)d,u SC/ f/(s)(l — S)ads g CQ/ (1 e — s)—Q—1+ad8
B(p,R) —o0 o
cQ 1

TQ-ae@
establishing (4.16)). O

Proof of Proposition[{.22 Let R be large enough, 8 =1+¢ and € = 1/(2m). Let {u1,...,u;} be
an orthonormal basis with respect to Agr. Combining the estimates in Lemmas [£.24) and we
obtain

2m+Q—+95 Q—a’

(1+¢) = €
since

sup / layuy + ... + apug|*dp = 1.

a3 2= VB4 R)
Thus
E<C@Q)(1+ 1/(2m))2m+Q+5(2m)Q*a < Om@—«

after letting 0 — 0. O
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4.4 Blow-ups of Hajtasz—Sobolev functions with finite AMV-
norm

In this chapter we study blow-ups of functions with finite amv-norm. A blow-up of a metric
measure space and a function around a point is a pointed Gromov—Hausdorff limit of a rescaling,
see Chapter [£.4.3] Blow ups are a tool of analysis on metric spaces used to study local behaviour
and geometry of a metric measure space and functions on that space. One of the essential reasons
to study blow ups is that the class of doubling metric measure spaces supporting a Poincaré
inequality is closed under Gromov—Hausdorff convergence, see [Hei+15|[Chapter 11].

The main result of this chapter is Theorem .41 which says, that a blow up of a Hajlasz—Sobolev
function u € AMVY () is strongly harmonic on the tangent space. An immediate consequence is
that tangent functions to a strongly amv-harmonic function are strongly harmonic.

We begin with a review of pointed measured Gromov—Hausdorff convergence of spaces and
functions, which we will abbreviate to pmGH-convergence. In the literature there are several
variants of pmGH-convergence. Here we follow the presentation of [Kei03], and refer the interested
reader to [Hei+15] for more extensive discussion and the relations between various notions.

4.4.1 Pointed measured Gromov—Hausdorff convergence

In this chapter we announce notions which are fundamental for our further studies: the Hausdorff
convergence of sets and pointed Gromov—Hausdorff convergence of metric measure spaces and
functions. Moreover, we present basic properties of these objects as semicontinuity of Hausdorff
convergence, compactness of proper metric measure spaces and the relation of Gromov—Hausdorff
convergence of functions to weak convergence.

We begin with introducing the notion of Hausdorff convergence of closed sets in metric spaces
and recalling the weak convergence of measures.

Definition 4.26. Let F,,, F' C Z be closed sets in a metric space Z. We say that F,, Hausdorff-
converges to F' and denote it by F;,, — F, if

lim sup distz(z,F) =0 and lim sup  distz(z, F,) =0
m—0 ,cF,,NB(q,R) m—o° e FNB(q,R)

for every ¢ € Z and R > 0.

Definition 4.27. If v,,,v are Radon measures on Z, we say that v,, converges to v weakly,
denoted v,,, — v, if

lim dvy, = / pdv
z z

m—00

for every continuous function ¢ : Z — R with bounded support.
Let us prove the following semicontinuity-type result.

Lemma 4.28. Let v,, be a sequence of measures on Z converging weakly to a measure v. Suppose
that Fy, is a sequence of compact sets Hausdorff-converging to a compact set F'. Then for any fixed
€ > 0 there holds

lim sup vp, (F) < v(F) < liminf v, (N (Fp,))-

m— oo m—00

Proof. Let us fix ¢ > 0. By Definition [£.26] there exists mo € N such that
F C N.(Fy) and F,, C N.(F)
whenever m > my. By [Hei+15][Remark 11.4.1] we obtain

lim sup v, (Fy,) < limsup v(N.(F)) < v(N-(F)).

m— 00 m— 00

(0]



Taking infimum over € > 0 we obtain the first inequality.
Similarly, to conclude the second inequality we use |[Hei+15][Remark 11.4.1] and estimate

V(F) < v(N(F)) <liminf v, (N (F)) < liminf v, (Noe (Frn)),

m—00 m— 00

which ends the proof. O

For the next definition, we recall that a pointed metric measure space (X, d, i, p) consists of a
metric measure space (X, d, 1) and a distinguished point p € X. We consider only proper spaces
here.

Definition 4.29. A sequence X,, = (X, dm, thm, Pm) of pointed proper metric measure spaces

pmGH-converges to a pointed proper metric measure space X = (X, d, u,p), denoted X,, GH X,
if there exists a pointed proper metric space (Z,q) and isometric embeddings ¢, : X,, — Z and
t: X — Z so that

(1) tm(pm) = t(p) = ¢, and t,,,(X,,) Hausdorff-converges to ¢(X);
(2) there holds the weak convergence of pushforwards tofbm — txft-

We also define Gromov—Hausdorff convergence for sequences of functions. Since we consider
pointed measured spaces, we nevertheless include them (see also Definition [4.34)).

