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Streszczenie

W rozprawie zajmujemy się nowym podejściem do funkcji harmonicznych na przestrzeniach me-
trycznych z miarą używając przy ich definiowaniu własności wartości średniej. Badamy trzy typy
funkcji i związanych z nimi zagadnień: funkcje silnie harmoniczne, funkcje p-harmoniczne i ich
nieliniową asymptotyczną własność wartości średniej oraz funkcje asymptotycznie średnio harmo-
niczne. Badania powyższych pojęć prezentujemy odpowiednio w trzech przypadkach: ważonych
przestrzeni Euklidesowych, grup Carnot–Carathéodory’ego i przestrzeni metrycznych z miarą po-
dwajającą.

Na początku charakteryzujemy funkcje silnie harmoniczne określone na otwartych podzbiorach
przestrzeni Euklidesowej z ważoną miarą Lebesgue’a oraz z metryką indukowaną przez normę. Wa-
runkiem koniecznym na silną harmoniczność funkcji jest jej bycie słabym rozwiązaniem układu
eliptycznych równań różniczkowych cząstkowych, którego liczba równań zależy od regularności
wagi. Warunek dostateczny jest udowodniony przy użyciu wzoru Pizzettiego i stanowi, że każde
rozwiązanie wyżej wymienionego układu równań jest silnie harmoniczne. Wzór Pizzettiego jest
prawdziwy tylko dla funkcji analitycznych, dlatego zakładamy analityczną regularność wagi. Jedną
z konsekwencji przeprowadzonej analizy są wyniki o regularności funkcji silnie harmonicznych.
Dowodzimy, że dla wagi z przestrzeni Sobolewa funkcje silnie harmoniczne należą do przestrzeni
Sobolewa oraz, że dla analitycznej wagi funkcje silnie harmoniczne również są analityczne. Przepro-
wadzona analiza została zilustrowana w przypadku planarnym z metryką indukowaną przez normę
lp. Dla p = 2 oraz gładkiej wagi przedstawiamy w możliwie najprostszy sposób wyżej wymieniony
układ równań różniczkowych cząstkowych charakteryzujący harmoniczność. Ponadto, dla stałej
wagi oraz pozostałych wykładników p ∈ [1,∞] \ {2} wykazujemy, że wymiar przestrzeni funkcji
silnie harmonicznych wynosi 8.

W rozdziale trzecim charakteryzujemy ciągłe rozwiązania lepkościowe równania znormalizowa-
nego subeliptycznego p-Laplasjanu na grupach Carnot jako funkcje o asymptotyczej p-własności
wartości średniej w sensie lepkościowym.

W ostatniej części pracy badamy funkcje asymptotycznie średnio harmoniczne na przestrze-
niach metrycznych z lokalnie podwajającą miarą. Używając metody uśredniania dowodzimy, że
funkcje ze skończoną amv-normą należą do ułamkowych przestrzeni Hajłasza–Sobolewa oraz, że
funkcje asymptotycznie średnio harmoniczne są α-Hölderowsko ciągłe z dowolnym wykładnikiem
0 < α < 1. Konsekwencją zastosowania metody uśredniania jest udowodnienie lokalnej ciągłości
Lipschitzowskiej dla funkcji silnie harmonicznych przy założeniach słabszych niż znane w literatu-
rze. Ponadto, dowodzimy skończoności wymiaru przestrzeni funkcji silnie harmonicznych o wzro-
ście wielomianowym o ile miara ma własność zanikania na pierścieniach. Twierdzenie Blaschke–
Privaloffa–Zaremby zostało uogólnione na grupę Heisenberga H1. Używając metody blow-up’ów na
przestrzeni metrycznej wykazujemy, że funkcje styczne do tych ze skończoną amv-normą są silnie
harmoniczne na przestrzeni stycznej. W ważonych przestrzeniach Euklidesowych, gdy waga jest
lokalnie ciągła w sensie Lipschitza, dowodzimy, że funkcje asymptotycznie średnio harmoniczne są
rozwiązaniami eliptycznego równania różniczkowego cząstkowego.

Słowa kluczowe: analiza na przestrzeniach metrycznych, własność wartości średniej, funkcja
harmoniczna, funkcja silnie harmoniczna, funkcja asymptotycznie średnio harmoniczna, funkcja
p-harmoniczna, grupa Carnot, ważona miara Lebesgue’a, p-średnia.
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Abstract

In the thesis we study a recent approach to harmonic functions on metric measure spaces defined
via the mean value property. Namely, we investigate three types of functions and related problems:
strongly harmonic functions, p-harmonic functions in connections to nonlinear asymptotic mean
value property and asymptotically mean value harmonic functions. Our analysis is divided into
three settings: weighted Euclidean domains with a norm induced metric, Carnot–Carathéodory
groups and doubling metric measure spaces, respectively.

First, we present a characterization of strongly harmonic functions on Euclidean spaces equipped
with a weighted Lebesgue measure and a norm induced metric. The necessary condition says, that
any strongly harmonic function is a solution to a system of elliptic partial differential equations,
where the number of equations in a system depends on the regularity of the weight. The suffi-
cient condition is proved using the Pizzetti formula and shows that every solution to previously
described system of equations is strongly harmonic. The result holds for analytic weights. As an
outcome of the discussion we obtain the Sobolev/analytic regularity of strongly harmonic functions
assuming Sobolev/analytic regularity of the weight, respectively. The discussion is illustrated by
distance functions induced by lp norm for planar domains. We demonstrate the aforementioned
system for a smooth weight and p = 2 and show, that for a constant weight and p ∈ [1,∞] \ {2}
the space of strongly harmonic functions has dimension 8.

In the second part of the dissertation we work with normalized subelliptic p-Laplace equation
in Carnot groups. We show a characterization of continuous viscosity solutions via an asymptotic
p-mean value property understood in the viscosity sense.

Finally, we investigate asymptotically mean value harmonic functions in locally doubling met-
ric measure spaces. We employ a refined averaging to prove fractional Hajłasz–Sobolev regularity
of functions with finite amv-norm and α-Hölder regularity of strongly amv-harmonic functions for
all 0 < α < 1. An outcome of the discussion is local Lipschitz regularity for strongly harmonic
functions obtained under weaker set of assumptions than those known in the literature. More-
over, we show that the space of strongly harmonic functions with polynomial growth has finite
dimension whenever the measure has δ-annular decay property. Moreover, we prove Blaschke–
Privaloff–Zaremba theorem in the Heisenberg group H1. We also study blow-ups of functions with
finite amv-norm proving, that a tangent function at almost every point is strongly harmonic on
the tangent space at that point. In the end, we show that amv-harmonic functions on weighted
Euclidean domains with locally Lipschitz weights are solutions to an elliptic partial differential
equation.

Keywords: analysis on metric spaces, mean value property, harmonic function, strongly har-
monic function, asymptotically mean value harmonic function, p-harmonic function, Carnot group,
weighted Lebesgue measure, p-mean.

AMS Subject Classification: 31C05, 30L99, 31E05; Secondary: 35R03, 53C23, 35J99, 35H20.
Socrates-Erasmus Subject Area: 11.1.
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Chapter 1

Introduction

This thesis is devoted to investigation of a recent concept of harmonic functions on metric measure
spaces defined via various kinds of the mean value property. In what follows, we describe the subject
and draw a road map of the thesis. We begin with presenting historical background of relations
between harmonic functions and the mean value property focusing on the classical results and
placing its place in the development of analysis of Partial Differential Equations. Then, we divide
the discussion with respect to three viewpoints:

1. strongly harmonic functions,

2. nonlinear averages of p-harmonic functions,

3. asymptotic mean value property.

In those parts we address recent results, which lead to our research. At the end of this chapter we
present most important results obtained throughout this thesis.

Let Ω ⊂ Rn be an open set. We say, that a function u ∈ C2(Ω) is harmonic on Ω if the Laplace
operator ∆u(x) := ∂2u

∂x2
1
(x) + . . .+ ∂2u

∂x2
n

(x) = 0 for all x ∈ Ω.

The standard questions concerning harmonic functions are the existence and the uniqueness of
solutions to the Dirichlet problem: given an open bounded smooth Ω ⊂ Rn and a boundary data
ϕ ∈ C(∂Ω) find u : Ω→ R which satisfies the following conditions{

∆u = 0 in Ω,
u = ϕ on ∂Ω.

One of the most important features of harmonic functions is the Dirichlet principle saying, that u
is a solution to the Dirichlet problem if and only if it is a minimizer of the Dirichlet energy

E(u) :=
∫

Ω
|∇u(y)|2 dy

in the class of all W 1,2(Ω) functions with fixed trace ϕ on the boundary ∂Ω.
In the setting of a metric measure space (X, d, µ), where d is a distance function and µ is a

Borel measure, the lack of the linear structure of X makes the notion of a partial derivative of u
not well defined and a pointwise definition of metric Laplace operator is not accessible in general.
Observe, that in its very matter, the Dirichlet energy does not use the full information about
behaviour of a gradient in different directions, but only its length. Suitable counterpart to length
of the gradient of a function have been studied from many perspectives. Below, we present two
significant ideas which allowed analysis on metric spaces to flourish and enabled the development
of the metric differentiation and, hence, the theory of Sobolev spaces:

1



1. A weak upper gradient g : X → [0,∞] of a function u is a function, which controls the growth
of u over almost every curve (in the sense of the modulus of a curve family) subsequent to
the Newton–Leibniz theorem, i.e.

|u(x)− u(y)| ≤
∫
γ

g,

where γ is a curve joining x and y. This approach led to the construction of Newtonian
spaces as those consisting of Lp(X) functions, for which there exists a p-integrabe weak
upper gradient. For more information see [Sha00; Hei+15; BB11].

2. A Hajłasz gradient g of function u is a counterpart of the Hardy–Littlewood maximal function
of the length of a gradient in the sense of satisfying the following estimate

|u(x)− u(y)| ≤ d(x, y)[g(x) + g(y)]

for µ-a.e. x, y ∈ X. Analogously to the Newtonian spaces, the Hajłasz–Sobolev space consists
of all Lp(X) functions, for which there exists a p-integrable Hajłasz gradient, see [HK00;
Haj96].

Using the first concept of metric gradients one may define harmonic functions as minimizers of a
metric counterpart of the Dirichlet energy

E(u) = inf
g

∫
Ω
g2dµ, Ω ⊂ X,

where the above infimum is considered over all g ∈ L2(Ω) which are weak upper gradients of u.
Then, we say that u is harmonic in Ω whenever it minimizes energy E over all functions from the
Newtonian space on Ω having the same trace at ∂Ω as u.

To our best knowledge, the mean value property of a function was firstly associated with the
Laplace operator by Gauss [Gau40], who proved that for a harmonic function u : Ω→ R and every
ball B(x, r) b Ω there holds

u(x) =
1

|B(x, r)|

∫
B(x,r)

u(y)dy =:
∫
B(x,r)

u(y)dy. (1.1)

The converse result, and hence a characterization of harmonic functions by the mean value prop-
erty, was observed by Koebe [Koe06], who proved that if u : Ω → R is continuous and for every
ball B(x, r) b Ω there holds (1.1), then u is harmonic in Ω. The mean value property is a tool used
in proving such properties of harmonic functions as the maximum principle, Harnack inequality,
analytic regularity and other potential analytic properties. For an interesting survey on the mean
value property and harmonic functions see [NV94].

The aforementioned Gauss–Koebe characterization of harmonic functions has also been investi-
gated on Riemannian manifolds and led to establishing the notion of harmonic manifolds. Recall,
that harmonic functions on Riemannian manifold (M, g) are solutions of the Beltrami–Laplace
equation, which is defined as follows ∆BLu := (det g)−1/2∑n

i,j=1
∂
∂xi

(
√

det g gij ∂
∂xj

u) = 0. Let us
restrict our discussion only to manifolds which are complete. The theory of harmonic manifolds
appeared for the first time in the dissertation of Ruse in 1930. He developed harmonic analysis on
general Riemannian manifolds by using a solution to the Beltrami–Laplace equation which only
depended on the geodesic distance from some fixed point (a counterpart of the fundamental solu-
tion). It was not until 1939 when he realised that such solutions do not necessarily exist on general
manifolds. Ruse defined harmonic manifolds as the class of manifolds which locally support such
radial fundamental solutions. This theory was later developed by Lichnerowicz, see [Lic44]. He
observed that one can equivalently define harmonic manifolds as those whose density function ω
expressed in normal coordinates at any point p, i.e. ωp(q) =

√
det gq, depends only on the geodesic

distance between p and q. Lichnerowicz proved in [Lic44] that all harmonic manifolds of dimen-
sion non-greater than 3 are either flat or rank one symmetric and conjectured that the same holds
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in higher dimensions. The converse implication is always true. The Lichnerowicz conjecture was
confirmed in the case of dimension 4 by Walker [Wal49] and dimension 5 by Nikolayevsky [Nik05].
Later on, Szabó [Sza90] proved the conjecture for compact simply connected manifolds of all di-
mensions. On the other hand Damek–Ricci constructed a class of simply connected noncompact
harmonic manifolds with negative curvature being nonsymmetric, see [DR92a; DR92b], where the
smallest dimension of this type of counterexample to Lichnerowicz conjecture is 7. As it turned out
due to Heber [Heb06] the class of harmonic manifolds which are additionally homogeneous consists
only of flat, rank one symmetric and Damek–Ricci counterexamples. The Lichnerowicz conjecture
remains unsettled for dimension 6 and in the class of nonhomogeneous harmonic manifolds. From
our point of view harmonic manifolds possess a very refined depiction due to Willmore [Wil50]:
A Riemannian manifold M is harmonic if and only if for any function u on M being harmonic is
equivalent to having the spherical mean value property over any geodesic sphere.

A different approach to the mean value property is due to Blaschke–Privaloff–Zaremba, who
proved independently the following result: Let Ω ⊂ Rn be open and u ∈ C(Ω). Suppose that for
every x ∈ Ω there holds

lim
r→0

∫
B(x,r) u(y)dy − u(x)

r2 = 0. (1.2)

Then u is harmonic in Ω. Observe, that the converse is always true, since if u is harmonic, then
the numerator in (1.2) is constantly 0. The main reason, why the Blaschke–Privaloff–Zaremba
theorem holds true is the following observation, which is well explained in the introduction to
[Llo15]. Fix a function u ∈ C2(Ω) and a point x ∈ Ω. Then by the Taylor expansion there holds
for all y ∈ B(x, r) that

u(y) = u(x) + 〈∇u(x), y − x〉+
1
2
〈∇2u(x)(y − x), y − x〉+ o(r2).

This, upon taking the mean integral over B(x, r) on both sides and observing that the linear term
vanishes, reads ∫

B(x,r)
u(y)dy = u(x) +

1
2(n+ 2)

r2∆u(x) + o(r2).

Therefore, for a function u ∈ C2(Ω) the expression

∆ru(x) :=

∫
B(x,r) u(y)dy − u(x)

r2 (1.3)

converges to ∆u(x) up to a constant. The above equality or (1.2) is often called the asymptotic
mean value property. In order to discuss the difference between conditions (1.1) and (1.2) notice
that property (1.1) can be expressed as a condition on the function Mx(r) =

∫
B(x,r) u(y)dy. By

the Lebesgue differentiation theorem we extend the domain of Mx to an interval containing 0
and set Mx(r) = u(x). Then, (1.1) can be equivalently stated as follows: for each x ∈ Ω the
function Mx(r) is constant for all r ∈ [0,dist(x, ∂Ω)). On the other hand, condition (1.2) can be
expressed equivalently that Mx around r = 0 has at most quadratic rate of change, which is more
extensive than (1.1). One of the most important features of (1.2) is that it holds also for harmonic
functions on general Riemannian manifolds, in contrast to (1.1) which holds only on the class
of harmonic manifolds being a subclass of all Riemannian manifolds. Moreover, even beyond the
setting of Riemannian manifolds the space of functions with property (1.2) has richer structure
than the space of functions with property (1.1). As we will see in further parts of the dissertation
in weighted Euclidean setting (1.2) is equivalent to a partial differential equation, while (1.1) is
characterized with a system of PDEs. Moreover, in the Heisenberg group (1.2) is equivalent to
being harmonic and in general Carnot group a weak version of property (1.2) is equivalent to
harmonicity, while functions with (1.1) are a proper subclass of those. Finally, in non-collapsed
RCD spaces with vanishing metric measure boundary every harmonic function has (1.2) in a weak
sense. For more information we refer to Chapter 4 and [AKS20].