Definition 4.30. Let u,, : X;, — R and v : X — R be functions on pointed proper metric

measure spaces. We say that u,, Gromov—Hausdorff converges to u, denoted u,, GH u, if there
are isometric embeddings ¢, : X, — Z and ¢ : X — Z satisfying conditions (1) and (2) in
Definition 4.29] and

(3) wm(2m) — u(z) whenever z,, € X,,, z € X, and ¢y, (2m) — t(2).

The embeddings ¢y, : X,,, — Z and ¢ : X — Z satisfying (1) and (2) (resp. (3)) in Definition [4.29]

. . GH GH
are said to realize the convergence X,,, — X (resp. t,, — u).

Two central properties of Gromov—Hausdorff convergence are its compactness properties, see
Proposition [4:32] below, and the stability of properties which are central in metric geometry and
analysis. For our purposes the stability of length spaces and the doubling property of the measure
is important. For a detailed discussion see [Hei+15|[Section 11] and [Kei03].

Definition 4.31. Let (X, d,p) be a pointed metric space. We denote by Nx (e, R) the maximal
number of disjoint closed balls of radius € inside B(p, R). We say that a sequence of pointed metric
spaces (X, A, Pm) is totally bounded if

sup Nx,, (g, R) < o0
m
for every choice €, R > 0.

The following compactness property is proved in |[Kei03|[Proposition 5.1.9].

Proposition 4.32. Let X,, = (X, dm, tom, Pm) be a totally bounded sequence of proper metric
measure spaces, satisfying

sup pm (B(pm, R)) < 0o for every r > 0. (4.17)

Then there exists a subsequence and a pointed proper metric measure space X = (X,d, p,p) so
GH
that X,, — X.
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Another compactness result for sequences of functions on pointed metric spaces can be proved
using Proposition [£.32] and a diagonal argument, as in the proof of the Arzela-Ascoli theorem.
Under a different notion of convergence (which is equivalent to ours under the hypotheses there),
Proposition [1.33| appears in [Kei04]. For the additional statement (2), see [Hei+15][Section 11] and
[Kei03).

To state the result, let (X)) = (X, dm, fim,Pm) be a sequence of pointed proper metric
measure spaces. We say that a sequence (f,,) of functions f,, : X,, — R for m = 1,2,... is
equicontinuous if, for every e, R > 0, there exists § > 0 such that if z,,,ym € B(pm, R) satisty
AT, Ym) < 0, then | frn(m) — fm(Um)|< €.

Proposition 4.33. Let (X,,) = (X, dm, im, Pm) be a totally bounded sequence of pointed proper
metric measure spaces satisfying (4.17). If a sequence of functions (fim), where fm : X — R for
m=1,2,... is an equicontinuous sequence of functions, for which

SuP|fm<pm)|< 0,
m

then there exists a subsequence of (fm) and a continuous function f : X — R, defined on a proper

pointed metric measure space X, for which fp, GH f. Moreover,
(1) if each fy, is L-Lipschitz, then f is L-Lipschitz;

(2) if each X, is a doubling length space with doubling constant < C, then X is a length space
with doubling constant < C?.

To study tangents of Hajtasz—Sobolev functions, we also consider a notion of weak convergence
for functions. The following definition is a slight modification of the weak convergence in [Eri+20].

Definition 4.34. Let (X,,) = (X, dm, tim,Pm) and X = (X,d, u,p) be pointed proper metric

measure spaces. A sequence (u,,) of functions u,, € L}, .(X,,) converges weakly to u € L, .(X),

denoted u,, ol u, if there exist isometric embeddings ¢, : X,,, — Z, ¢ : X — Z satisfying (1) and
(2) in Definition and for which

(37t ((Um)+dpm) = ta(ugdp) and Lo ((w ) —dpim) — ti(u—dp)

Here, for a function f : Z — R we denote

f+ =max{f,0} and f_ = —min{f,0}.

The Gromov-Hausdorff convergence of functions is analogous to the uniform convergence on
compact sets and indeed coincides with this notion if X, = X = Z for all m. The weak convergence
of functions as in Definition [:34] corresponds to weak convergence of signed measures. In keeping
with these analogies, we indeed have the natural implication between the two notions.

Lemma 4.35. Let metric measure spaces (X,,) and X be as in Definition |4.34 Suppose further,

that a sequence (uy,) of functions um, € L}, .(Xm) Gromov-Hausdorff converges to a continuous

function u : X — R. Then (u,,) converges to u weakly.

. . ) GH
More precisely, if ty : X — Z, 12 X — Z realize the convergence u,, — u, then

lim (¢ 0 b)) () £ dptyn, = / (pot)usr du.
X

for any boundedly supported continuous ¢ : Z — R.

Proof. 1t is easy to see that if u,, K u, then (um,)+ CH u4, and the embeddings realizing the
first convergence also realize the latter convergence. Thus we may assume that u,, and u are

non-negative, and ¢, : X;,, — Z, +: X — Z realize the convergence u,, GH . Tt suffices to show
that s (Umdp) — v (udp).
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Let @ : Z — R be a continuous extension of uo:~!: 1(X) — R, and set

_ -1
Um = WO Ly |4 (X))

Given any continuous ¢ : Z — R with bounded (thus compact) support, we have

/ (po Lm)umdﬂm_/ (pot)udp :/ O(TUn, — U Lyps (Aptm) "’/‘Pf“m* (dptm) — /‘Pﬂb* (dp).
X X Z zZ zZ

m

Since s (dpim) — t«(dp), it suffices to prove that
[ # = 0) i) =01
z
If B C Z is a closed ball containing the support of ¢, we obtain

lim sup

m—0o0

/Zsﬂ (i — @) Am*(dum)‘ <limsup|lp o (1) o (' B) [Gn = Gl Lo (1, (x,0)08)

m—0o0

<||oll o (pyp(e ™" B) imsup||tim — ll 2 (0, (X0 )B)-

Suppose limsup,,, oo [|Tm — @[ Lo (1, (x,.)nB)> €0 for some g9 > 0. Then, there is a sequence (z,,)
such that x,, € X, with z,, := ¢, (2,) € B and
|Uim (2m) — W(zm)|= [tm(Tm) — G(tm(2m))]> o

for m large enough. Since B is compact, a subsequence satisfies z,, — z € ¢(X) for some z. By

the Gromov—Haudorff convergence u,, GH 1 and the continuity of @, we obtain

lim [ (€m) = @ (2m))|= [u(™ (2)) = @(2)|= 0,

m—0o0

which is a contradiction. This completes the proof. O

4.4.2 Gromov—Hausdorff convergence and averaging operators

In this chapter we prove preliminary results which we will use in the proof of the main result of
Chapter i.e. Theorem We focus on characterizing limit of average operators applied to a
Gromov—Hausdorff convergent sequence of functions. This characterization is attained using the
following result.

Proposition 4.36. Let X, = (X, dm, b, Dm) and X = (X, d, u,p) be proper locally doubling
length spaces. Suppose the sequence un,, € L}, .(X,) converges weakly to u € L, .(X), and let
tm  Xm — Z, 1 : X — Z realize this convergence. If z,, € X,, and z € X are such that
tm(2m) — 1(2), then

lim U d oy, :/ udp
m—oo B(zm,r) B(z,r)
for any r > 0.

Proof. By considering u,,+, we may assume that the functions u,, and u are non-negative. We
note that

tm(B(zm, 1)) — t(B(z,1)) (4.18)

for every r > 0 in the sense of Hausdorff-convergence. Indeed, given ¢ € Z, R > 0 and arbitrary
€ > 0 the convergence t,,(X,,) — ¢(X) and ¢y, (2,) — ¢(2) imply that, for large enough m

B(q, R) Nty (B(zm, 1))
= B(p, R) Nty (X)) N B(tm(2m), ) C Ne(e(X)) N B(u(2),r 4+ ¢) = N(o(B(z,7)))
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and

B(q,R)Nu(B(z,r))
= B(p,R) N (X)) N B(t(2),r) C Ne(tm(Xm)) N Bltm(zm),r +¢€) = Ne(t(B(2m,7)))-

The convergence ([4.18) follows. Note that the property of being a length space was used in the
last equality, cf. [Hei+15|[Lemma 11.3.10]. By Lemma we have, for any € > 0, that

lim sup vy, (B(2m, 7)) < v(B(z,7)) < liminf v, (B(zm, e + 1))

m— oo m—oo

where dv = udp and vy, = Uy dpiy,. Recall, that A, g(z) = B(x, R) \ B(z,r) for 0 < r < R and
x € Z. It holds that

lim inf v, (B(2m, € + 1)) = im inf [ty (B(2m, 7)) + Vim (A rie(2m))]

m—0o0 m—0o0

< liminf v, (B(2m, 7)) + Umsup vy, (Arrte(Zm))-

m—0o0 m— o0

The argument used to establish (4.18)) also yields that

Ar,r+s(zm) - Am’+s(z)
in the sense of Hausdorff-convergence. Applying Lemma [£.28 once more we obtain

lim sup vy, (B(2m, 7)) < v(B(2,7)) < liminf vy, (B(2m, 7)) + v(Ar rie(2)).

m— oo m—00

Since p is a locally doubling measure on a length space it has an annular decay property (see the
discussion after Definition [4.1)). Therefore,

lim (A 4(2)) = 0
which, by the absolute continuity of v with respect to u, implies

liH(l) V(A r1e(2)) =0.

£—

We have obtained

lim sup vy, (B(2m, 7)) < v(B(z,r)) < lminf v, (B(2m, 1)),

which completes the proof. O
Proposition has the following immediate corollary.
Corollary 4.37. Let (X)) = (X, dm, b, Pm) and X = (X, d, u,p) be proper locally doubling
A

length spaces and (u,,) be a sequence of functions u, € L} .(X,,) converging weakly to u €
Ll

loc

(X). Then
(a) Atmuy,, GH APy, and
(b) () um Z5 (AF)u

for each r > 0. In particular, if u is continuous, then

Q

Al %Alju and (AR, Eey (AM)*u.
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Proof. The first claim follows directly from Proposition Note that, if ¢, : X, — Z and
t: X — Z realize the convergence X,, GH x , Proposition implies in particular that

i (B(zm, 7)) — p(B(z,7))  whenever tp,(2,,) — ¢(2).