Let us define one of the main objects studied in Chapter 2 of this thesis.
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1.1 Strongly harmonic functions

Let us observe, that the mean value property (1.1) makes sense formally on a metric measure
space (X, d, µ), where the notion of a ball and an integral is available. In order to write down the
mean value we only need to assume, that the measure of every ball is positive and finite and that
a function u is locally integrable on X. Therefore, from now on we denote by a metric measure
space a metric space (X, d) equipped with a Borel regular measure µ, which assigns to every ball a
positive and finite value. This observation and the historical discussion concerning Gauss–Koebe
theorem and related results motivated Gaczkowski–Górka [GG09] and Adamowicz–Gaczkowski–
Górka [AGG19] to formulate a novel approach in metric theory of harmonic functions: Let Ω ⊂ X
be open and function u ∈ L1

loc(Ω). We say, that u is strongly harmonic on Ω if for every point
x ∈ Ω and every radius r > 0 for which B(x, r) b Ω there holds

u(x) =
∫
B(x,r)

u(y)dµ(y). (1.4)

The class of all strongly harmonic functions on Ω is denoted by H(Ω, d, µ) and often abbreviated
to H(Ω), when the metric and the measure are clear from the context. Notice, that this approach
to harmonic functions on metric measure spaces is more straightforward than by minimization
of Dirichlet energy, since it does not require the use of metric gradients and Sobolev spaces.
Moreover, by our previous discussion, strongly harmonic functions agree with harmonic functions
on Euclidean domains and on harmonic manifolds.

The class of strongly harmonic functions has been widely examined: in general metric measure
spaces [AGG19; GG09], in case of metric space being homogeneous graph in [Zuc02; PW89] and
in case of metric space being Carnot group in [AW20; BLU07]. Let us shortly discuss those results.

Gaczkowski–Górka [GG09] showed that in metric measure spaces, where the measure is con-
tinuous with respect to metric strongly harmonic functions are continuous. Moreover, they proved
the strong maximum and minimum principle and in spaces with precompact balls showed the
Harnack inequality and compactness of locally bounded subfamilies of H(X).

To our best knowledge [GG09] is the first paper which deals with harmonicity defined via the
mean value property (1.4) in such a generality. In their further paper Adamowicz–Gaczkowski–
Górka [AGG19] studied the class H(X) more deeply and also from different perspectives. Among
results let us mention further Harnack estimates, weak and strong maximum principles, local
Hölder regularity on metric spaces with measures satisfying the δ-annular decay property for some
δ ∈ (0, 1] (the latter meaning that there exists constant C > 0 such that for all x ∈ X, r > 0
and ε > 0 there holds µ(B(x, r) \ B(x, (1 − ε)r)) ≤ Cεδµ(B(x, r))). The Hölder exponent equals
δ and if δ = 1 the regularity raises to locally Lipschitz. The authors employed Cheeger’s result
[Che99] to show that if the space supports a Poincaré inequality and measure µ is either Q-regular
or posseses the 1-annular decay property, then every strongly harmonic function has the minimal
weak upper gradient. Additionally, the Liouville theorems for entire harmonic functions on metric
measure spaces were obtained. Finally, the authors employed the Perron method to study existence
of solutions to Dirichlet problem, see [AGG19][Section 6].

Apart from strongly harmonic functions, the authors studied in [AGG19] a class of the so-
called weakly harmonic functions. Since it is largely connected to strongly harmonic function, we
are going to briefly sketch this notion. Its origin goes back to studies by Kellogg, Koebe, Littlewood
and Volterra and grows from the attempt of weakening the mean value property so that it still
implies the harmonicity in the sense of the Laplace equation. There are two key ways to approach
the task:

1. by reducing the assumption that (1.1) holds on every ball B(x, r) b Ω and assume in-
stead that for every point x ∈ Ω there exists a nonempty collection of radii {rxα}α∈Ax with
B(x, rxα) b Ω for every α ∈ Ax,

2. by reducing the set of points x ∈ Ω for which the mean value property holds.
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Let us illustrate the above discussion with presenting one of results by Hansen–Nadirashvili
[HN93] which is often called the 1-radius theorem: Let Ω be an open bounded subset of Rn, u ∈
C(Ω) ∩ L∞(Ω) be such that for every x ∈ Ω there exists 0 < rx ≤ dist(x, ∂Ω) with the property
u(x) =

∫
B(x,rx) u(y)dy. Then u is Laplace harmonic in Ω. On the other hand, the sufficient

number of radii, for which the mean value property must hold to imply the harmonicity of the
function whose domain is the whole Rn is 2. This type of result is often called the 2-radius theorem
and was first observed by Delsarte [Del58] in Rn and later on generalized by Berenstein–Zalcman
[BZ80] to rank one symmetric spaces and by Peyerimhoff–Samiou [PS15] to noncompact harmonic
manifolds.

The aforementioned relation between harmonicity and the weaker variant of the mean value
property leads to formulating a relaxed version of the strong harmonicity: Let Ω ⊂ X be an open
set in a metric measure space (X, d, µ). We call a locally integrable function u : Ω → R weakly
harmonic in Ω if for all points x ∈ Ω there exists at least one radius 0 < rx < dist(x, ∂Ω) with the
following property u(x) =

∫
B(x,rx) u(y)dµ(y). For further information about properties of weakly

harmonic functions we refer the reader to [AGG19].
Picardello–Woess in [PW89] studied relations between the discrete Laplacian on graphs and

the mean value property. Given a graph G = (V,E), where V is the set of vertices and E the set
of unoriented edges between vertices in V we define the graph Laplacian of a function u : V → R
at vertex x ∈ V as follows ∆Gu(x) := 1

degx

∑
y∼x(u(y) − u(x)), where deg x is the number of

neighbours of x and we write y ∼ x whenever y is adjacent to x. A graph G can be viewed as a
metric measure space (V, d,#), where d(x, y) is the infimum of number of edges joining x to y and
# is the counting measure. Picardello–Woess proved that in any homogeneous tree Tk for k ≥ 3
harmonic functions in the sense of the graph Laplacian possess the mean value property (1.4).
Conversely, any function on a homogeneous tree Tk, k ≥ 3 having (1.4) at every vertex x ∈ V
with one radius r = r(x) ∈ N, r(x) ≥ 1, is graph harmonic assuming a Lipschitz-type growth on
x 7→ r(x). For a connection to Markov processes we refer to [Zuc02].

Let us complete this part with a short discussion on the results obtained by Adamowicz–
Warhurst in [AW20]. The authors studied strongly harmonic functions on Carnot groups. Results
of [AW20] encompass the smoothness of strongly harmonic functions and the fact that they solve
the sub-Laplace equation. The converse need not be true, but the authors found in the Heisenberg
group that a class of spherical harmonic polynomials is both strongly harmonic and solves the
sub-Laplace equation.

Next, we describe relations between p-harmonic functions and a nonlinear mean value property,
which is a subject of Chapter 3.

1.2 Asymptotic mean value characterization for p-harmonic
functions

Let us fix an open set Ω ⊂ Rn. One of the classical generalizations of harmonic functions originates
from allowing in the Dirichlet energy exponents different that 2: Ep(u) :=

∫
Ω |∇u|

p for any p ∈
[1,∞). The Euler–Lagrange equation arising from the minimization problem of energy Ep is the
p-Laplace equation. The p-Laplace operator is defined as follows

∆pu := div(|∇u|p−2∇u),

which for p = 2 coincides with the Laplace operator, and solutions to the equation ∆pu = 0 are
called p-harmonic functions. The infinity Laplacian is defined as follows

∆∞u(x) =
n∑

i,j=1

∂2u(x)
∂xi∂xj

∂u(x)
∂xi

∂u(x)
∂xj

= 〈∇2u(x)∇u(x),∇u(x)〉.

Among many properties of the p-Laplace operator is the equivalence between continuous weak
solutions and viscosity solutions whenever p ∈ (1,∞), see [JLM01]. First, let us describe shortly the
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concept of viscosity solutions, for more rigorous discussion see [CIL92; Koi04]. The idea originates
from a geometric approach to monotone operators. By saying that ∆p is monotone we mean here,
that for a function u ∈ C2(Ω), a point x ∈ Ω and any twice differentiable test function ϕ touching
u at x from below (the latter meaning that u − ϕ has a local minimum at x equal to 0 and
∇ϕ(x) 6= 0) it holds that ∆pϕ(x) ≤ ∆pu(x). Observe, that if ϕ touches u at x from above, then u
touches ϕ at x from below and by the monotonicity of ∆p the inequality between operators is the
following ∆pu(x) ≤ ∆pϕ(x). Notice, that formally in order to say that a test function touches u
(from below or above) it is enough to assume that u is continuous. This idea is employed in order
to shift calculating the value of ∆pu (about which we want to assume the least possible a priori
regularity) to C2 test functions touching u from below and from above. Therefore, we say, that a
continuous function u is a viscosity solution to the p-Laplace equation if:

1. for every point x and any twice differentiable ϕ touching u from below at x there holds
∆pϕ(x) ≥ 0 and

2. for every point x and any twice differentiable ϕ touching u from above at x there holds
∆pϕ(x) ≤ 0.

One of the most important features of viscosity solutions to the p-Laplace equation is that they
allow suitable generalization of the Blaschke–Privaloff–Zaremba theorem, which was observed by
Manfredi–Parviainen–Rossi, see [MPR10]. The authors proved that given p ∈ (1,∞] a function
u is a viscosity solution to the p-Laplace equation in Ω ⊂ Rn if and only if u has the following
nonlinear asymptotic mean value property

u(x) =
α

2

(
min
B(x,r)

u+ max
B(x,r)

u

)
+ β

∫
B(x,r)

u(y)dy + o(r2) (1.5)

holding in the viscosity sense as r → 0, for all x ∈ Ω and constants α = p−2
n+p , β = n+2

n+p . Notice,
that α + β = 1, hence two first terms on the right-hand side of (1.5) converge to u(x) as r → 0
and (1.5) in fact implies that the rate of this convergence is at least quadratic. For p = 2 we
obtain the Blaschke–Privaloff–Zaremba theorem, since for p ∈ (1,∞) viscosity solutions coincide
with weak solutions. The nonlinear asymptotic mean value property (1.5) is strongly connected to
the so-called tug-of-war games, which is the two players game in an open set Ω ⊂ Rn, with a step
ε > 0 and a continuous payoff function F : ∂Ω → R. The starting point is a fixed x0 ∈ Ω. Then,
at k-th turn a fair coin is tossed and one of the players wins a chance of moving from a point xk−1

to xk. If dist(xk−1, ∂Ω) > ε, then the player chooses a direction vk ∈ Rn with |vk| ≤ ε and sets
xk = xk−1+vk+yk, where yk is a random noise vector. The game stops when dist(xk−1, ∂Ω) ≤ ε for
the first time. The active player can choose the final point xk ∈ ∂Ω at the distance |xk − xk−1| ≤ ε
and receive F (xk) payoff from the other player. Both players get zero payoff if dist(xk, ∂Ω) > ε for
all k ∈ N. In this way we obtain a function x0 7→ uε(x0) describing the payoff for a game starting
at x0. In [PS08] for 1 < p <∞ and in [Per+09] for p =∞ the authors proved, that for a regular
domain Ω the sequence (uε) converges to a p-harmonic function with boundary values u|∂Ω= F as
ε → 0. The min-max term in (1.5) corresponds to the choice of the direction by an active player
during the tug-of-war game and the mean value term corresponds to the random noise vector.

The study of results in the spirit of those in [MPR10] has developed in the following way. In
[KMP12] the authors studied the case of p = 1. The planar case is investigated in [LM16], where it
is proved that (1.5) in the pointwise sense is equivalent to p-harmonicity of u whenever 1 < p < p0.
In [AL16a] this result was extended to the full range of p ∈ (1,∞). On the other hand, in [MPR13]
the authors defined a class of p-harmonious functions, i.e. those functions ur for which

ur(x) =
α

2

(
min
B(x,r)

ur + max
B(x,r)

ur

)
+ β

∫
B(x,r)

ur

holds for a fixed r > 0, and showed that p-harmonious functions approximate p-harmonic functions
as r → 0 and p ∈ [2,∞). The nonlinear asymptotic mean value property of viscosity p-harmonic
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functions has been studied also outside the Euclidean setting, for instance in the Heisenberg group
H1, see [FLM14] and in Carnot groups, see [FP15].

A variant of the p-Laplace operator, better cut our for studying the viscosity solutions is the
so-called normalized p-Laplacian defined as follows

∆N
p u =

∆pu

|∇u|p−2 for 1 ≤ p <∞ and ∆N
∞u =

〈
∇2u

∇u
|∇u|

,
∇u
|∇u|

〉
for p =∞. (1.6)

Notice, that for a function u with ∇u 6= 0 being a solution of the p-Laplace equation is equivalent
to being a solution of the normalized p-Laplace equation. Therefore, being a viscosity solution of
the p-Laplace equation is equivalent to being a viscosity solution to normalized p-Laplace equation,
since test functions in the definition of viscosity solution omit critical points.

A recent result by Ishiwata–Magnanini–Wadade [IMW17] deals with the whole range of p ∈
[1,∞] and a different version of (1.5), which seems to suit better the problem of asymptotic mean
value property for p-harmonic functions. Namely, for Ω ⊂ Rn the authors work with the so-called
p-mean of a continuous function u : Ω → R, denoted by µp(r, u)(x) and defined as a unique
number λ which minimizes ‖u− λ‖Lp(B(x,r)), where B(x, r) ⊂ Ω. The p-means form a large class
of averages, as for p = 1 we retrieve a median of u on B(x, r), the 2-mean coincides with

∫
B(x,r) u

and for p =∞ is equal to 1
2 (minB(x,r) u+maxB(x,r)). The main result of [IMW17] is the following:

Let Ω ⊂ Rn be open, p ∈ [1,∞] and u ∈ C(Ω). Then the following conditions are equivalent:

1. u is a viscosity solution to ∆N
p u = 0,

2. u(x) = µp(r, u)(x) + o(r2) as r → 0 in the viscosity sense for every x ∈ Ω.

Now, let us define the last of the main objects of the thesis, which is investigated in Chapter 4.

1.3 Strongly amv-harmonic functions

As mentioned in the beginning of this introduction, see (1.2) and (1.3), the Blaschke–Privaloff–
Zaremba theorem suggests yet one more approach to the notion of harmonicity. Suppose that
(X, d, µ) is a metric measure space and a function u ∈ L1

loc(X). We define the r-laplacian of u as
follows

∆ru(x) :=

∫
B(x,r) u(y)dµ(y)− u(x)

r2 (1.7)

for x ∈ X. In order to generalize harmonic functions into metric measure spaces using the operator
(1.7) one should assert that it converges to 0 in some sense. It turns out that, for example, for a
jump function f on the real line ∆rf → 0 as r → 0 pointwise, but neither in any Lp norm nor
almost uniformly. In the sense of measures ∆rf converges to a δ distribution at a jump point.

The properties of the operator ∆r has been first studied, to our best knowledge, by Burago–
Ivanov–Kurylev in [BIK19] in the context of spectral stability and by Córdoba–Ocáriz in [CO20]
from the perspective of minimal surfaces. Recently, Minne–Tewodrose studied in [MT19] pointwise
limits of ∆ru for u being twice differentiable in weighted Euclidean spaces and on Riemannian
manifolds. Moreover, they proved maximum principle and a Green-type identity in general metric
measure spaces.

On the other hand, Adamowicz–K–Soultanis in [AKS20] defined the class of strongly and
weakly amv-harmonic functions, but also a class of functions with finite amv-norm in the following
way. We say, that a function u ∈ L1

loc(X) is strongly amv-harmonic if ∆ru converges to 0 almost
uniformly in X. Moreover, we say that u is weakly amv-harmonic whenever ∆ru converges to 0
as a measure on X. Since it is hard to determine what class of functions one should consider as
the domain of the operator ∆r, we consider a class of functions with finite amv-norm:

AMVp(X) = {u ∈ Lp(X) : lim sup
r→0

‖∆ru‖Lp(X) <∞}.

Additionally, we consider functions with locally finite amv-norm, denoted AMVp
loc(X) defined by

changing Lp(X) to Lploc(X) in the above formulation.
In the last chapter of the introduction we gather results presented in this dissertation.
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1.4 Main results

Let us briefly describe the results of this thesis. The discussion is divided into three chapter with
respect to their settings: Euclidean spaces equipped with a weighted Lebesgue measure and a norm
induced metric in Chapter 2, Carnot groups in Chapter 3 and general metric measure spaces in
Chapter 4.

In Chapter 2 we prove a characterization of strongly harmonic functions on a metric measure
space (X, d, µ), where X = Ω ⊂ Rn is an open set, d is induced by a norm on Rn and the
measure dµ = wdx for a positive almost everywhere weight w ∈ L1

loc(Ω). The characterization of
H(Ω, d, wdx) is divided into two theorems: a necessary condition and a sufficient condition, the
second one obtained under the analyticity assumption on w.

The necessary condition is described by Theorem 2.2 and states that every function u ∈
H(Ω, d, wdx) is a weak solution of the following system of partial differential equations∑

|α|=j

Aα (Dα(uw)− uDαw) = 0, for j = 2, 4, . . . , 2m. (1.8)

Here, the number of equations m depends on the regularity of the weight w in the following way:
if w ∈ W 2,2

loc (Ω), then m = 1 and if w ∈ C2k−1,1
loc (Ω) for some natural number k ∈ N, k > 1, then

m = k. The coefficients Aα in the system are defined via the α-moments of the Lebesgue measure
on a unit ball with respect to metric d, i.e. Aα :=

(|α|
α

) ∫
Bd(0,1) x

αdx.
The sufficient condition is presented in Theorem 2.3. It asserts that, assuming the analyticity

of w, every solution u to system (1.8) for m = ∞, in the sense that there are infinitely many
equations solved by u, is strongly harmonic in (Ω, d, wdx). The assumption of analyticity of the
weight function appears here due to the Pizzetti formula, which is used in the proof of Theorem 2.3.

Moreover, as an outcome of the discussion in Chapter 2 we examine regularity of strongly
harmonic functions obtaining the following three results: In Proposition 2.18 we show that if
w ∈ W 1,p

loc (Ω) ∩ L∞loc(Ω) for some 1 < p < ∞, then H(Ω, d, wdx) ⊂ W 1,p
loc (Ω). Then, in the lines of

proof of Theorem 2.2, we prove Proposition 2.20 raising regularity of strongly harmonic functions
to W 2m,2

loc (Ω), whenever w ∈ C2m−1,1
loc (Ω) for some m > 1, m ∈ N. Finally, in Lemma 2.25 we show

that if w is analytic, then every strongly harmonic function is analytic as well.
We apply the aforementioned characterizations in the case of metric d induced by lp-norm for

p ∈ [1,∞]. We observe, that system (1.8) for p = 2 and a smooth weight w reads

∆u∆jw + 2〈∇u,∇(∆jw)〉 = 0 for j = 0, 1, . . .

Furthermore, in the case of p ∈ [1,∞] \ {2}, a constant weight and a planar domain Ω ⊂ R2

we show that H(Ω, lp, dx) consists of 8 linearly independent functions 1, x, y, xy, x2 − y2, xy2 −
x3

3 , xy
3 − x3y, x2y − y3

3 .
In Chapter 3 we prove a generalization of Ishiwata–Magnanini–Wadade [IMW17] result to the

setting of Carnot groups. More precisely, in Theorem 3.1 we prove that for an open subset Ω of a
Carnot group G, p ∈ [1,∞] and a continuous function u ∈ C(Ω) the following two conditions are
equivalent:

1. u is a viscosity solution to the normalized p-Laplace equation ∆N
p,Gu = 0,

2. u(x) = µp(r, u)(x) + o(r2) as r → 0 in the viscosity sense for every x ∈ Ω, and µp denotes
the p-mean.

The proof of Theorem 3.1 relies on an auxiliary result (Lemma 3.15) describing the asymptotic
behaviour of a quadratic function on a Carnot group G. We present the proof of Lemma 3.15 in
two cases: the Heisenberg group H1 in Lemma 3.21 and a two-step Carnot group in Lemma 3.22.

In the last chapter we discuss strongly amv-harmonic functions on general metric measure
spaces (X, d, µ). We begin with employing a refined average of a function

Aru(x) :=
2
r

∫ r

r/2

∫
B(x,t)

u(y)dµ(y)dt
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to prove the regularity of functions with locally finite amv-norm, see Theorem 4.15. The claim
is the following: Suppose that X is a complete locally doubling metric measure space, Ω ⊂ X is
open, p > 1 and a function u ∈ AMVp

loc(Ω). Then, u belongs to the fractional Hajłasz–Sobolev
space Mα,p

loc (Ω) for every α ∈ (0, 1). Upon applying the fractional Morrey embedding we show in
Theorem 4.18 that functions with locally finite amv-norm are locally α-Hölder for every exponent
α < 1 −Q/p, where Q is the doubling exponent. Moreover, for strongly amv-harmonic functions
we show the local α-Hölder regularity for every exponent α ∈ (0, 1). An outcome of the discussion
is an improvement in regularity of strongly harmonic functions obtained in [AGG19] formulated in
Theorem 4.8, which says that strongly harmonic functions are locally Lipschitz if the underlying
space X is complete and locally doubling. Additionally, the space of strongly harmonic functions
of polynomial growth is examined following the Yau’s finite dimension conjecture and Colding–
Minicozzi results. The result is presented in Proposition 4.22 and states that for a fixed m > 0
and a complete doubling metric measure space X with the α-annular decay property, the space
of all strongly harmonic functions for which there exists C > 0 and p ∈ X such that |u(x)| ≤
C(2+d(p, x))m is of finite dimension. Moreover, in the Heisenberg group H1 we prove an analogue
of the Blaschke–Privaloff–Zaremba theorem, which, in particular, implies the analyticity of strongly
amv-harmonic functions on H1.

In Chapter 4.4 we study blow-ups of functions with finite amv-norm in the sense of Gromov–
Hausdorff limits of a rescaling around a fixed point. We develop auxiliary results used in the proof
of Theorem 4.41: Let Ω ⊂ X be an open subset of a proper locally doubling space X, which is
additionally a length space. Suppose, that p ∈ (1,∞) and u ∈ M1,p

loc (Ω) ∩ AMVp
loc(Ω). Then, the

tangent function at µ-almost every point x is strongly harmonic on the tangent space at x.
Finally, in Chapter 4.5 we focus on the setting of the weighted Euclidean spaces, which is the

framework in which we characterize strongly harmonic functions in Chapter 2. Recall, that we
consider an open set Ω ⊂ Rn equipped with a norm induced metric and a weighted Lebesgue
measure. We divide the discussion into unweighted (i.e. w ≡ 1) and weighted case, where we
consider weights which are locally Lipschitz and positive in Ω.

In the unweighted case we prove in Proposition 4.47 that for p ∈ (1,∞) the space of functions
with locally finite amv-norm AMVp

loc(Ω) coincides with the Sobolev space W 2,p
loc (Ω). Moreover, the

r-laplacian operator converges to an elliptic operator 1
2div(M∇u) in Lploc(Ω) as r → 0. The matrix

M = (mij) is defined as the matrix of second moments of the Lebesgue measure on the unit ball,
i.e. mij :=

∫
Bd(0,1) yiyjdy for 1 ≤ i, j ≤ n.

For the weighted case we prove in Theorem 4.45 that AMVp
loc(Ωw), where Ωw := (Ω, d, wdx),

coincides with the Sobolev space W 2,p
loc (Ω). Moreover, the r-laplacian operator converges to an

operator 1
2div(M∇u) + 〈∇ lnw,M∇u〉 in Lploc(Ω) as r → 0.
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Chapter 2

Strongly harmonic functions in
Euclidean domains

2.1 Introduction

Let (X, d, µ) be a metric measure space equipped with a metric d and a measure µ. Fix x ∈ X
and r > 0 and denote the open ball by B(x, r) := {y ∈ X : d(x, y) < r}. In what follows we will
assume that that µ is a Borel regular measure with 0 < µ(B) <∞ for each ball B ⊂ X. We recall
the following class of functions.

Definition 2.1 (Definition 3.1 in [AGG19]). Suppose, that (X, d, µ) is a metric measure space and
Ω ⊂ X be an open set. We say that a locally integrable function u : Ω → R is strongly harmonic
in Ω if for all balls B(x, r) b Ω there holds

u(x) =
∫
B(x,r)

u(y)dµ(y) :=
1

µ(B(x, r))

∫
B(x,r)

u(y)dµ(y).

We call a radius r > 0 admissible at some x ∈ Ω whenever B(x, r) b Ω. The space of all strongly
harmonic functions in Ω is denoted by H(Ω, d, µ). In what follows we will omit writing the set,
metric or measure whenever they are clear from the context.

The main subject of this chapter is a characterization of strongly harmonic functions on a
certain class of metric measure spaces. Namely, we consider an open subset Ω ⊂ Rn equipped with
a norm induced metric d and a weighted Lebesgue measure

dµ = wdx,w ∈ L1
loc(Ω), w > 0 a.e.

Bose, Flatto, Friedman, Littman, Zalcman studied the mean value property in the Euclidean
setting, see [Bos65; Bos66; Bos68; Fla61; Fla63; Fla65; FL62; Zal73]. We extended their appropriate
results with our main result, see Theorem 2.2 below. It generalizes results in [FL62] (see Theorem
2.10 below) and in [Bos68] (see Theorem 2.14 below) in the following ways:

(1) we consider general distance functions induced by a norm, not necessarily the Euclidean one,

(2) we allow more general measures, i.e. the weighted Lebesgue measures dµ = wdx, under the
appropriate assumptions on w (see the discussion in Chapter 2.2).

Theorem 2.2. Let Ω ⊂ Rn be an open set. Let further (Ω, d, µ) be a metric measure space equipped
with a norm induced metric d and a weighted Lebesgue measure dµ = wdx, w ∈ L1

loc(Ω), w > 0
a.e. Suppose that there exists m ∈ N such that if m = 1 then w ∈W 2,2

loc (Ω), and if m > 1 then the
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weight w ∈ C2m−1,1
loc (Ω). Then it holds that every function u ∈ H(Ω, d, wdx) is a weak solution to

the following system of partial differential equations∑
|α|=j

Aα (Dα(uw)− uDαw) = 0, for j = 2, 4, . . . , 2m. (2.1)

Coefficients Aα are defined as follows:

Aα :=
(
|α|
α

)∫
Bd(0,1)

xαdx =
|α| !

α1! · . . . · αn!

∫
Bd(0,1)

xα1
1 · . . . · xαnn dx,

where Bd(0, 1) is a unit ball in metric d.

For the sake of simplicity of notation in what follows we will denote Bd(0, 1) = B(0, 1).
Let us briefly compare Theorem 2.2 for the Euclidean distance d = l2 to Bose’s results [Bos65;

Bos66; Bos68]. In order to prove the necessary condition (Theorem 2.14 below) for being strongly
harmonic, Bose assumes the regularity of weight w ∈ Cm−1(Ω), whereas our methods for showing
Theorem 2.2 require that w ∈ Cm−1,1(Ω). Nevertheless, if d = l2 we retrieve the same system of
PDEs as Bose, however this observation needs additional calculations presented in Chapter 2.6.1.
On the other hand, in order to prove the sufficient condition for being strongly harmonic Bose
assumes that the weight w is an generalized eigenfunction of the laplacian, see Proposition 2.15.
In Theorem 2.3 we assume analyticity of weight w in order to prove the sufficient condition. Our
assumption is more general than Bose’s, which is illustrated by Lemma 2.24.

In order to prove Theorem 2.2 we need to establish regularity result which is stated as Proposi-
tion 2.18. Roughly speaking, Proposition 2.18 shows that if weight w is locally bounded and belongs
to the space W 1,p

loc , then all strongly harmonic functions are in W 1,p
loc . The discussion demonstrating

the way how Theorem 2.2 generalizes Theorem 2.14 requires computations. We present them after
the proof of Theorem 2.2, in Chapter 2.6.1.

Our second main result is the following converse to Theorem 2.2.

Theorem 2.3. Let Ω ⊂ Rn be an open set and (Ω, d, µ) be a metric measure space equipped with
a norm induced metric d and a weighted Lebesgue measure dµ = wdx. Suppose that weight w is
analytic and positive in Ω. Then, any solution u to system of equations (2.1) is strongly harmonic
in Ω.

Another, perhaps most surprising results are presented in Chapter 2.6 where we illustrate
Theorem 2.2 with the following observations:

If p 6= 2 and n = 2, then the space H(Ω, lp, dx) is spanned by 8 linearly independent harmonic
polynomials.

We already know that for any n ≥ 1 the space H(Ω, l2, dx) consists of all harmonic functions
in Ω, and is infinitely dimensional. The result describing dimH(Ω, lp, dx) for p 6= 2 in dimension
n = 3 is due to Łysik [Łys18a], who computed it to be equal to 48. The problem for n > 3 is open.
It is also worthy mentioning here, that the dimensions 8 for n = 2 and 48 for n = 3 coincide with
the number of linear isometries of the normed space (Rn, lp), which is 2nn! and is computed in
[AB12]. For more information see Chapter 2.6.

In Chapter 2.2 we present a historical background of the topic. We focus on the results by
Friedman–Littman [FL62] and Bose [Bos65; Bos66; Bos68]. The fact that Theorem 2.2 and Theo-
rem 2.3 generalize those by Friedman–Littman and Bose is presented in Remark 2.23. In Chapter
2.3 we study regularity of strongly harmonic functions. We prove continuity of strongly harmonic
functions in Proposition 2.17 for general weights w ∈ L1

loc and Sobolev W 1,p regularity in Propo-
sition 2.18 for weights w ∈ W 1,p

loc ∩ L∞loc. Chapter 2.4 is devoted to proving Theorem 2.2. An
additional outcome of the proof is Proposition 2.20, which says that strongly harmonic functions
are Sobolev W 2m,2

loc regular whenever the weight w ∈ C2m−1,1
loc for some natural number m > 1. In

Chapter 2.5 we discuss the proof of Theorem 2.3 and recall the Pizzetti formula. We show, that if
the weight w is analytic, then strongly harmonic functions are analytic as well, see Lemma 2.25.
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Finally, in Chapter 2.6 we demonstrate applications of our main results Theorems 2.2 and 2.3 in
the case of Ω ⊂ R2, a metric induced by lp-norm for p ∈ [1,∞] and weight w ≡ 1. We manifest the
main difference between cases p = 2 and p ∈ [1,∞] \ {2} by calculating the coefficients Aα defined
in Theorem 2.2 and explaining how it affects system (2.1). We also write down the system (2.1)
for p = 2 and an analytic weight w and show that our results are more general than those of Bose.

At the end of introduction to this chapter let us define basic notions and definitions used
throughout the thesis.

2.1.1 Basic notions and definitions

In this chapter we outline basic notions and definitions used below.
Let V be a linear space over the real numbers. We say, that a function n : V → R is a norm

on V, if it satisfies the following conditions:

1. for every x ∈ X there holds n(x) ≥ 0 and n(x) = 0 if and only if x = 0,

2. for every x ∈ X, a > 0 there holds n(ax) = |a|n(x),

3. for every x, y ∈ X there holds n(x+ y) ≤ n(x) + n(y).

The following notion of a distance function generalizes the notion of a norm. We call a pair (X, d)
metric space, if the distance function d : X ×X → R satisfies the following conditions:

1. for every x, y ∈ X there holds d(x, y) ≥ 0 and the equality d(x, y) = 0 holds if and only if
x = y.

2. for every x, y ∈ X there holds d(x, y) = d(y, x),

3. for every x, y, z ∈ X there holds d(x, z) ≤ d(x, y) + d(y, z).

Recall, that every norm n on V induces a metric d on V via the relation d(x, y) := n(x − y). If
X ⊂ V , then we say that d is a norm induced metric, if there exists a norm n on V such that for
every x, y ∈ X there holds n(x− y) = d(x, y).

Throughout this work we use the multi-index notation: α = (α1, . . . , αn) ∈ Nn, |α| = α1 +
. . .+αn. Moreover, for two multi-indices α, β ∈ Nn we say that β ≤ α if βi ≤ αi for all i = 1, . . . , n
and β < α if β ≤ α and there exists i = 1, . . . , n such that βi < αi. For β ≤ α we will write that(
α
β

)
:= α1!·...·αn!

β1!·...·βn! = α!
β! and for k ∈ N we denote

(
k
β

)
= k!

β! . For more information see Appendix A in
the Evans’ book [Eva98].

Next, let us consider a function f : Rn → R. For x, h ∈ Rn we define the difference quotient of
f at x as follows

∆hf(x) :=
f(x+ h)− f(x)

|h|
.

We use difference quotients to prove regularity of strongly harmonic functions in Proposition
2.18. Therefore, we present below a characterization of Sobolev functions via difference quotients.

Theorem 2.4 (Theorem 3, p. 277 in [Eva98]). Let Ω ⊂ Rn be an open set.

1. Suppose that 1 ≤ p <∞, f ∈W 1,p(Ω). Then for each K b Ω

‖∆hf‖Lp(K) ≤ C ‖∇f‖Lp(Ω) ,

for some constant C > 0 and all h ∈ Rn, 0 < 2 |h| < dist(K, ∂Ω).