It follows that, for any r > 0, the sequence f,, € L}, .(X,,),

loc

- U (2)
Jnl2) = B

weakly converges to

This yields part (b) of the assertion. O

4.4.3 Blow-ups of Hajlasz—Sobolev functions with finite amv-norm

In this chapter we prove Theorem [£.41] We begin with defining the main object considered in this
chapter, i.e. a blow up of a metric measure space.

Let us consider a proper locally doubling length space X = (X, d, u). Given a point € X and
r > 0, the pointed metric measure space

X, =(X,dp, pir,x), dy:= S Ty

is called a rescaling of X at x by 7.

Let (r,,) be a sequence of positive numbers converging to zero, and denote by X,, := X, .
A pointed measured Gromov-Hausdorff limit X, of X, is called a tangent space of X at x
subordinate to (rp,).

Similarly, if f : X — R is a function, x € X and r > 0, the function

fy = f;f(:v) X, >R
r
is a rescaling of f at by r. A Gromov-Hausdorff limit f : Xoo — R of f,, := f;, is called a
tangent of f at x subordinate to (rp,). If the convergence f,, — fo is weak (cf. Definition ,
we say that fo is an approzimate tangent of f at x, subordinate to (r,).

It is worth remarking that, in general, tangents are highly non-unique — different sequences
can produce different limits. However, any sequence of rescalings is totally bounded and satisfies
. Moreover, fp,(z) = 0 for m, and thus Proposition implies the existence of tangents of
Lipschitz functions at any point.

Proposition 4.38. Let X be a proper locally doubling metric measure space, and f : X — R an
L-Lipschitz function. Fixz a sequence (r.,) of positive numbers converging to zero. Then, for any
x € X, there exists a subsequence of the rescalings fp, : X;n — R at x, and a tangent function

foo : Xoo — R such that f, L4 foo-

In particular, any tangent space X, is doubling, and any tangent f., : X, — R is L-Lipschitz.
Next, we present a variant for Hajlasz—Sobolev functions.

Proposition 4.39. Let X be a proper locally doubling metric measure space, p > 1, and u €
M*YP(X). Given a sequence (r.,), for p-almost every point x € X, there is a subsequence of the

rescalings Uy, : Xm — R and a Lipschitz function ues : Xoo — R, so that uy, GH Uso -

It can be shown that the Lipschitz constant of u., satisfies
1
79(@) < LIP(uso) < Cy(z)
for a constant depending only on the local doubling constant of p near x; cf. |[Eri+20].
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Proof of Proposition[{.39 We follow the ideas of |[Eri+20]. Let g € L?(X) be a Hajlasz upper
gradient of u, and set
E,={xeX:g(x)>n}, neN.

Then
lim p(E,)=0 and lim gdp = 0.

n—oo n—oo E
n

Thus there exists a null set N C X for which every z € X \ N has the property that

. ,u(B(x,r)ﬂEn)i anl m 1 _
By ™ e /B@,T)QE,LQ(Z’”“(”) I

for some n € N. We fix x € X \ N and n € N satisfying (4.19).

Note that u|x\p, is 2n-Lipschitz and let i, : X — R be a 2n-Lipschitz extension of u|x\ g, -
3

By Proposition there is a subsequence of the rescalings (@, )m : X, — R and a Lipschitz

function @ : Xoo — R so that (y)m CH 4.

We show that, for this subsequence, the rescalings w,, : X,, — R converges weakly to 4. (This
is different from claiming that (@, )m i @, which follows from Lemma )

Let Z be a proper metric space and ¢, : X,, — Z isometric embeddings realizing the conver-
gence (U )m — U. Given ¢ € Cy(Z), fix a large number R > 0 so that spt o C B(t,(z), R) for all
m € N. Then spt(¢ o t,,) C Ba™ () = B(x,7mR). We have

/ P Olm umdﬂm_/ ¥ O leo ad,uoo‘
Xm X

oo

= / P Olm (an)'rnd,um - / POl ﬂdﬂ'oo +/ @ Olm [um - (ﬂn)m}dﬂ'm‘
X Xeoo E

n

IN

/ © 0 Ly (Un)mditm 7/ © O Lo ﬂduoo‘ Jr/ | 0 Ly U |dpim +/ | 0t (Tn)m|ditm
X Xoo En E,

The first term converges to zero since (U )m GH . We may estimate the second term by

. ol .
[ teoal bl < gl [ (o) + o)t

which, by (4.19)) converges to zero as m — oo. Similarly,

(B, N B(z,rmR))
w(B(@,rm))

converges to zero as m — oo. This completes the proof. O

. u
/ 100 bl | () onldpirn < 200

n

By a suitable cut-off argument, we obtain the following corollary whose proof we omit.