2. Suppose that 1 < p <∞, K b Ω, function f ∈ Lp(K) and there exists constant C > 0 such
that

‖∆hf‖Lp(K) ≤ C

for all h ∈ Rn, 0 < 2 |h| < dist(K, ∂Ω). Then f ∈W 1,p(K).
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Let us recall, that the Fourier transform of a function u ∈ L1(Rn) is defined in the following
way

F(u)(ξ) :=
∫
Rn
u(y)e−i〈ξ,y〉dy.

For every function f ∈ L1(Rn) ∩ L2(Rn) its Fourier transform F(f) ∈ L2(Rn) and for every pair
of functions f, g ∈ L1(Rn) ∩ L2(Rn) the Parseval identity holds true∫

Rn
f(x)g(x)dx =

∫
Rn
F(f)(ξ)F(g)(ξ)dξ.

Moreover, if f ∈W k,2(Rn), then for every multi-index α with |α| ≤ k there holds

(iξ)αF(f)(ξ) = F(Dαf)(ξ).

2.2 Historical background

Properties of strongly and weakly harmonic functions were broadly studied in [GG09; AGG19] and
in [AW20] in the setting of Carnot groups. Below, we list out some of those properties especially
important for further considerations.

Proposition 2.5 (Proposition 4.1 in [AGG19]). Suppose that measure µ is continuous with re-
spect to metric d, i.e. for all r > 0 and x ∈ X there holds limd(x,y)→0 µ (B(x, r)4B(y, r)) =
0, where we denote by E4F := (E \ F ) ∪ (E \ F ) the symmetric difference of E and F . Then
H(Ω, d, µ) ⊂ C(Ω).

Moreover, the Harnack inequality and the strong maximum principle hold for strongly har-
monic functions as well as the local Hölder continuity and even local Lipschitz continuity under
more involved assumptions, see [AGG19] and Theorem 4.8. It is important to mention here that
similar type of problems were studied for a more general, nonlinear mean value property by
Manfredi–Parvainen–Rossi, Arroyo–Llorente and Ferrari–Pinamonti, see [MPR13; Llo15; AL18;
AL16b; FP15].

We know that H is a linear space, but verifying by using the definition whether some function
satisfies the mean value property might be a complicated computational challenge. From that
comes the need for finding a handy characterization of class H, or some necessary and sufficient
conditions for being strongly harmonic.

In what follows we are interested in extending results by Flatto [Fla61; Fla63], Friedman–
Litmann [FL62], Bose [Bos65; Bos66; Bos68] and Zalcman [Zal73]. Below, we briefly discuss these
results. According to our best knowledge, the investigation in this area originate from a work by
Flatto [Fla61]. He considered functions with the following property:

Let us fix an open set Ω ⊂ Rn and a bounded set K ⊂ Rn. Moreover, let µ be a probabilistic
measure on K such that all continuous functions on K are µ-measurable and for all hyperplanes
V ⊂ Rn it holds that µ(K ∩ V ) < 1, i.e. µ is not concentrated on a hyperplane. We will say that
a continuous function u ∈ C(Ω) has the mean value property in the sense of Flatto, if

u(x) =
∫
K

u(x+ ry)dµ(y) (2.2)

for all x ∈ Ω and radii r > 0 such that x+ r ·K := {x+ ry : y ∈ K} ⊂ Ω. Let us observe that for
K = B(0, 1) a unit ball in a given norm induced metric d and µ being the normalized Lebesgue
measure on K (the latter meaning that dµ = 1

|K|dx), property (2.2) is equivalent to the strong
harmonicity of u in Ω by the following formula

u(x) =
∫
B(x,r)

u(z)dz =
∫
B(0,1)

u(x+ ry)dy =
∫
K

u(x+ ry)dµ(y). (2.3)

13



This holds exactly for homogeneous and translation invariant metrics, because only then

B(x, r) = x+ r ·B(0, 1) = {x+ ry : y ∈ B(0, 1)}.

For such distance functions one can obtain any ball B(x, r) from B(0, 1) by using the change of
variables y = z−x

r . In relation to homogeneous and translation invariant distance let us recall the
following lemma, which is likely a part of the mathematical folklore. However, in what follows we
will not appeal to this observation.

Lemma 2.6. If d is a translation invariant and homogeneous metric on Rn, then there exists a
norm ‖·‖ on Rn such that for all x, y ∈ Ω there holds that d(x, y) = ‖x− y‖.

We recall also a characterization of all such metrics on Rn by using the Minkowski functional,
see [Sch14a]. Recall, that a set K ⊂ Rn is symmetric if −y ∈ K for every y ∈ K. For any nonempty
convex set K we consider the Minkowski functional.

Lemma 2.7 (p.54 in [Sch14a]). Suppose that K is a symmetric convex bounded subset of Rn,
containing the origin as an interior point. Then, its Minkowski functional nK defines a norm on
Rn. Moreover, if ‖·‖ is a norm on Rn, then the Minkowski functional nK , where K is a unit ball
with respect to ‖·‖, is equal to that norm.

Example 2.8. Among many examples of norm induced metrics on Rn are lp distances for 1 ≤
p ≤ ∞. Moreover, let us fix numbers ai > 0 for i = 1, . . . , n, set a := (a1, . . . , an) and 1 ≤ p <∞
and define

‖x‖ap:=

(
n∑
i=1

(
|xi|
ai

)p) 1
p

.

In case p = 2 all balls with respect to ‖·‖ap are ellipsoids with the length of semi-axes equal to ai
in xi’s axes direction respectively.

Remark 2.9. Let us observe that by Lemma 2.7 there is the injective correspondence between
norms on Rn and a class of all symmetric convex open bounded subsets K of Rn. More specifically,
every K defines a norm on Rn through the Minkowski functional and vice versa, given a norm on
Rn the unit ball B(0, 1) is a symmetric convex open bounded set, hence provides an example of
K. This can be expressed in one more way, namely that all norms can be distinguished by their
unit balls, so to construct a norm we only need to say what is its unit ball. Therefore, further
examples of norms can be constructed for any n-dimensional symmetric convex polyhedron K. All
balls with respect to nK will be translated and dilated copies of K.

The formula (2.3) is true only if the measure of a ball scales with the n-th power of its radius,
the same which appears in the Jacobian from the change of variables formula z = x+ ry. This is
true only for measures which are constant multiples of the Lebesgue measure. Note that (2.2) does
not coincide, in general, with the mean value property presented in our work, since the Flatto’s
mean value is calculated always with respect to the same fixed reference set K and measure µ,
whose support is being shifted and scaled over Ω. Whereas, in Definition 2.1 the measure is defined
on the whole space, and as x and r vary, the mean value is calculated with respect to different
weighted measures. Indeed, in order to see that this case is not covered by the Flatto’s (2.2), let
us rewrite the condition from Definition 2.1 in the following way

u(x) =
∫
X

u(y)
dµ|B(x,r)

µ(B(x, r))
.

This mean value property cannot be written as an integral with respect to one fixed measure for
different pairs of x and r, even when (2.3) holds.

Flatto discovered that functions satisfying (2.2) are solutions to a second order elliptic equation,
see [Fla61]. However, from the point of view of our discussion, more relevant is the following later
result.
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Theorem 2.10 (Friedman–Littman, Theorem 1 in [FL62]). Suppose that u has property (2.2) in
Ω ⊂ Rn. Then u is analytic in Ω and satisfies the following system of partial differential equations∑

|α|=j

AαD
αu = 0 for j = 1, 2, . . . (2.4)

The coefficients Aα are moments of measure µ and are defined by Aα :=
(|α|
α

) ∫
K
xαdµ(x). More-

over, any function u ∈ C∞(Ω) solving system (2.4) is analytic and has property (2.2).

Remark 2.11. Theorem gives full characterization of H(Ω, d) for d being induced by a norm.
Theorem 3.1 in [Fla61] states that all functions having property (2.2) are harmonic with respect
to variables obtained from x by using an orthogonal transformation and dilations along the axes
of the coordinate system. On the other hand the proof of Theorem 2.10 shows that the equation
in system (2.4) corresponding to j = 2 is always elliptic with constant coefficients from which the
analyticity follows.

Flatto as well as Friedman and Littman described in their works the space of functions pos-
sessing property (2.2). We present appropriate results below.

Proposition 2.12 (Friedman–Littman, Theorem 2 in [FL62]). The space of solutions to system
(2.4) is finitely dimensional if and only if the system of algebraic equations

∑
|α|=j Aαz

α = 0 for
j = 1, 2, . . . has the unique solution z = (z1, . . . , zn) = 0, where zi ∈ C.

Remark 2.13. From the proof of Proposition 2.12 it follows that if there exists a nonpolynomial
solution to (2.4), then the solution space is infinitely dimensional. If the dimension is finite, then
all strongly harmonic functions are polynomials.

A rather different approach to the mean value property and its consequences was studied by
Bose, see [Bos65; Bos66; Bos68]. He considered strongly harmonic functions on Ω ⊂ Rn equipped
with non-negatively weighted measure µ = wdx, for a weight w ∈ L1

loc(Ω) being a.e. positive in Ω
and only a metric d induced by the l2-norm. Under the higher regularity assumption of weight w,
Bose proved the following result.

Theorem 2.14 (Bose, Theorem 1 in [Bos68]). If there exists m ∈ N such that w ∈ C2m+1(Ω),
then every u ∈ H(Ω, w) solves the following system of partial differential equations

∆u∆jw + 2〈∇u,∇
(
∆jw

)
〉 = 0, for j = 0, 1, . . . ,m, (2.5)

where ∆j stands for the jth composition of the Laplace operator ∆ with ∆0w ≡ w. If w is smooth,
then equations (2.5) hold true for all j ∈ N.

The converse is not true for smooth weights in general, see counterexamples on p. 479 in [Bos65].
Furthermore, Bose proved in [Bos68] the following result, by imposing further assumptions on w.

Proposition 2.15 (Bose, Theorem 2 in [Bos68]). Let w ∈ C2m(Ω) for some m ∈ N, m ≥ 1.
Suppose that there exist a0, . . . , am−1 ∈ R such that

∆mw = a0w + a1∆w + . . .+ am−1∆m−1w.

Then any C2 solution u to (2.5) for all j = 0, 1, . . . ,m− 1 is strongly harmonic, i.e. u ∈ H(Ω, w).

The following result by Bose contributes to the studies of the dimension of the spaceH(Ω, l2, w)
under certain additional assumption on the weight (in particular, assuming that w is an eigen-
function for the laplacian).

Proposition 2.16 (Bose, Corollary 2 in [Bos65]). Suppose that Ω ⊂ Rn for n > 1, w ∈ C2(Ω)
and there exists λ ∈ R such that ∆w = λw. Then dimH(Ω, w) =∞.
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2.3 Regularity of strongly harmonic functions in the weighted
case

In order to prove Theorem 2.2 we need to establish regularity of strongly harmonic functions, see
Proposition 2.18. There, we show the Sobolev regularity for functions in H(Ω, d, wdx) depending
on the Sobolev regularity of weight w.

From now on we a priori assume that a function w ∈ L1
loc(Ω) and w > 0 almost everywhere in Ω.

Let us begin with noting that strongly harmonic functions in such setting are continuous.

Proposition 2.17. Let Ω ⊂ Rn be an open set. Then H(Ω, d, wdx) ⊂ C(Ω).

Proof. Observe that µ(∂B(x, r)) =
∫
∂B(x,r) w(y)dy = 0. Therefore, by Lemma 2.1 from [GG09]

measure µ is continuous with respect to metric. This completes the proof by Proposition 2.5.

Let us observe that the proof of continuity of strongly harmonic functions works for all weights
w ∈ L1

loc(Ω). However, in order to show existence and integrability of weak derivatives we need to
assume Sobolev regularity of w.

Proposition 2.18. Let Ω ⊂ Rn be an open set, d be a norm induced metric and a weight w ∈
W 1,p
loc (Ω) ∩ L∞loc(Ω) for some 1 < p <∞. Then H(Ω, d, wdx) ⊂W 1,p

loc (Ω).

Before we present the proof of Proposition 2.18 let us comment on the

Remark 2.19. The necessity of the assumption on regularity of the weight w in Proposition
2.18 is not settled. Notice, that the space H(Ω, d, wdx) always contains constant functions. When
considering examples of weights w which are neither weakly differentiable nor bounded, the space
H(Ω, d, wdx) turns out to consist of only constant functions. Nevertheless, we did not find any
example of a weight, for which there would exist some strongly harmonic non-differentiable func-
tions.

Proof. Fix a compact set K b Ω. Moreover, let r = 1
4dist(K, ∂Ω). Fix h ∈ Rn with |h|< r. Denote

by K ′ := {z ∈ Ω : dist(z,K) ≤ 2r}. Let us observe that due to the first assertion of Lemma 2.1
in [AGG19], i.e. that continuity of µ with respect to d implies that the map x 7→ µ(B(x, r)) is
continuous in d, there exists 0 < M := infx∈K′ µ(B(x, r)). The difference quotient of u at x ∈ K
reads

|∆hu(x)| = |u(x+ h)− u(x)|
|h|

=
1
|h|

∣∣∣∣∣
∫
B(x+h,r) uw∫
B(x+h,r) w

−

∫
B(x,r) uw∫
B(x,r) w

∣∣∣∣∣ ,
where we used the mean value property of u ∈ H(Ω, d, wdx). Now we add and subtract a term∫
B(x,r)

uw∫
B(x+h,r)

w
and use the triangle inequality to get

|h| |∆hu(x)| ≤

∣∣∣∣∣
∫
B(x+h,r) uw∫
B(x+h,r) w

−

∫
B(x,r) uw∫
B(x+h,r) w

∣∣∣∣∣+

∣∣∣∣∣
∫
B(x,r) uw∫
B(x+h,r) w

−

∫
B(x,r) uw∫
B(x,r) w

∣∣∣∣∣ . (2.6)

The first term can be estimated as follows∣∣∣∣∣
∫
B(x+h,r) uw −

∫
B(x,r) uw∫

B(x+h,r) w

∣∣∣∣∣ =
1∫

B(x+h,r) w

∣∣∣∣∣
∫
B(x+h,r)

uw −
∫
B(x,r)

uw

∣∣∣∣∣ ≤ 1
M

∫
B(x+h,r)4B(x,r)

|uw|

≤
‖uw‖L∞(K′)

M
|B(x+ h, r)4B(x, r)| . (2.7)

In order to manage this term we refer to Theorem 3 in [Sch14b] to get that

|B(x+ h, r)4B(x, r)| ≤ |h| |∂B(x, r)| = |h|cn,drn−1, (2.8)
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where in the last term the constant cn,d stands for the (n − 1)-dimensional Lebesgue measure of
the unit sphere with respect to the metric d. Computation of cn,d is highly nontrivial and for a
general distance d we only know that 0 < cn,d <∞.

The second term of (2.6) reads∣∣∣∣∣
∫
B(x,r) u(y)w(y)∫
B(x+h,r) w(y)

−

∫
B(x,r) u(y)w(y)∫
B(x,r) w(y)

∣∣∣∣∣
≤

∫
B(x,r) |uw| (y)∫

B(x+h,r) w(y)
∫
B(x,r) w(y)

∣∣∣∣∣
∫
B(x+h,r)

w(y)dy −
∫
B(x,r)

w(y)dy

∣∣∣∣∣
≤
‖uw‖L∞(K′) |B(x, r)|

M2

∣∣∣∣∣
∫
B(x,r)

(w(y + h)− w(y))dy

∣∣∣∣∣
≤
‖uw‖L∞(K′) Cn,dr

n

M2

∫
B(x,r)

|∆hw(y)| dy, (2.9)

where in the second inequality we used the translation invariance of the metric d and by Cn,d :=
|B(0, 1)| we denote the n-dimensional Lebesgue measure of the unit ball with respect to the metric
d. By gathering together estimates of both terms (2.6), (2.7), (2.8), (2.9) and applying the standard
inequality (a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 we obtain the following∫

K

|∆hu(x)|p dx ≤ 2p−1 ‖uw‖pL∞(K′)

∫
K

[
cpnr

p(n−1)

Mp
+
Cpn,dr

pn

M2p

(∫
B(x,r)

|∆hw(y)| dy
)p]

dx.

The first term above is bounded, therefore we only need to take care of the second one. For the
sake of simplicity we omit writing the constant 2p−1M−2p ‖uw‖pL∞(K′) C

p
n,dr

pn. Upon applying the
Jensen inequality and Theorem 2.4 (for Ω = K ′) the following estimate holds true(∫

B(x,r)
|∆hw(y)| dy

)p
dydx ≤ (Cn,drn)p−1

∫
K

∫
B(x,r)

|∆hw(y)|p dydx

≤ CCp−1
n,d r

n(p−1) |K| ‖∇w‖pLp(K′) .

This integral is finite by the assumptions on regularity of w and Theorem 2.4 applied to weight w
with an observation that w ∈W 1,p(K ′). Hence, the following estimate holds true∫

K

|∆hu(x)|p dx ≤ 2p−1 ‖uw‖pL∞(K′) |K|

(
cpnr

p(n−1)

Mp
+
CC2p−1

n,d rn(2p−1) ‖∇w‖pLp(K′)

M2p

)
<∞.

We apply Theorem 2.4 to u and obtain that u ∈W 1,p(K), which completes the proof.

We are now in a position to present the proof of Theorem 2.2.

2.4 Proof of Theorem 2.2

Before we present the proof of Theorem 2.2 let us discuss the equations of system (2.1). First of
all, by Remark 2.9 we know that B(0, 1) is symmetric with respect to the origin. If |α| is an odd
number, then xα is an odd function, hence Aα = 0. Therefore only evenly indexed equations of
(2.1) are nontrivial, although we will prove them for all j ≤ 2l. In fact, the proof of Theorem 2.2
can be applied to functions with the mean value property over any compact set K ⊂ Rn, which
does not necessarily need to be a unit ball with respect to a norm on Rn, i.e. to functions with
the following property

u(x) =
1∫

K
w(x+ ry)dy

∫
K

u(x+ ry)w(x+ ry)dy,
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which holds for all x ∈ Ω and radii 0 < r such that x + rK ⊂ Ω. In that case in the analogue of
system (2.1) appear also equations with odd indices.

If the unit ball is symmetric with respect to all coordinate axes, the coefficient Aα is zero
whenever some αi is odd. Therefore, in the j-th equation of (2.1) occur only differential operators
acting evenly on each of variables. Examples of norms for which B(0, 1) is symmetric with respect
to all coordinate axes include the lp norms for p ∈ [1,∞], but also by Lemma 2.7 one can produce
more examples.

Proof of Theorem 2.2. Let Ω ⊂ Rn be an open set, metric space (Ω, d, wdx) be as in assumptions
of Theorem 2.2, m ∈ N. Then, if m = 1 then w ∈ W 2,2

loc (Ω) and if m > 1 then w ∈ C2m−1,1
loc (Ω).

Then, following the reasoning of (2.3), for x ∈ Ω and 0 < r < dist(x, ∂Ω) there holds

u(x)
∫

B(x,r)

w(y)dy = u(x)
∫

B(0,1)

w(x+ry)rndy =
∫

B(0,1)

u(x+ry)w(x+ry)rndy =
∫

B(x,r)

u(y)w(y)dy,

where the middle equality holds true by the mean value property of u. Without the loss of generality
we may assume that B(0, 1) := {x : d(x, 0) < 1} satisfies B(0, 1) ⊂ {x : ‖x‖2≤ 1}, since we will
consider only small enough admissible radii in the mean value property. The assertion is a local
property, therefore we may restrict our considerations to the analysis of the behaviour of u on a
ball B′ ⊂ Ω with dist(B′, ∂Ω) = ε > 0 for some fixed ε > 0. Furthermore, let B be a ball concentric
with B′ with 2ε distance from ∂Ω. We redefine u and w in the following way

u(x) = u(x)χB′(x) w(x) = w(x)χB′(x).

The function u is continuous in B and if m = 1 then the weight w is in the space W 2,2(B)
since B b Ω. Analogously if m > 1 then w ∈ C2m−1,1(B). Let ϕ ∈ C∞0 (B). Then for all x ∈ B,
y ∈ B(0, 1) and 0 < r < ε it holds u(x + ry) = ū(x + ry). Since ϕ(x) = 0 outside of B we have
that for all x ∈ Rn there holds

u(x)ϕ(x)
∫

B(0,1)

w(x+ ry)dy = ϕ(x)
∫

B(0,1)

u(x+ ry)w(x+ ry)dy. (2.10)

For the sake of simplicity below we still use symbols u and w to denote u and w, respectively. We
integrate both sides of (2.10) with respect to x ∈ Rn to obtain∫

Rn

u(x)ϕ(x)
( ∫
B(0,1)

w(x+ ry)dy
)
dx =

∫
Rn

ϕ(x)
( ∫
B(0,1)

u(x+ ry)w(x+ ry)dy
)
dx. (2.11)

Observe, that the Fourier transform of functions

ϕ(x)u(x),
∫
B(0,1)

w(x+ ry)dy,
∫
B(0,1)

u(x+ ry)w(x+ ry)dy

exist and the latter two are L2(Rn) integrable in variable x. Therefore, we apply the Parseval
identity in (2.11) and obtain∫

Rn

F(ϕu)(ξ)F
( ∫
B(0,1)

w(·+ ry)dy
)

(ξ)dξ =
∫
Rn

F(ϕ)(ξ)F
( ∫
B(0,1)

u(·+ ry)w(·+ ry)dy
)

(ξ)dξ.

(2.12)
Here F(f)(ξ) :=

∫
Rn e

−i〈ξ,y〉f(y)dy stands for the Fourier transform of f at ξ ∈ Rn. The following
formula holds for any f ∈ L1

loc(Ω):

F

(∫
B(0,1)

f(·+ ry)dy

)
(ξ) = F(f)(ξ)

∫
B(0,1)

eir〈y,ξ〉dy. (2.13)
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Indeed, upon applying the Fubini Theorem and the change of variables z := x+ ry we obtain

F

(∫
B(0,1)

f(·+ ry)dy

)
(ξ) =

∫
Rn
e−i〈x,ξ〉

(∫
B(0,1)

f(x+ ry)dy

)
dx

=
∫
B(0,1)

(∫
Rn
e−i〈x,ξ〉f(x+ ry)dx

)
dy

=
∫
B(0,1)

ei〈ry,ξ〉
(∫

Rn
e−i〈x+ry,ξ〉f(x+ ry)dx

)
dy

=
∫
B(0,1)

eir〈y,ξ〉
(∫

Rn
e−i〈z,ξ〉f(z)dz

)
dy

=
∫
B(0,1)

eir〈y,ξ〉F(f)(ξ)dy

= F(f)(ξ)
∫
B(0,1)

eir〈y,ξ〉dy.

We apply formula (2.13) twice: for f = w and f = uw and employ respectively to the left- and
the right-hand side in (2.12) to arrive at the following identity:∫

Rn

F(ϕu)(ξ)F(w)(ξ)
( ∫
B(0,1)

eir〈y,ξ〉dy

)
dξ =

∫
Rn

F(ϕ)(ξ)F(uw)(ξ)
( ∫
B(0,1)

eir〈y,ξ〉dy

)
dξ. (2.14)

Let us observe that both sides of (2.14) are smooth functions when considered with respect to
r and this allows us to calculate the appropriate derivatives by differentiating under the integral
sign. Namely, we differentiate (2.14) with respect to r by j times (j ≤ 2l):∫
Rn

F(ϕu)(ξ)F(w)(ξ)
( ∫
B(0,1)

(i〈ξ, y〉)jeir〈y,ξ〉dy
)
dξ =

∫
Rn

F(ϕ)(ξ)F(uw)(ξ)
( ∫
B(0,1)

(i〈ξ, y〉)jeir〈y,ξ〉dy
)
dξ.

For r = 0 this identity reads∫
Rn

ijF(ϕu)(ξ)F(w)(ξ)
( ∫
B(0,1)

〈ξ, y〉jdy
)
dξ =

∫
Rn

ijF(ϕ)(ξ)F(uw)(ξ)
( ∫
B(0,1)

〈ξ, y〉jdy
)
dξ. (2.15)

Note that∫
B(0,1)

〈ξ, y〉jdy =
∫

B(0,1)

(ξ1y1 + . . .+ ξnyn)jdy =
∫

B(0,1)

∑
|α|=j

(
|α|
α

)
ξαyαdy =

∑
|α|=j

Aαξ
α. (2.16)

Using the above observations, equation (2.15) transforms to∫
Rn

∑
|α|=j

Aα(iξ)αF(ϕu)(ξ)F(w)(ξ)dξ =
∫
Rn

∑
|α|=j

Aα(iξ)αF(ϕ)(ξ)F(uw)(ξ)dξ. (2.17)

Let us focus on equation (2.17) for j = 2:∫
Rn

∑
|α|=2

Aα(iξ)αF(ϕu)(ξ)F(w)(ξ)dξ =
∫
Rn

∑
|α|=2

Aα(iξ)αF(ϕ)(ξ)F(uw)(ξ)dξ,

which can be rewritten in the following way∫
Rn

∑
|α|=2

AαF(ϕu)(ξ) · (iξ)αF(w)(ξ)dξ =
∫
Rn

∑
|α|=2

Aα(iξ)αF(ϕ)(ξ) · F(uw)(ξ)dξ.
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Hence ∫
Rn

∑
|α|=2

AαF(ϕu)(ξ) · F(Dαw)(ξ)dξ =
∫
Rn

∑
|α|=2

AαF(Dαϕ)(ξ) · F(uw)(ξ)dξ. (2.18)

We apply the Parseval identity in (2.18) and move the expression on the left-hand side to the
right-hand side to arrive at∫

Rn

∑
|α|=2

Aα (Dαϕ(x) · u(x)w(x)− ϕ(x)u(x)Dαw(x)) dx = 0. (2.19)

Notice, that (2.19) is a weak formulation in B of the equation

Lu(x) :=
∑
|α|=2

Aα

(
Dα(uw)(x)− u(x)Dαw(x)

)
= 0, (2.20)

where the operator L is defined by (2.20) and in the case m = 1 this observation ends the proof.
If m > 1, then in order to complete the proof we need to etablish higher regularity for function

u. We intend to employ Theorem 8.10 in [GT01]. Let us observe, that by Proposition 2.18 function
u ∈W 1,2

loc (Ω). The following holds true

Lu(x) =
∑
|α|=2

Aα

(
Dα(uw)(x)− u(x)Dαw(x)

)
=
∑
|α|=2

Aαw(x)Dαu(x) +
∑
|α|=2

∑
β<α
|β|=1

(
α

β

)
Dβu(x)Dα−βw(x).

Observe, that by the hypothesis on the regularity of w, coefficients appearing in the operator L
are in C2m−2,1(Ω). Moreover, L is strongly elliptic: Indeed, take ξ ∈ Rn and consider the second
order terms of L. By (2.16) we obtain for all y ∈ Ω that∑

|α|=2

Aαw(y)ξα = w(y)
∫
B(0,1)

〈x, ξ〉2dx ≥ w(y)
∫
‖x‖2≤ε

〈x, ξ〉2dx, (2.21)

where the last estimate holds with some ε > 0 since d is equivalent to the Euclidean distance, as
every norm on Rn. Next, observe that∫

‖x‖2≤ε
〈x, ξ〉2dx = ‖ξ‖22

∫
‖x‖2≤ε

〈
x,

ξ

‖ξ‖2

〉2

dx = θ‖ξ‖22,

where θ > 0 is defined by the above equality and does not depend on ξ due to the symmetry of
the Euclidean ball. Indeed, let us apply the change of variables z = Rx, where R is a rotation
matrix such that RT ξ

‖ξ‖2 = e1. Then,

θ :=
∫
‖x‖2≤ε

〈
x,

ξ

‖ξ‖2

〉2

dx =
∫
‖z‖2≤ε

z2
1dx.

Therefore (2.21) takes form: ∑
|α|=2

Aαw(y)ξα ≥ θw(y)‖ξ‖22, y ∈ Ω. (2.22)

Therefore the operator L is strongly elliptic and we are allowed to apply Theorem 8.10 in[GT01]
to obtain, that u ∈W 2m,2

loc (Ω).
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Now we are in a position to complete the proof. Observe, that in (2.20) we showed that u
solves the equation of system (2.1) for j = 2 and we need to show that u is as well a solution to
remaining equations of (2.1), i.e. for j = 4, 6, . . . , 2m. Let us analyze (2.17) similarly to (2.18) by
applying the Parseval identity and move the expression on the left-hand side to the right-hand
side in order to recover the following equation∫

Rn

∑
|α|=j

Aαϕ(x)
(
Dα(uw)(x)− u(x)Dαw(x)

)
dx = 0 for ϕ ∈ C∞0 (B),

which is a weak formulation of the following equation∑
|α|=j

Aα

(
Dα(uw)− uDαw

)
= 0.

The proof of Theorem 2.2 is, therefore, completed.

One of the immediate consequences of the proof of Theorem 2.2 is the following regularity
result.

Proposition 2.20. Let Ω ⊂ Rn be an open set, d be a norm induced metric and w be a weight
such that w ∈ C2m−1,1

loc (Ω) for some m ∈ N, m > 1. Then H(Ω, d, wdx) ⊂W 2m,2
loc (Ω).

2.5 Theorem 2.3: The converse of Theorem 2.2

Since both Theorems 2.10, 2.14 and Proposition 2.15 give not only the necessary, but also the
sufficient condition for the mean value properties in the sense of Flatto and Bose, respectively, our
next goal is to find an appropriate counterpart of these results. In case of nonconstant weights
Proposition 2.15 imposes an additional PDE condition on w, hence we expect an analogous con-
dition. From the point of view of our further considerations, the following generalized Pizzetti
formula introduced by Zalcman in [Zal73], will be vital.

Theorem 2.21 (Theorem 1, [Zal73]). Let µ be a finite Borel measure on Rn with compact support
and F(ξ) =

∫
Rn e

−i〈ξ,y〉dµ(y) be the Fourier transform of the measure µ. Suppose that f is an
analytic function on a domain Ω ⊂ Rn. Then the following equality holds∫

Rn
f(x+ ry)dµ(y) = [F(−rD)f ](x), (2.23)

for all x ∈ Ω and r > 0 such that the left-hand side exists and the right-hand side converges. The
symbol D is given by D := −i

(
∂
∂x1

, . . . , ∂
∂xn

)
.

Remark 2.22. Formula (2.23) is the main tool used in the proof of Theorem 2.3, hence we need to
assume analyticity of weight w. Due to a result by Łysik [Łys18b] the Pizzetti formula on Euclidean
balls is valid exactly for analytic functions. Therefore, dropping the analyticity assumption of w
would require finding a different proof of Theorem 2.3.

Remark 2.23. Theorem 2.10 by Friedman–Littman is a special case of our Theorems 2.2 and 2.3
for w ≡ 1. Proposition 2.15 by Bose is generalized by Theorem 2.3 due to the following lemma.

Lemma 2.24. Suppose that w ∈ C2l(Ω) solves the following equation

∆lw + al−1∆l−1w + . . .+ a1∆w + a0w = 0, (2.24)

where all ai ∈ C for i = 0, 1, . . . , l − 1 and ∆i is the i-th composition of the laplacian ∆ and
i = 1, 2, . . .. Then w is analytic in Ω.
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Proof. We prove the lemma by the mathematical induction with respect to l. Recall the following
fact (see p. 57 in [Joh55]): Suppose that w ∈ C2(Ω) solves the following equation

Lw + λw = ϕ, (2.25)

where L is elliptic with analytic coefficients and ϕ is analytic in Ω, λ ∈ C. Then w is analytic in
Ω.

If l = 1, then we use the above regularity fact with L = ∆, a0 = λ and ϕ ≡ 0. Now let us
assume that the assertion holds for l − 1 and consider w as in (2.24). By adding and subtract-
ing the appropriate terms we may rewrite this equation as follows with any λ ∈ C and given
a0, a1, . . . , al−1 ∈ C:

0 = ∆l−1(∆w + λw) + (al−1 − λ)∆l−2(∆w + λw) + (al−2 − λ(al−1 − λ))∆l−3(∆w + λw) + . . .

+ (a1 − λ(a2 − λ(. . .)))(∆w + λw) +
(
a0 − λ(a1 − λ(a2 − λ(. . .)))

)
w.

Since the factor in the last w-term is a complex polynomial in λ, one can choose such λ, so that
this last factor standing by w in the equation vanishes (e.g. take λ to be one of the roots of w).
We use the assumption for l − 1 to obtain that ∆w + λw is an analytic function, denoted by ϕ,
i.e. ∆w+ λw = ϕ. This observation together with the regularity observation allow us to conclude
the proof.

Lemma 2.25. Suppose that Ω ⊂ Rn is open, w is a positive analytic function and d is induced
by norm. Then any u ∈ H(Ω, d, wdx) is analytic as well.

Proof. By Theorem 2.2 function u is a weak solution to the equation for j = 2 of system (2.1).
In (2.22) we show, that this equation is strongly elliptic. We apply the regularity result (2.25) to
obtain that u is analytic.

Now we are in a position to prove Theorem 2.3.

Proof of Theorem 2.3. We need to show the following equality

u(x)
∫
B(0,1)

w(x+ ry)dy =
∫
B(0,1)

u(x+ ry)w(x+ ry)dy, (2.26)

where B(0, 1) is a unit ball in metric d. In order to prove (2.26) we use the generalized Pizzetti
formula for a measure µ being the normalized Lebesgue measure on the unit ball. Then

F(ξ)=
∫
B(0,1)

e−i〈ξ,y〉dy =
∞∑
j=0

(−i)j

j!