Corollary 4.40. Let Q) C X be a domain in a proper locally doubling metric measure space, and
let u € Mllof(Q) Given a sequence 1y, | 0, for p-almost every x € (), there is a subsequence of the

rescalings wy, : X;m — R at x, and Lipschitz function us : Xoo — R, so that u,, G Uso -

We are now ready to prove that having finite amv-norm forces tangent maps to be strongly
harmonic.

Theorem 4.41. Let Q@ C X be an open subset of a proper locally doubling measured length
space X = (X,d,p), and let 1 < p < oo. Suppose u € MLP(Q) N AMV? (Q) and (r}) is a
positive sequence converging to zero. Then for p-almost every x € , any approximate tangent

map teo : Xoo — R at x, subordinate to a subsequence of (1), is strongly harmonic.
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Proof. By Corollary u has approximate tangent maps, subordinate to (ry,), for p-almost
every x € X. For any k € N, r € Q4, and compact K C (2, we have

/ 1iminf][ |A, ruldpdp(x) < hmlnf/ ][ |A, ruldp du(x) < C’hmsup/ |Ajuld,
:c krm m— :c krm

K Mo p—0

cf. [Ald19, Theorem 3.3]. Thus, almost every xg € X has the following property: for every subse-
quence of (r,,) there exists a further subsequence (not relabeled), for which

lim |A
m—oee B(zo,kTm)

Let xg € Q be a point where (4.20]) and the claim of Corollary holds for (7). Furthermore,
let (Xoo, doos foos Too) be a pointed measured Gromov—Hausdorff limit of a sequence

ruldp < oo for every k € N and r € Q.. (4.20)

Tm

d W
Xm: X7dm7 ms = X N Y 9
( pim: T0) ( Tn N(B(xovrm)) 330)
and U @ Xoo — R a weak limit of the sequence
I Lt ) N
Tm

for a subsequence of (r,,). We pass to a further subsequence (again not relabeled) for which (4.20))
holds. Note that

Al (2) — um(2) = ][B( ) uly) —u(z)

T'm

d:u(y) = rmTQArmru(z)

for any z € X,,, and r > 0. Let ¢, : X,,, — Z and ¢ : X, — Z realize the convergence u,, G Uoo -
Corollary [£.37) implies that

/X 00 100 (2) [AB* e (2) = oo ()] dptoo(2) = T | 90 1) [AB™ e (2) — thm(2)] i (2)

m— 00 X
m

m— 00

= lim rmr2/ 0o tm(2)Ar ru(2)dpim(2)
Xm

for every compactly supported ¢ € C(Z). Since

ll © tmlloo /
0o lm(2)A, ru(2)dpm(z)| <—F——— A, ru(z)|dp(z
[ o0t o)| <l Il

gck,sa][ |Ar,, ruldp < oo
B(xo,krm)

it follows that
/X 0 t00(2) [(t1o0) B (r) — oo (2)] dptoo(2) = 0.

Since ¢ is arbitrary, this establishes the claim for all rational » > 0. The claim follows for all r > 0
by continuity, since X, is a length space and s a doubling measure. O

4.5 Weighted Euclidean spaces. Elliptic PDEs and amv-
harmonic functions

This chapter is mostly devoted to characterization of limits of r-laplacian in the weighted Euclidean
setting. We find the explicit PDE for the LP-limit of the averaging operator A, assuming the Wl{)fo -

regularity for a positive weight, see Theorem We discuss differences between weighted and
unweighted r-laplacian, which is best seen by (4.22)) in Lemma m
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The difference between mean value and amv-harmonic functions is perhaps best seen by consid-
ering the Euclidean space R™ with an arbitrary norm ||-||. In Chapter and summarized
in and Remark we showed that strongly harmonic functions on (R, |-||,) form a fi-
nite dimensional space, when p # 2. In the presence of a weight, strongly harmonic functions on
weighted Euclidean domains satisfy system of PDE’s which, in the case of smooth weights, is
infinite. In contrast, amv-harmonicity is characterized by an elliptic second order non-divergence
form PDE, as presented below.

We begin with recalling the setting of weighted FEuclidean spaces introduced in Chapter
Let ||-|| be a norm on R™, and denote by H™ the corresponding Hausdorff n-measure, which is a
constant multiple of the Lebesgue measure. Given an open domain 2 C R", consider the metric
measure space (, |||, H"|a) and denote

|Al:= H"|a(A), / ody ;:/ ©dH" o, A, = AT"12 and A, == AMle
A A

for Borel sets A C R”™ and integrable functions ¢ : A — R. The unit ball B(0,1) := BI'l(0,1) is
an open, symmetric convex set. Let M € R™*™ denote the matriz of second moments of the unit
ball B(0,1) C R™ of ||-||, given by

B(0,1)

Remark 4.42. Notice, that entries m,;; correspond to coefficients A, for |a| = 2 defined in lines
of Theoremm Therefore, the matrix M is symmetric and positive definite, see (2.22). Moreover,
ball B(z,r) is symmetric for every z € R™ and r > 0, hence we have that

][ (yfx)idy:r][ zdz=0, i=1,....n
B(z,r) B(0,1)

for x € R™ and r > 0.