∫
B(0,1)

〈ξ, y〉jdy
(2.16)

=
∞∑
j=0

(−i)j

j!

∑
|α|=j

Aαξ
α=

∑
α∈Nn

(−i)|α|

|α|!
Aαξ

α,

where Aα =
(|α|
α

) ∫
B(0,1) y

αdy. We apply Theorem 2.21 twice: to w and uw to obtain∫
B(0,1)

w(x+ ry)dy =
∑
α∈Nn

r|α|

|α|!
AαD

αw(x), (2.27)

∫
B(0,1)

u(x+ ry)w(x+ ry)dy =
∑
α∈Nn

r|α|

|α|!
AαD

α(u(x)w(x)), (2.28)

Multiply (2.27) by u(x) and subtract from it (2.28) to obtain the following:

u(x)
∫
B(0,1)

w(x+ ry)dy −
∫
B(0,1)

u(x+ ry)w(x+ ry)dy

=
∑
α∈Nn

r|α|

|α|!
Aα (u(x)Dα(w(x))−Dα(u(x)w(x)))

=
∞∑
j=0

rj

j!

∑
|α|=j

Aα (u(x)Dα(w(x))−Dα(u(x)w(x))) = 0,
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where in the last step we appeal to (2.1). Thus u satisfies the weighted mean value property and
the proof is completed.

2.6 Applications of Theorem 2.2 and Theorem 2.3

In this chapter we illustrate Theorem 2.2 and Theorem 2.3 by determining the space H(Ω, d, dx)
in case of the distance function d being induced by the lp norm and a constant weight w = 1.
Our goal is to show that whenever p 6= 2 and n = 2, the space H(Ω, lp, dx) consists of 8 linearly
independent harmonic polynomials. We already know that H(Ω, l2, dx) consists of all harmonic
functions in Ω, which differs significantly from the previous case. Moreover, in this chapter we
describe system (2.1) for p = 2 and smooth w and compare with the equations from Theorem
2.14. Our computations are new both for H(Ω, lp, dx) with p 6= 2 and for p = 2 and a smooth
weight.

Let us consider the space Rn with the distance lp for 1 ≤ p < ∞ and a smooth weight w.
First, we calculate coefficients Aα. By the first paragraph of Chapter 2.4 we only need to consider
multi-indices α with even components. The integral formula (called the Dirichlet Theorem), see
p. 157 in [Edw22] and also Lemma 3.16, allows us to infer that

Aα = 2n
(
|α|
α

) ∫
{
∑

xp
i
<1,xi≥0}

xα1
1 · . . . · xαnn dx =

(
2
p

)n(|α|
α

) n∏
i=1

Γ
(
αi+1
p

)
Γ
(
|α|+n+p

p

) , (2.29)

where Γ stands for the gamma function. Notice, that coefficients Aα for j = 2 are constant by
symmetry of balls in the lp norm. Therefore, the equation of system (2.1) for j = 2 translates to

n∑
i=1

(
∂2

∂x2
i

(uw)− u ∂2

∂x2
i

(w)
)

= 0,

or equivalently to
w∆u+ 2∇u∇w = 0. (2.30)

Let us recall that since (2.30) is an elliptic equation with smooth coefficients, then every weak
solution is smooth and solves (2.30) in a classical way. Therefore, H(Ω, lp, w) ⊂ C∞(Ω) and the
system (2.1) can be understood in the classical sense. In order to describe further equations we
need to divide our calculations into more specific instances: p = 2, p = ∞ and remaining values
of 1 ≤ p <∞.

2.6.1 The case of weighted l2 distance

In this chapter we intend to show, that Theorem 2.2 is a generalization of Theorem 2.14. In order
to demonstrate this we show that for p = 2 system (2.1) is equivalent to (2.5), see Theorem 2.14.
Recall that the coefficients Aα in (2.29) take the following form (including the case j = 2 discussed
in the beginning of Chapter 2.6)

Aα =
(
|α|
α

)∏n
i=1 Γ

(
αi+1

2

)
Γ
(
|α|+n+2

2

) . (2.31)

Furthermore, recall the following two formulas concerning the gamma function: For any k ∈ N
there holds

Γ
(
k

2

)
=
√
π

(k − 2)!!

2
k−1

2

and Γ
(
k +

1
2

)
=
√
π

(2k)!
4kk!

.

23



We use the first formula in the denominator of (2.31) and second in the numerator of (2.31) to
obtain that

Aα =
(
|α|
α

)
2
|α|+n+1

2

√
π(|α|+ n)!!

n∏
i=1

(√
π

αi!
2αi(αi2 )!

)
=
(
|α|
α

)
π
n−1

2 2
n+1

2

(|α|+ n)!!

n∏
i=1

αi!
(αi2 )!

.

Therefore, the j-th equation of system (2.1) can be written in the following form

0 =
∑

|α|=j,αi∈2N

Aα (Dα(uw)− uDαw)

=
∑

|α|=j,αi∈2N

j!
α1! . . . αn!

π
n−1

2 2
n+1

2

(j + n)!!

n∏
i=1

αi!
(αi2 )!

(Dα(uw)− uDαw) (2.32)

=
j!π

n−1
2 2

n+1
2

( j2 )! (j + n)!!

∑
|β|=j/2

( j
2
β

)
(D2β(uw)− uD2βw).

Next, observe that for any f ∈ C2l(Ω) its l-th Laplace operator can be written in the following
form

∆lf =
(
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

)l
f =

∑
|β|=l

l!
β1! . . . βn!

D2βf, (2.33)

where the multinomial formula has been applied. Finally by (2.32) and (2.33) we conclude that in
the l2-case system (2.1) is equivalent to system

∆l(uw) = u∆lw, for l = 1, 2, . . . (2.34)

In fact (2.34) is equivalent to (2.5). To that end observe that ∆(uw) = w∆u + 2∇u∇w + u∆w.
Upon joining this with the equation of (2.34) for l = 1 we obtain the first equation of (2.5).
Further equations of (2.5) follow from (2.34) and the following computation:

u∆l+1w = ∆(∆l(uw)) = ∆(u∆lw) = ∆u∆lw + 2〈∇u,∇(∆lw)〉+ u∆l+1w.

Therefore,
∆u∆lw + 2〈∇u,∇(∆lw)〉 = 0 for l = 0, 1, 2, . . .

and we end this part of discussion by concluding, that by above considerations our Theorem 2.2
is a generalization of Bose’s result, see Theorem 2.14.

Moreover, by Theorems 2.2 and 2.3 we know that H(Ω, l2, wdx) consists exactly of solutions
to the following system of equations

∆u∆jw + 2〈∇u,∇(∆jw)〉 = 0, for j = 0, 1, . . . . (2.35)

Let us observe, that u solves also infinitely many other systems of equations, obtained from (2.35)
by excluding l ∈ N initial equations

∆u∆j+lw + 2〈∇u,∇(∆j+lw)〉 = ∆u∆j(∆lw) + 2〈∇u,∇(∆j(∆lw))〉 = 0, for j = 0, 1, . . . .

Therefore, u is strongly harmonic in countably many metric measure spaces (Ω, l2,∆lwdx) for
all l ∈ N. In other words, function u has infinitely many mean value properties, with respect to
different weighted Lebesgue measures dµ = ∆lwdx for all l ∈ N, whenever ∆lw are positive.

2.6.2 The case of lp distance for p 6∈ {2,∞}
Strongly harmonic functions on Ω ⊂ Rn equipped with the lp-distance and the Lebesgue measure
behave quite differently for p 6∈ {2,∞} than for p = 2. In what follows we demonstrate that
only finitely many equations of system (2.1) are nontrivial, and that in fact all of functions in
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H(Ω, lp, dx) are harmonic polynomials. For the sake of simplicity we consider case n = 2, and
u depending on two variables x := x1 and y := x2.

We now focus our attention on equations of system (2.1) for j > 2 since the equation for
j = 2 is described in (2.30). We examine the differential operator Rj :=

∑
|α|=j AαD

α. We already
showed that for p = 2 operator R2 is equal to ∆ up to a multiplicative constant. Recall formula
(2.29) for n = 2:

Aα =
(
|α|
α

)(
2
p

)2

2∏
i=1

Γ
(
αi+1
p

)
Γ
(
|α|+2+p

p

) .
Let us observe, that for |α|= 4 those coefficients attain only two different values:

(1) Aα =
(

2
p

)2 Γ( 5
p )Γ( 1

p )
Γ( p+6

p ) , whenever α = (4, 0) or α = (0, 4). This coefficient stands by ∂4

∂x4 and

∂4

∂y4 in R4,

(2) Aα = 6
(

2
p

)2 Γ( 3
p )2

Γ( p+6
p ) , if α = (2, 2). This coefficient appears by ∂4

∂x2∂y2 in operator R4.

Therefore, R4 takes a form

R4 =
(

2
p

)2

Γ
(
p+ 6
p

)−1
[

Γ
(

5
p

)
Γ
(

1
p

)(
∂4

∂x4 +
∂4

∂y4

)
+ 6Γ

(
3
p

)2(
∂4

∂x2∂y2

)]
,

which, up to a multiplicative constant, reduces to operator ∆2 = ∂4

∂x4 + ∂4

∂y4 + 2 ∂4

∂x2∂y2 if and only
if the following function f (and so, a parameter p) satisfies condition

f(p) :=
Γ
(

3
p

)2

Γ
(

5
p

)
Γ
(

1
p

) =
1
3
.

By the previous considerations this holds true for p = 2. We will show that f(p) 6= 1
3 for other

values of p ∈ [1,∞). Let us differentiate f with respect to p. Recall, that the formula for derivative
of the gamma function stays:

Γ′(z) = Γ(z)

(
−1
z
− γ −

∞∑
k=1

(
1

k + z
− 1
k

))
= Γ(z)Ψ(z),

where γ is the Euler constant and Ψ is the digamma function defined by the above equality, for
more details see [AS64]. We use this identity to compute the following

f ′(p) =
2Γ
(

3
p

)2
Ψ
(

3
p

)(
− 3
p2

)
Γ
(

5
p

)
Γ
(

1
p

)
Γ
(

5
p

)2
Γ
(

1
p

)2

−
Γ
(

3
p

)2 [
Γ
(

5
p

)
Ψ
(

5
p

)(
− 5
p2

)
Γ
(

1
p

)
+ Γ

(
5
p

)
Γ
(

1
p

)
Ψ
(

1
p

)(
− 1
p2

)]
Γ
(

5
p

)2
Γ
(

1
p

)2

= f(p)
(
− 6
p2 Ψ

(
3
p

)
+

5
p2 Ψ

(
5
p

)
+

1
p2 Ψ

(
1
p

))
.
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Since f is positive for p ∈ [1,∞), we only need to investigate the sign of the second factor in the
above formula:

− 6
p2 Ψ

(
3
p

)
+

5
p2 Ψ

(
5
p

)
+

1
p2 Ψ

(
1
p

)
= − 6

p2

(
−p

3
− γ −

∞∑
k=1

(
1

k + 3
p

− 1
k

))
+

5
p2

(
−p

5
− γ −

∞∑
k=1

(
1

k + 5
p

− 1
k

))

+
1
p2

(
−p− γ −

∞∑
k=1

(
1

k + 1
p

− 1
k

))
= − 1

p2

∞∑
k=1

(
−6
k + 3

p

+
5

k + 5
p

+
1

k + 1
p

)

=
1
p2

∞∑
k=1

8k
p(k + 3

p )(k + 5
p )(k + 1

p )
> 0.

Therefore, f is monotonically increasing on [1,∞) and attains value 1/3 exactly at p = 2. We
conclude our computations with the following:

R4 =


(

2
p

)2
Γ
(
p+6
p

)−1
Γ
(

5
2

)
Γ
(

1
2

)
∆2 for p = 2,(

2
p

)2
Γ
(
p+6
p

)−1
Γ
(

5
p

)
Γ
(

1
p

)(
∆2 +

(
6Γ( 3

p )2

Γ( 5
p )Γ( 1

p ) − 2
)

∂4

∂x2∂y2

)
for p 6= 2.

We are now in a position to apply Theorem 2.2 and Theorem 2.3. Function u ∈ H(Ω, lp, dx) if and
only if it satisfies the system of equations (2.1) with w = 1. Therefore, (2.30) reads

∆u = 0, (2.36)

hence u is harmonic, and its bilaplacian vanishes. Moreover, u has to satisfy equation of system
(2.1) for j = 4, i.e. R4u = 0. Since bilaplacian of u vanishes, therefore, u is in fact solution to
uxxyy = 0. Let us observe, that differentiating twice ∆u with respect to x and y respectively we
obtain

uxxxx + uxxyy = 0 and uxxyy + uyyyy = 0.

Therefore, both uxxxx = 0 and uyyyy = 0, which means that for each fixed value of y function
u(x, y) is a polynomial in x of degree at most 3 and analogously for a fixed x function u(x, y) is a
polynomial in y of degree at most 3. Then there exist ai(y) and bi(x) for i = 0, 1, 2, 3 such that

u(x, y) = a0(y) + a1(y)x+ a2(y)x2 + a3(y)x3 = b0(x) + b1(x)y + b2(x)y2 + b3(x)y3. (2.37)

In what follows we omit writing the arguments of ai and bi. Simple calculations give us that

uxxxx = b
(4)
0 + b

(4)
1 y + b

(4)
2 y2 + b

(4)
3 y3 = 0, (2.38)

and
uyyyy = a

(4)
0 + a

(4)
1 x+ a

(4)
2 x2 + a

(4)
3 x3 = 0. (2.39)

Now at each fixed x in (2.38) the polynomial in y has to have all coefficients equal to 0 due to
the Equality of Polynomials Theorem, hence b(4)

i = 0 for i = 1, 2, 3, 4. Similarly, at (2.39) we set
that a(4)

i = 0 for all i = 1, 2, 3, 4. Therefore, all of ai and bi are polynomials of degree at most 3.
Moreover, we know that uxxyy = 0. We calculate this derivative in (2.37) to get

0 = uxxyy = 2a′′2 + 6xa′′3 = 2b′′2 + 6yb′′3 .

Thus, once again we obtain that a′′i = 0 and b′′i = 0 for i = 2, 3, so a2, a3, b2 and b3 are in fact of
degree at most 1. By the above considerations we conclude that u is a linear combination of the
monomials

1, x, y, xy, x2, x3, xy2, xy3, x2y, x3y, y2, y3, (2.40)
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which solves equation (2.36). Therefore, u has to be a harmonic polynomial of the form described
by (2.40). The part of u generated by {1, x, y, xy} is already harmonic and for that reason we only
need to consider u being a combination of the remaining monomials in (2.40), i.e.

u = c1x
2 + c2x

3 + c3xy
2 + c4xy

3 + c5x
2y + c6x

3y + c7y
2 + c8y

3.

Inserting u to (2.36) we get the following

0 = 2(c1 + c7) + 2x(3c2 + c3) + 6xy(c4 + c6) + 2y(c5 + 3c8),

and once again by appealing to the Equality of Polynomials Theorem we obtain that u ∈ H(Ω, lp, dx)
if and only if

u ∈ span
{

1, x, y, xy, x2 − y2, xy2 − x3

3
, xy3 − x3y, x2y − y3

3

}
. (2.41)

Finally, let us observe that in equations of system (2.1) for j = 6 there appear only the following
operators

∂6

∂x6 ,
∂6

∂x4∂y2 ,
∂6

∂x2∂y4 ,
∂6

∂y6 ,

which all vanish on u in the form as in (2.41). The triviality of equations for j > 6 follows
immediately. Therefore, we summarize our discussion with the following inclusion:

H(Ω, lp, dx) = span
{

1, x, y, xy, x2 − y2, xy2 − x3

3
, xy3 − x3y, x2y − y3

3

}
. (2.42)

Now let us discuss the case p =∞.

2.6.3 The case of l∞ distance

In order to complete our illustration of Theorem 2.2 and Theorem 2.3 we need to consider the
remaining case, i.e. characterize functions u in H(Ω, lp, dx) for p = ∞. In this case B(0, 1) =
[−1, 1]n in l∞ norm. Therefore, we obtain the following formula for the coefficients Aα in (2.1):

Aα =
(
|α|
α

)∫ 1

−1
xα1

1 · . . .
∫ 1

−1
xαnn =

(
|α|
α

)
2n∏n

i=1(αi + 1)
.

Then, after inserting Aα and dividing by the 2n factor, system (2.1) converts to the following∑
|α|=j
αi even

(
|α|
α

)
1

(α1 + 1)! · . . . · (αn + 1)!
Dαu = 0.