Suppose that Q@ C R™ is a domain, |-|| is a norm on R™ and a weight w : @ — R is positive
and locally Lipschitz. Let us consider the weighted metric measure space

Q= (Q, |11l ),
where p := wH"™|n. We use the notation (cf. Chapter |4.2.1])
AY = AR AY = AR
The following elementary facts follow from the assumptions on the weight function w.

Remark 4.43. Since w is continuous and positive on €, the measure wH"|q is locally doubling.
Moreover,

(1) A¥f — f locally uniformly in Q as r — 0, whenever f : Q — R is continuous;

(2) For each p € [1,00], L], () = L () as sets, and LP-convergence on compact subsets of

Q2 with respect to H"|q and wH"|q agree.

The next lemma provides two different representations for A in terms of A, and will prove
useful in further parts of this chapter.

Lemma 4.44. Suppose f € L}, (). Then

1
A,w

A’rif)f = (Ar(fw) - fAr'LU), (421)
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and

w _ 1
Ar f - ATf + AT”U.) <f)w>7‘a (422)
where
o fly) = Arf(z) g(y) — Arg()
(f,g)r(z) = ]{B(m) . . dy,

for f,g € L}, .(Q) such that fg € L}, .(Q).

loc

Proof. The first claim of the lemma is a direct consequence of the pointwise identity

(f(y) = F@))w(y) = Fy)wly) — f@)w(z) + f(@)(w(z) —w(y)), zyeQ

We integrate both sides with respect to y € B(x,7) and divide by r? fB(w " w(y)dy, which equals
to 2| B(z,r)| A,w(x), to arrive at the following identity

AW = e ( 1, T ~ Sy — 1@ f

B(z,r)

(w(y) - w(x))dy> :

This proves (4.21). To see the second assertion (4.22]) we fix r > 0, z € Q and compute

(frw)yr(z) _ 1 (f(y) = Arf(2))(w(y) = Arw(z))
AT’LU(J?) 7ATU}(.T) ][B(z,r) r? dy

1 ][ fwly) = Arw(z) fy) = Arf(@)w(y) + Arf(2) Arw(z)
B(z,r)

r2

A,w(z)

1
= A w(n) [][B@,r) f)w(y)dy — Arw(z) ]{s(m fly)dy

CA@) ]{3 L wy A @A)

dy

1
) | Jo OO Arf<w>Arw<x>]
_AYf(@) — A f(x)
r2
_ AV (@) = f2) = (A f(2) = f(x))

r2

= A (@) = Arf(2).

Consider the unbounded operator L,, : LP(£2,,) — D*(R™) defined as

1 1 1
Lyu:= idiV(MVu) + —(Vw, MVu) = idiV(MVu) + (VInw, MVu). (4.23)
w
This can be interpreted as a distribution for any u € LP(Q,,) but makes sense as an L] -function
for u € Wi’f (©). The main result of this chapter is the following result linking limit of A¥ to the
operator L,,.

Theorem 4.45. Let w be a locally Lipschitz positive weight on Q and p € (1,00). Then WHP(Q)N
AMV? (Q,) = W2P(Q). Moreover, for every u € W2 P(Qy,) we have that A¥u — Lyu in LP, ()

loc loc
asr — 0.

In order to prove Theorem [£.45 we firstly consider the case of a constant weight. We begin
with proving that under the C?-regularity assumption strong amv-harmonic functions solve the
second order elliptic PDE whose coefficients depend only on the geometry (i.e. on matrix M) of
the unit ball in the underlying metric, see Lemma
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Lemma 4.46. If u € C?(2), then
1
Ay — §diV(MVu)

locally uniformly in Q, as r — 0.

Proof. Let x € Q and r < dist(z, Q). For every fixed z € B(0, 1) the Taylor expansion of u yields
" Ou
u(r +rz) — Za— )zi + 7‘2 Z 8 x)ziz; + Ep(, 2),

where E,(z,z) is the Taylor remamder and E,(z,2)/r? — 0 locally uniformly in  x B(0,1), a;
r — 0. Thus, upon dividing by 72 and taking the mean integral with respect to z € B(0,1) we
have

w(@+72) — u(a) : / f Bl
A _ _ . . —_—
ru(x) ][3(071) ,],,2 dz = Z &'c aCCJ (-'L') B(0,1) lejdz * B(0,1) T2 dZ’

where the integral of the first order term over B(0,1) vanishes by Remark Thus,

hmA u(x z":

3,j=1

1
L = - ]
- ] x)mi; = 2le(M Vu),

and the claim follows. O

In the next result we weaken the regularity assumption from C? to VVfof and prove the assertion
corresponding to Theorem in Proposition £.47] In particular, we identify the amv -harmonic
functions with locally finite amv-norms with functions in the Sobolev space Wz . In the proof
of Proposition [4.47} “ we use the notion of W?? extension domain. Recall, that for p € [1,00] and
k € N a domain Q C R" is called a W¥P extension domain, if there exists a continuous linear
extension operator Tq, : WFP(Q) — W,P(R"). Furthermore, recall that any Lipschitz domain is

an extension domain.