As in the previous chapter we restrict our attention to case n = 2 and write out the equation for
j = 2: 1

6 (uxx + uyy) = 0. Hence u is a harmonic function. Equation for j = 4 is the following

1
120

(uxxxx + uyyyy) +
1
6
uxxyy = 0,

and can be reduced to ∆2u + 20uxxyy = 0. This, combined with an analogous discussion to the
one ending the previous chapter leads us to the conclusion that (2.42) holds true also for p =∞.

Finally, in the remark below we discuss the case of dimensions n > 2 and a general question
of dimH(Ω, lp, dx).

Remark 2.26. Let us consider an open connected set Ω ⊂ R2, metric d induced by the lp norm
for 1 ≤ p ≤ ∞, p 6= 2 and µ being the Lebesgue measure. Due to computations summarized in
(2.42) we know that:

H(Ω, lp, dx) = span
{

1, x, y, xy, x2 − y2, xy2 − x3

3
, xy3 − x3y, x2y − y3

3

}
.

27



Notice, that the dimension of H(Ω, lp, dx) is equal to 8. As mentioned in the introduction, in R3

Łysik [Łys18a] computed dimH(Ω, lp, dx) = 48. Moreover, in case of p = 1 and p = ∞, when
the unit ball is cube-shaped, Iwasaki [Iwa12] proved that dimH(Ω, lp, dx) = 2nn!. Those numbers
coincide with 2nn! - the number of linear isometries of (Rn, lp), which is discovered in [AB12]. We
believe that there is a link between the dimension of the space H(Ω, d, µ) and the number of linear
isometries, still to be examined.
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Chapter 3

Asymptotically p-harmonic
functions on Carnot groups of
step 2

3.1 Introduction

In Chapter 2 we studied functions with the mean value property and its consequences, whereas in
this Chapter we will focus on an so-called asymptotic mean value property. In the last decade there
has been a growing interest in studying a generalized mean-value property originating in [MPR10]
and [MPR12], called the asymptotic mean-value property or amv-property for short. It allows to
characterize solutions to harmonic, p-harmonic and more general equations of elliptic and parabolic
types. Related are applications of p-harmonic functions in statistical Tug-of-War games, see for
instance [MPR10] and [PS08]. The studies in [MPR10] allow, in the simplest case, to weaken the
classical characterizations of a harmonic function u in Rn as follows:

u(x) =
∫
B(x,ε)

u + o(ε2), as ε→ 0.

It is important from the point of view of our studies below, that the amv-property can be shown
to hold for the viscosity solutions to the normalized p-harmonic equation ∆N

p u = 0 in Rn for all
1 ≤ p ≤ ∞. Namely, in [MPR10] it is proven that u(x) = µ∗p(ε, u) + o(ε2), as ε→ 0, where µ∗p(ε, u)
is the linear combination of the mean value and the min-max mean:

µ∗p(ε, u) =
n+ 2
n+ p

∫
B(x,ε)

u+
1
2
p− 2
n+ p

(
max
B(x,ε)

u+ min
B(x,ε)

u

)
.

Similar means characterizing p-harmonic functions have been found in [HR11; HR13], by using
the median of a function, see also [KMP12]. The results in [HR11] yield the amv-property for all
p but for n = 2 only, while results of [KMP12] provide the amv-property for n ≥ 2. Moreover,
the mean-value property for solutions to general elliptic equations with nonsmooth coefficients is
studied in [CT76].

The amv-property has also been investigated beyond the Euclidean setting, see [FLM14] for
results in the first Heisenberg group H1, [LY13] for the higher order Heisenberg groups Hn and
[FP15] for the setting of general Carnot groups.

A new approach to the asymptotic mean-value property has been recently proposed in [IMW17]
(see also [BM19] for relations with statistical games). More precisely, in [IMW17], the authors
proved that every viscosity solution u to the normalized p-laplacian in an open set Ω ⊂ Rn for a
given 1 ≤ p ≤ ∞ (Definition 3.10), can be characterized using an asymptotic mean-value property
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in terms of the function µp(ε, u)(x), defined as the unique minimizer of the following variational
problem

‖u− µp(ε, u)‖
Lp(B(x,ε)) = min

λ∈R
‖u− λ‖

Lp(B(x,ε)),

where B(x, ε) ⊂ Ω denotes the ball centered at x with radius ε. This notion encompasses the
median, the mean-value and the min-max mean of a continuous function, see [IMW17] for details.

In this chapter we present generalization of the results of [IMW17] to the setting of an arbitrary
Carnot group of step 2, including the first Heisenberg group H1.

Let G be a Carnot group of step k (Definition 3.2). Denote by ∆N
p,G the subelliptic normalized

p-Laplacian (see (3.4) and (3.5)) and by µp(ε, u) the generalized median of a function u defined
uniquely as in (3.7). The theorem below stays that a viscosity solution of ∆N

p,Gu = 0 can be
characterized asymptotically by the minimum µp(ε, u). This provides one more, intrinsic, way to
characterize p-harmonic functions via a variant of the asymptotic mean-value property.

Theorem 3.1. Let 1 ≤ p ≤ ∞ and let Ω ⊂ G be open. For a function u ∈ C0(Ω) the following
are equivalent:

(i) u is a viscosity solution of ∆N
p,Gu = 0 in Ω;

(ii) u(x) = µp(ε, u)(x) + o(ε2) as ε→ 0, in the viscosity sense for every x ∈ Ω.

We present the proof of this theorem in two special cases: (1) for G being the Heisenberg
group and (2) for any two-step group G, see Chapter 3.3. The proof in a general case is presented
in [Ada+20]. The main tool used in the proof is Lemma 3.15, where the asymptotic behavior
of minimizers µp is described for quadratic polynomials on balls, see Chapters 3.4 and 3.5 for
the proofs of Lemma 3.15 in the setting of the Heisenberg group and Carnot group of step 2,
respectively. As presented in Remark 3.18, our results generalize those obtained in the Euclidean
setting in [IMW17].

3.2 Carnot groups

In what follows we briefly recall the definition and some standard facts on Carnot groups, see
[BLU07; Cap+07; Gro96; Mon02] for a more detailed treatment.

Definition 3.2. A finite dimensional Lie algebra g, is said to be stratified of step k ∈ N, if there
exist linear subspaces V1, . . . , Vk of g such that:

g = V1 ⊕ · · · ⊕ Vk and [V1, Vi] = Vi+1 i = 1, . . . , k − 1; [V1, Vk] = {0}.

The symbol [·, ·] stands for the Lie bracket in g. We denote by vi the dimension of Vi for i =
1, 2, . . . , k.

A connected and simply connected Lie group (G, ∗) is a Carnot group if its Lie algebra g is
finite dimensional and stratified. We also set

h0 := 0, hi :=
i∑

j=1

vj and m := hk. (3.1)

Observe, that any stratified Lie algebra is nilpotent. Every Carnot group G of step k is iso-
morphic via the exponential map Exp : g → g as a Lie group to (Rm, ◦) where ◦ is the group
operation given by the Baker-Campbell-Hausdorff formula, see Definition 2.2.11 and Theorem
2.2.13 in [BLU07]. More precisely, the Baker-Campbell-Hausdorff formula in Carnot groups solves
equation Exp(X) ∗ Exp(Y ) = Exp(Z) in Z for any given X,Y ∈ g ∼= Rm. The solution Z defines
a group operation ◦ on Rm which depends only on finite number of compositions of Lie brackets
of X and Y and can be expressed as follows

X ◦ Y :=
k∑

n=1

(−1)n

n

∑
pi+qi≥1
1≤i≤n

(adX)p1(adY )q1 . . . (adX)pn(adY )qn−1Y

p1! q1! · . . . · pn! qn!
∑n
j=1(pj + qj)

, (3.2)
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where (adX)Y := [X,Y ]. Terms up to 4-th order on the right-hand side of (3.2) are the following

X ◦ Y = X + Y +
1
2

[X,Y ] +
1
12

([X, [X,Y ]] + [Y, [Y,X]])− 1
24

[Y, [X, [X,Y ]]] + . . .

The inverse element to X with respect to ◦ is −X and the neutral element of ◦ is 0.
From now on we use the above construction of isomorphisms without mentioning it explicitly.

Every element x of group G is identified with appropriate element X of the Lie algebra g and also
with an appropriate x ∈ Rm, since the Lie algebra g is isomorphic to Rm. For each x ∈ G we
define left the translation τx : G −→ G by the formula

τx(y) := x ◦ y.

For each λ > 0 we define a dilation δλ : G −→ G by the formula

δλ(x) = δλ(x1, . . . , xm) := (λσ1x1, . . . , λ
σkxm),

where each σi ∈ N is called the homogeneity of the variable xi in G and it is defined by σj := i,
whenever hi−1 < j ≤ hi, cf. (3.1). Observe, that vector basis of Rm can be constructed from the
vector bases of subspaces Vi for i = 1, . . . , k so that the homogeneity of variable xj , which is a
coefficient of the element of the basis of Vi, is equal to the index i.

We have discussed the group structure of Carnot groups, now let us define the metric structure
in Carnot groups. For this purpose, let us recall the following notion of pseudonorm, see Definition
5.1.1 in [BLU07].

Definition 3.3. We call a function N : G → [0,∞) a pseudonorm on Carnot group G, if the
following conditions hold true

1. N is continuous with respect to the Euclidean topology,

2. N (δλ(x)) = λN (x) for every λ > 0 and x ∈ G,

3. N (x) > 0 if and only if x 6= 0,

4. N (x) = N (x−1) for every x ∈ G.

We say, that a function d : G×G→ [0,∞) is a pseudodistance on Carnot group G, if the following
conditions hold true

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) for all x, y ∈ G,

3. there exists a constant C > 0 such that for all x, y, z ∈ G there holds pseudo-triangle
inequality

d(x, y) ≤ C(d(x, z) + d(z, y)).

We endow Carnot group G with a pseudonorm inducing pseudodistance by defining

|x|G:= |(x(1), . . . , x(k))|G:=
( k∑
j=1

∥∥x(j)
∥∥ 2k!

j

) 1
2k!

(3.3)

d(x, y) := |y−1 ◦ x|G,

where x(j) := (xhj−1+1, . . . , xhj ) and
∥∥x(j)

∥∥ denotes the standard Euclidean norm in Rhj−hj−1 .
For more information on the pseudo-triangle inequality we refer to Proposition 5.1.8 in [BLU07].
We define the pseudoball centered at x ∈ G of radius R > 0 by

B(x,R) := {y ∈ G : |y−1 ◦ x|G< R}.

We illustrate the concept of Carnot groups with the following important examples.
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Example 3.4 (The Euclidean space Rn). The Euclidean space is an abelian group, hence all Lie
brackets are trivial and Rn is a 1-step Carnot group. Therefore, the Lie group multiplication ∗ and
the operation ◦ described above coincide and are the same as the standard addition + of vectors
in Rn. Analogous observation applies to any group which is a linear space endowed with a the Lie
bracket equal zero for all pairs of vectors.

Example 3.5 (The Heisenberg groups Hn). The n-dimensional Heisenberg group G = Hn, is the
Carnot group with a 2-step Lie algebra and the orthonormal basis {X1, . . . , X2n, X2n+1} such that

g1 = Span {X1, . . . , X2n}, g2 = Span {X2n+1},

and the only nontrivial brackets are [Xi, Xn+i] = X2n+1 for i = 1, . . . , n.
In particular, if n = 1, then the Heisenberg group H1 is often presented by using coordinates

(x1, x2, x3) ∈ R3 and multiplication ◦ is defined on R3 by

(x1, x2, x3) ◦ (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 +
1
2

(x1y2 − x2y1)).

The pseudonorm given by
‖(x1, x2, x3)‖= ((x2

1 + x2
2)2 + x2

3)1/4

gives rise to a left invariant distance defined by dH1(p, q) = ‖p−1q‖ which is called the Heisenberg
distance. A dilation by r > 0 is defined by δr(x1, x2, x3) = (rx1, rx2, r

2x3) and the left invariant
Haar measure λ is simply the 3-dimensional Lebesgue measure, moreover δ∗rdλ = r4dλ. It follows
that the Hausdorff dimension of the metric measure space (H1, dH1 , λ) is 4, and the space is 4-
Ahlfors regular, i.e., there exists a positive constant c such that for all balls B with radius r, we
have 1

c r
4 ≤ H4(B) ≤ cr4, where H4 denotes the 4-dimensional Hausdorff measure induced by dH1 .

For further discussion on the Heisenberg group see Chapter 4.3.3.

Proposition 1.3.21 proved in [BLU07], shows that the Lebesgue measure is the Haar measure
on Carnot groups.

Proposition 3.6. Let G = (Rm, ◦) be a Carnot group. Then the Lebesgue measure on Rm is
invariant with respect to the left and the right translations on G. Precisely, if we denote by |E| the
Lebesgue measure of a measurable set E ⊂ Rm, then for all x ∈ G we have that |x◦E|= |E|= |E◦x|.
Moreover, for all λ > 0 it holds δλ(E)|= λQ|E|, where Q :=

∑m
j=1 vjσj.

A basis X = {X1, . . . , Xm} of g, is called the Jacobian basis if Xj = J(ej) where (e1, . . . , em)
is the canonical basis of Rm and J : Rm −→ g is defined by J(η)(x) := Jτx(0) · η, where Jτx
denotes the Jacobian matrix of the left-translation τx.

Let us recall the following classical proposition describing the Jacobian basis on Carnot groups,
see [BLU07, Corollary 1.3.19] for a proof.

Proposition 3.7. Let G = (Rm, ◦) be a Carnot group of step k ∈ N. Then the elements of the
Jacobian basis {X1, . . . , Xm} have polynomial coefficients and if hl−1 < j ≤ hl, 1 ≤ l ≤ k, then

Xj(x) = ∂j +
m∑
i>hl

a
(j)
i (x)∂i,

where a(j)
i (x) = a

(j)
i (x1, . . . , xhl−1) when hl−1 < i ≤ hl, and a(j)

i (δλ(x)) = λσi−σja
(j)
i (x).

The following definition is one of the key concepts of the analysis on Carnot groups. Let
X = {X1, . . . , Xm} be a Jacobian basis of G = (Rm, ◦). For any function u ∈ C1(Rm), we define
its horizontal gradient by the formula

∇V1u :=
h1∑
i=1

(Xiu)Xi

32



and the intrinsic divergence of u as

divV1u :=
h1∑
i=1

Xiu.

Remark 3.8. In the setting of the Heisenberg group we follow the notation convention and denote

∇Hu := ∇V1u.

Moreover, for 2 ≤ j ≤ k, we set ∇Vju :=
∑
hj−1<i≤hj (Xiu)Xi. The horizontal Laplacian ∆Gu

of a function u : G −→ R is defined by the following

∆Gu :=
h1∑
i=1

X2
i u.

A priori, one studies solutions to the Laplace equation under the C2-regularity assumption. How-
ever, as in the Euclidean setting, it is natural to weaken the required degree of regularity and
consider weak solutions belonging to the so-called horizontal Sobolev space. For further details we
refer to e.g. [CDG96; MM07].

The following result describes the Taylor expansion formula in the Carnot groups, see [BLU07,
Proposition 20.3.11] .

Proposition 3.9. Let Ω ⊂ G be an open neighbourhood of 0 and let u ∈ C∞(Ω). Then, the
following Taylor formula holds for any point P = (x(1), x(2), . . . , x(k)) ∈ Ω:

u(P ) = u(0) + 〈∇V1u(0), x(1)〉Rh1 + 〈∇V2u(0), x(2)〉Rh2 +
1
2
〈D2,∗

V1
u(0)x(1), x(1)〉Rh1 + o(‖P‖2)

where

D2,∗
V1
u :=

(
(XiXj +XjXi)u

2

)
1≤i,j≤h1

is the so-called symmetrized horizontal Hessian of u.

Next, we recall the definition of the main differential operator studied in this chapter. For
p ∈ [1,+∞] and a function u ∈ C2 the subelliptic normalized p-Laplace operator is defined at
points where ∇V1u 6= 0 in the following way

∆N
p,Gu :=

divV1(|∇V1u|p−2∇V1u)
|∇V1u|p−2 if 1 ≤ p <∞ (3.4)

and

∆N
∞,Gu :=

〈
D2,∗
V1
u
∇V1u

|∇V1u|
,
∇V1u

|∇V1u|

〉
. (3.5)

In this chapter we work with viscosity solutions to the subelliptic normalized p-Laplace equation
discussed in Definition 3.10. Notice, that we use there the definition of the subelliptic normalized
p-Laplace operator at those points, where the horizontal gradient of the function to which ∆N

p,G is
applied is nonzero.