Proposition 4.47. Let p € (1,00). Then AMV? (Q) = W2P(Q). Moreover, for each u €
W2P(Q), we have that

loc

1
Ay — §diV(MVU) (4.24)
in LT (), asr — 0.

Proof. Assume u € W2P(Q) and set

Rla) =)~ u(a) = 3 e @)y— o) myED

Let us fix a W2P-extension domain €’ compactly contained in 2. Denote by BE(x,r) an Euclidean
ball and by 9B¥(0, 1) an Euclidean unit sphere. We apply [BIK13, Theorem 2.5 and (21)] to arrive

at
lim/][
0o JBE @)

By Remark we see that

P
R(z,y) " / / 0%u
——=2| dydz = ¢(n,p) ——F—(x)e;e;| de dx. 4.25
2 * JOBE (0, 1) i< 61‘ 81‘] ( ) J ( )

r

R(x, _
]{% ) %dy — Avulz), B(z,r)C Q. (4.26)
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Together with (4.25) and the fact that ||-|| is comparable to the Euclidean norm, (4.26]) implies

that
) p
limsup | |ArulPde < limsup/ ][ 2 d dx < chm/ ][ 2 dydz < oo.
r—0 Q/ r—0 'J B(z,r) r r—0 *J BE (z,r) r
(4.27)

Notice, that we showed - for any W?2P-extension domain €)' compactly contained in . We
want to use this observation to prove that v € AMV?{ (). In order to do that, we fix a compact
K C Q and for each point € K find its neighbourhood €2, which is a W?P-extension domain
and is a compact subset of Q. By compactness of K we find a finite cover ), ..., Q) and estimate

using (4.27) in the following way

limsup/ |Aul” de < hmsupZ/ |Aul’ dz < oo.
K

r—0

Hence, u € AMVY ().

Conversely, suppose ©v € AMV? (Q). Then, for any positive sequence (r,,) converging to zero
there is a further subsequence and a function g € LY () such that A, u — g weakly in L} (Q)
as m — oo. In particular, for any ¢ € C2(£2), we have

1
/ pgdx = lim ©A, udr = lim ul\,, odr = 5/ udiv(MV)dx
Q Q Q

m—00 Q m—00

since App — %diV(M V) locally uniformly in © and we used the following Green-type identity,
see [MT19|[Theorem 5.3]:

[ ot uptn = [ o) [ W (H( e T Bzm)) dp(y)dp(z).

Notice, that in our case u(B(y,r)) = w(B(z,r)) is constant, hence the right-hand side is equal
to zero. This shows that g is a unique limit and agrees with the distribution g = %diV(M Vu)
on €, because [, 1div(MVu)p = [, 3div(MVe)u. Since div(MVu) € L () we have that

u € Wfof(Q), see e.g. Theorem 6.29 in |Gru09] applied for the differential operator P = A.
It remains to prove the convergence in (.24). For this assume u € W2(Q). Denote by VZu

loc
the matrix of second weak partial derivatives of u and by Q(z, s) a concentric cube centered at x
with side length s. Then, by [BHS02, Theorem 3.3] (applied with m = 2, S = B(x,r) according

to the notation in [BHS02|) we observe that there exist constant C/ = C’(n) and o > 1 such that

C'(n V2u (v)
u@) - f uly)dy| < ¢l / 12l @) 4,
B(z,r) r Q(z,om) ‘(E - y|

We apply [BHS02, Lemma 3.4] with u = |V?u/, u1 = pg = 2, according to the notation in [BHS02],
in the above observation to obtain that there exists a constant C = C(n) such that

|Aru(z)| =

r2

! V2
1A u(z)|< 7};0 /Q ( )mdygcw Jior|V2ul(x),  B(z,or) C Q. (4.28)

Let ' C Q be compactly contained and let (u,,) be a sequence of smooth functions converging to
w in W2P(Y') as m — oo. In particular, |V2(u — uy,)|— 0 and div(MV(u — u,,)) — 0 in LP(Y)
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as m — 00. By Lemma and (4.28) we obtain

1
lim sup||A,u — §diV(MVU)HLP(Q’)

T™—00

. 1 . 1, ..
< lim S(Lle (||Ar(u — U ) || r ) F 1 Artim — §d1V(MVum)||Lp(Q/)+§||d1v(MV(u - um))||Lp(Q,)>

r—

. 1.
S C'lim Sélp||M\/ﬁU7.|V2(U — um)|||Lp(Q/)+§||le(MV(U — um))HLp(Q/)
1.
<C HVZ(u — um)HLp(Q,) + §||d1v(MV(u — um)) |l Lr -

Upon letting m — oo the claim follows. O

The last auxiliary result which is needed in the proof of Theorem in order to reduce to
the unweighted case is presented below.

Lemma 4.48. If f,g € W21 (Q) and in addition g € L' (), then

loc loc

—0
(f,9)r = (MV f,Vg)
pointwise almost everywhere in €.

Proof. The Sobolev embedding implies that f € LZ)/C("_D(Q). Thus fg € L} (Q) and (f, g), is

loc
finite. Sobolev functions in Wlloc1 satisfy the following approximation by tangent planes for almost
every z € Q, cf. [EG92|[Theorem 2 in Section 6.1.2]
n/(n—1) (n=1)/n
dz) =0.

lim ][
=0\ JB(z,1)

It follows that

lim ][
r—0 B(z,1)

(JZB(I,I)

<][B(1:,1)

-/
B(z,1)

For the next calculations we use the shorthand

Rf(x’z) — f(J? + TZ) - A?"fix) — Vf(ﬂf) i (TZ)7 B(J?,’/‘) cQ.

fle+rz) = f(x) = V() - (rz)

r

fletrz) = Acf(z) = Vf(z)-(rz)

r

n/(n—1) (n=1)/n
dz) =0, (4.29)

since

fx+rz) = Arf(z) = Vf(z)-(rz)

r

n/(n—1) (n=1)/n
dz)

fx+rz) = fle) = V(@) (rz)

r

IN

fletrz) = f(x) = V() - (rz)

r

n/(n—1) (n=1)/n
dz> .

The definition of the matrix M yields

n

(MY f(a). Vo(a)) = >

4,j=1

0, f(x)0g;(x)z;z;dz = ][ (Vf(z)-2)(Vg-2)dz

B(z,1)
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which may be expanded to

s, Vo) = § AT 940 i £ Rl 2ele) e

B(x,1) r B(z,1)
L) =A@ gla ) = ),
B(xz,1)

~f IRV ) + Rl )(Tg(e) -2
B(z,1)
Thus
(f,g)r(z) = (MV f(z),Vg(z)) = ][ [RY(z,2)(Vf(z) - 2) + Rf(,2)(Vg(x) - 2)]dz
B(z,1)
tends to zero as r — 0 for almost every x € 2, by . O

We are now in a position to discuss the proof of Theorem

Proof of Theorem [J-43 We first observe that, if u € W,2"(), then

|<u,w>r<x>|g][ = Al o = Al

B(z,r) r

u— Ayu(x
%dy < OVwl| g (B(z,r) M| Vul(z),

S P

,7)

which holds due to the fact that w is locally Lipschitz and by the boundedness of the maximal
function. From this we conclude, that for each compactly contained €' C € there exists a function
g € LP(Q)) such that

[, why < g (4.30)

almost everywhere in '. We apply Lemma in (4.30) to obtain that
(u,w), — (MVu,Vw) in L} (Q)

Now suppose that u € leo’p( ). Then (u,w), — (MVu,Vw) and Ayu — 1div(MVu) in
LY (Q). Thus (4.22) in Lemma implies that

(U, why r—o 1

Alu = Apu+ Ao idiv(MVu) + i(MVu, Vw) = Lyu
in LY (Q). This also implies that u € AMV? (Q,).

Conversely, suppose that u € W,5(Q) N AMV? (Q,). Then, by ([#22) in Lemma and
(4.30) we obtain for every compactly contained £’ C Q that there exists a function g € LP(Q')
such that

1
|Aul< |A;"u\—|—mg on .

Thus u € AMV) () which, by Proposition implies that u € W2P(Q). O

In the last part of this chapter we briefly discuss the remaining results in [AKS20] obtained in
the setting of metric measure space €2,,.

Assuming higher regularity of the weight w € VV;O;C (Q) the authors can describe more precisely
the class AMV?Y () refining Theorem in the following way.

Theorem 4.49. Suppose that the weight w € W>(Q) and p € (1,00). Then AMV? (Q,,) =
W2P(Q). Moreover, for every u € W2P(Q) there holds A¥u — Lyu in LY. (Q) as r — 0.

loc loc loc
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Additionally, the authors study in [AKS20] weakly harmonic functions. We say, that a function
u € L?(X) is weakly amv-harmonic on a metric measure space (X, d, p) if lim, o [y ¢Ayudp =0
for every compactly supported Lipschitz function . The following characterization of both weakly
and strongly amv-harmonic functions is attained in [AKS20].

Theorem 4.50. Let u € Wl’z(ﬂ). Then, the following conditions are equivalent:

loc
1. u is a weak solution to L,u =0 in €,
2. w is weakly amv-harmonic in €,

3. ue AMV: (Q), and A%u — 0 in L}

loc loc

(Qy) asr — 0.

Moreover, if w € C*(Q), then all above conditions are equivalent to the following: u is strongly
amv-harmonic in .
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