Note that for p = 2, ∆N
2,Gu = ∆Gu is the so called Kohn-Laplace operator in G. Thus, the p-

Laplace operator is the natural generalization of the Laplacian. Furthermore, the∞-Laplacian can
be viewed as a limit of p-Laplacians in the appropriate sense for p→∞. Among its applications,
let us mention best Lipschitz extensions, image processing and mass transport problems, see e.g.
the presentation in [MPR10] and references therein.

In the case of the non-renormalized p-Laplacian, notions of a viscosity solution and a weak
solution agree for 1 < p < ∞, see [JLM01] for the result in the Euclidean setting and [Bie06] for
the Heisenberg group. Since the normalized p-Laplacian is in the non-divergence form, the concept
of viscosity solutions is more handy than weak solutions. Let us now introduce this notion.
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Definition 3.10. Fix a value of p ∈ [1,∞] and consider the subelliptic normalized p-Laplace
equation

∆N
p,Gu = 0 in Ω ⊂ G. (3.6)

(i) A lower semi-continuous function u, is a viscosity supersolution of (3.6), if for every x0 ∈ Ω,
and every φ ∈ C2(Ω) such that ∇V1φ(x0) 6= 0 and u − φ has a strict minimum at x0 ∈ Ω,
we have ∆N

p,Gφ ≤ 0 in Ω.

(ii) An upper semi-continuous function u, is a viscosity subsolution of (3.6), if for every x0 ∈ Ω,
and every φ ∈ C2(Ω) such that ∇V1φ(x0) 6= 0 and u − φ has a strict maximum at x0 ∈ Ω,
we have ∆N

p,Gφ ≥ 0 in Ω.

(iii) A continuous function u is a viscosity solution of of (3.6), if it is both a viscosity supersolution
and a viscosity subsolution in Ω.

To our best knowlege the concept of viscosity solutions was first introduced by Crandall and
Lions. The main idea comes from regularizing PDE by adding a viscosity term ε∆u in order to
regularize the equation and then letting ε → 0. For an comprehensive survey on the topic see
[CIL92] and for a more recent begginer’s guide see [Koi04].

Next, we define one of the central objects of this chapter. Fix an open set Ω ⊂ G, let 1 ≤ p ≤ ∞
and let u be a real-valued continuous function in Ω. For a given x ∈ Ω, choose ε > 0 so that
B(x, ε) ⊂ Ω, we define the number µp(ε, u)(x) (or simply µp(ε, u) if the point x is clear from the
context) as the unique real number satisfying

‖u− µp(ε, u)‖
Lp(B(x,ε))= min

λ∈R
‖u− λ‖

Lp(B(x,ε)). (3.7)

The following properties of µp(ε, u)(x) have been proved in [IMW17] for the setting of compact
topological spaces X, equipped with a positive Radon measure ν such that ν(X) < ∞. Here we
apply results from [IMW17] to X = B(x, ε) ⊂ G and ν the Lebesgue measure, cf. Proposition 3.6.

In Theorem 3.11 below, we summarize results proven in Theorems 2.1, 2.4 and 2.5 in [IMW17].

Theorem 3.11. Let 1 ≤ p ≤ ∞ and u ∈ C(B(x, ε)).

(1) There exists a unique real valued µp(ε, u) such that

‖u− µp(ε, u)‖
Lp(B(x,ε))= min

λ∈R
‖u− λ‖

Lp(B(x,ε)).

Furthermore, for 1 ≤ p <∞, µp(ε, u) is characterized by the equation∫
B(x,ε)

|u(y)− µp(ε, u)|p−2 (u(y)− µp(ε, u)) dy = 0, (3.8)

where for 1 ≤ p < 2 we assume that the integrand is zero if u(y)− µp(ε, u) = 0. For p =∞
we have the following equality:

µ∞(ε, u) =
1
2

(
min
B(x,ε)

u+ max
B(x,ε)

u

)
. (3.9)

(2) If 1 ≤ p ≤ ∞ then it follows that∣∣∣‖u− µp(ε, u)‖
Lp(B(x,ε))−‖v − µp(ε, v)‖

Lp(B(x,ε))

∣∣∣ ≤ ‖u− v‖Lp(B(x,ε))

for any u, v ∈ Lp(B(x, ε)). Moreover, if un → u in Lp(B(x, ε)) for 1 ≤ p ≤ ∞ and un, u ∈
C0(B(x, ε)) for p = 1, then µp(ε, un) → µp(ε, u) as n → ∞, the same is true for any
p ∈ [1,∞] if {un} ⊂ C0(B(x, ε)) converges uniformly on B(x, ε) as n→∞.
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(3) Let u and v be two functions which, in the case 1 < p ≤ ∞, belong to Lp(B(x, ε)), and in
the case p = 1, belong to C0(B(x, ε)). If u ≤ v a.e. in B(x, ε), then µp(ε, u) ≤ µp(ε, v).

(4) µp(ε, u+ c) = µp(ε, u) + c for every c ∈ R.

(5) µp(ε, cu) = cµp(ε, u) for every c ∈ R.

Observe, that by (3.8) there holds µ2(ε, u) =
∫
B(x,ε)u and µ1(ε, u) is a median of u over a ball

B(x, ε). Recall, that λ ∈ R is a median of function u over a set A if the measures of sub- and
super-level sets at level λ are equal.

The following is a generalization of [IMW17, Corollary 2.3] in Carnot groups of step k:

Corollary 3.12. Let u ∈ Lp(B(x, ε)), for 1 < p ≤ ∞, or in C0(B(x, ε)) for p = 1. Let uε(z) =
u(xδε(z)) for z ∈ B(0, 1), then

µp(ε, u)(x) = µp(1, uε)(0).

Proof. For every λ ∈ R and 1 ≤ p <∞ it holds:

‖u− λ‖pLp(B(x,ε)) =
∫
B(x,ε)

|u(ξ)− λ|p dξ

= εσ1+···+σk
∫
B(0,1)

|uε(ξ)− λ|p dξ

= εv1+2v2+···+kvk‖uε − λ‖pLp(B(0,1))

and
‖u− λ‖L∞(B(x,ε))= ‖uε − λ‖L∞(B(0,1))

and the conclusion follows by (1) in Theorem 3.11.

Next we state carefully what is meant by the statement that the asymptotic expansion of the
function u in terms of µp holds in the viscosity sense, see (3.7) and Definition 3.14. First, we need
the following auxiliary definition.

Definition 3.13. Let h be a real valued function defined in a neighbourhood of zero. We say that

h(x) ≤ o(x2) as x→ 0+

if any of the three equivalent conditions is satisfied:

a) lim sup
x→0+

h(x)
x2 ≤ 0,

b) there exists a nonnegative function g(x) ≥ 0 such that h(x) + g(x) = o(x2) as x→ 0+,

c) lim
x→0+

h+(x)
x2 ≤ 0.

A similar definition is given for h(x) ≥ o(x2) as x→ 0+ by reversing the inequalities in a) and
c), requiring that g(x) ≤ 0 in b) and replacing h+ by h− in c)1.

Let f and g be two real valued functions defined in a neighbourhood of x0 ∈ R. We say that f
and g are asymptotic functions for x→ x0, if there exists a function h defined in a neighbourhood
Vx0of x0 such that:

(i) f(x) = g(x)h(x) for all x ∈ Vx0 \ {x0}.

(ii) limx→x0 h(x) = 1.

If f and g are asymptotic for x→ x0, then we simply write f ∼ g as x→ x0.

1 As usual, we denote by h+(x) := max{h(x), 0} and h−(x) := −min{h(x), 0}.
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Definition 3.14. A continuous function defined in a neighbourhood of a point x ∈ G, satisfies

u(x) = µp(ε, u)(x) + o(ε2),

as ε→ 0+ in the viscosity sense, if the following conditions hold:

(i) for every continuous function φ defined in a neighbourhood of a point x such that u− φ has
a strict minimum at x with u(x) = φ(x) and ∇V1φ(x) 6= 0 , we have

φ(x) ≥ µp(ε, φ)(x) + o(ε2), as ε→ 0+.

(ii) for every continuous function φ defined in a neighbourhood of a point x such that u− φ has
a strict maximum at x with u(x) = φ(x) and ∇V1φ(x) 6= 0, then

φ(x) ≤ µp(ε, φ)(x) + o(ε2), as ε→ 0+.

3.3 The proof of Theorem 3.1

In order to prove Theorem 3.1, we need the following key lemma. The proof of the lemma in full
generality is presented in [Ada+20]. In the next part of this thesis we present statements and
proofs of special cases of this lemma in two cases: G being the Heisenberg group and a general
Carnot group G of step 2. The Heisenberg group is a model example of a Carnot group of step 2,
hence understanding the proof in this case is a first step towards the more general case.

Lemma 3.15 (cf. Lemma 3.1 in [Ada+20]). Let G be a Carnot group of step k. Moreover, let
Ω ⊂ G be an open set and x ∈ Ω be a point such that B(x, ε) ⊂ Ω for all small enough ε ≤ ε0(x).
Let 1 ≤ p ≤ ∞ and ξ ∈ Rv1 \ {0}, η ∈ Rv2 . Let further A be a symmetric v1× v1 matrix with trace
tr(A). Moreover, consider the quadratic function q : B(x, ε)→ R given by

q(y) = q(x) + 〈ξ, (x−1y)(1)〉Rv1 + 〈η, (x−1y)(2)〉Rv2 +
1
2
〈A(x−1y)(1), (x−1y)(1)〉Rv1 , y ∈ B(x, ε),

(3.10)
where (x−1y)(1) and (x−1y)(2) are the horizontal and the vertical components of x−1y, respectively
and 〈·, ·〉Rv1 and 〈·, ·〉Rv2 denote the Euclidean scalar products on Rv1 and Rv2 , respectively. Then
it follows that

µp(ε, q)(x) = q(x) + ε2c

(
tr(A) + (p− 2)

〈Aξ, ξ〉Rv1
|ξ|2

)
+ o(ε2), (3.11)

where

c := c(p, v1, . . . , vk) =
1

2(p+ v1)

B
(

vk
2(k−1)! ,

p+
∑k−1

j=1
jvj

2(k−1)! + 1
)

B
(

vk
2(k−1)! ,

p−2+
∑k−1

j=1
jvj

2(k−1)! + 1
) k−1∏

j=2

B
(
jvj
2k! ,

p+
∑j−1

i=1
ivi

2k! + 1
)

B
(
jvj
2k! ,

p−2+
∑j−1

i=1
ivi

2k! + 1
)

and B (x, y) denotes the Beta function B (x, y) =
∫ 1

0 t
x−1(1−t)y−1 dt for all x, y > 0. Furthermore,

if u ∈ C2(Ω) with ∇V1u(x) 6= 0, then

µp(ε, u)(x) = u(x) + c∆N
p,Gu(x)ε2 + o(ε2), as ε→ 0+. (3.12)

In the proof of Lemma 3.15 we employ the following integral formula.

Lemma 3.16. Let α1, . . . , αn be real numbers such that αi > −1 for i = 1, . . . , n. It then follows
that ∫

Tn

xα1
1 · . . . · xαnn dx =

1
2n

∏n
i=1 Γ(αi+1

2 )

Γ(
n+2+

∑
αi

2 )
(3.13)

where Tn :=
{

(x1, . . . , xn) ∈ Rn : x2
1 + . . .+ x2

n < 1, xi ≥ 0 for i = 1, . . . , n
}

and Γ denotes the
gamma function.
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Proof of Lemma 3.16. Let a, b > −1. Upon applying the change of variables t = sin2 x, we obtain
the following equation:∫ π

2

0
sina x cosb xdx =

∫ 1

0
t
a
2 (1− t) b2 1

2
√
t
√

1− t
dt =

1
2

∫ 1

0
t
a−1

2 (1− t)
b−1

2 dt =
1
2
B
(
a+ 1

2
,
b+ 1

2

)
,

where B stands for the beta function.
Now we are in a position to calculate the left-hand side of (3.13). We apply the spherical

coordinates 

x1 = r cosϕ1

x2 = r sinϕ1 cosϕ2

x3 = r sinϕ1 sinϕ2 cosϕ3
...
xn−1 = r sinϕ1 sinϕ2 · . . . · cosϕn−1

xn = r sinϕ1 sinϕ2 · . . . · sinϕn−1

with the Jacobian determinant |J |= rn−1 sinn−2 ϕ1 sinn−3 ϕ2 · . . . · sinϕn−2 and the spherical
coordinates varying as follows: r ∈ (0, 1), ϕi ∈ (0, π/2) for i = 1, . . . , n− 2. The result is∫
Tn

xα1
1 · . . . · xαnn dx =

∫ 1

0

∫ π
2

0
. . .

∫ π
2

0

[
r
∑n

i=1
αi+n−1 · cosα1 ϕ1(sinϕ1)

∑n

i=2
αi+n−2

· cosα2 ϕ2(sinϕ2)
∑n

i=3
αi+n−3 · . . . · cosαn−1 ϕn−1 sinαn ϕn−1

]
dϕ1 . . . dϕn−1dr

=
1

n+
∑n
i=1 αi

1
2
B
(∑n

i=2 αi + n− 1
2

,
α1 + 1

2

)
1
2
B
(∑n

i=3 αi + n− 2
2

,
α2 + 1

2

)
· . . . · 1

2
B
(
αn + 1

2
,
αn−1 + 1

2

)
,

which is equal to the right-hand side of (3.13) upon using the well-known formula B (x, y) =
Γ(x)Γ(y)
Γ(x+y) .

Let us comment about the differences between the above Lemma 3.15 and [IMW17, Lemma
3.1].

Remark 3.17. (1) The quadratic polynomial q in formula (3.10) is defined for any Carnot
group of step k and differs from the original one studied in Rn, cf. [IMW17, Lemma 3.1].
The formula for q reflects the dependence of q on the first two layers of G.

(2) The geometry of gauge balls in Carnot groups is far from Euclidean and nontrivial in com-
parision: balls are flattened at the characteristic points (at poles) and possess less symmetry
than balls in Rn. A noticable difference in comparison with [IMW17] is the appearance of the
Beta function which is not present in the Euclidean case and can be viewed as consequence
of the stratification in the geometry.

(3) Our proof for the case p =∞ differs from the corresponding one in [IMW17], as it requires
appealing to results in [FP15]. Indeed, the geometry of gauge balls in general Carnot groups
makes obtaining limits in (3.27) and (3.50) a subtle and highly nontrivial task, see the proof
of Lemma 1.6 in [FP15] and the discussion following its formulation in [FP15] on pg. 207.

Remark 3.18. The formula describing the constant c(p, v1, . . . , vk) is complicated and not easily
simplified using the properties of the Beta function.

Example 3.19 (The Euclidean space RN ). If G is the Euclidean space RN then c(p, v1, . . . , vk)
agrees with the constant computed in [IMW17], namely

c(p,N) =
1

2(p+N)
.
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When the Lemma 3.15 is proven, the proof of Theorem 3.1 relies on careful use of Definition
3.10 and Definition 3.14.

The proof of Theorem 3.1. Let B(x, r) ⊂ Ω be ball and let us fix u ∈ C0(Ω) and φ ∈ C2(B(x, r))
with ∇V1φ(x) 6= 0. The asymptotic formula (3.12) implies that

φ(x) = µp(ε, φ)(x)− c(p, v1, . . . , vk)∆N
p,Gφ(x)ε2 + o(ε2), as ε→ 0. (3.14)

Suppose that u is a viscosity solution, in the sense of Definition 3.10, to the equation ∆N
p,Gu = 0

in Ω. Thus, in particular, u satisfies parts (i) and (ii) of Definition 3.10. Since u is a viscosity
supersolution of ∆N

p,Gu = 0 in Ω, then at point x, for φ as above such that u − φ has a strict
minimum at x and u(x) = φ(x), it holds that ∆N

p,Gφ(x) ≤ 0. Therefore, from (3.14) we obtain

φ(x) ≥ µp(ε, u)(x) + o(ε2), as ε→ 0,

which proves that φ at x satisfies part (i) of Definition 3.14. By using the fact that u is also a
viscosity subsolution (and so u satisfies part (ii) of Definition 3.10) we show that inequality in
part (ii) of Definition 3.14 holds as well. This proves that u(x) = µp(ε, u)(x) + o(ε2) as ε → 0 in
the viscosity sense.

Now we will prove the converse. Suppose, that u(x) = µp(ε, u)(x) + o(ε2) as ε → 0 in the
viscosity sense. If u − φ attains a strict minimum at x, then by Definition 3.14, it follows that
φ(x) ≥ µp(ε, φ)(x) + o(ε2) as ε→ 0. Using this result in (3.14), we get

∆N
p,Gφ(x) =

µp(ε, φ)(x)− φ(x)
c(p, v1, . . . , vk)ε2 + o(1) ≤ o(1),

as ε → 0, and hence ∆N
p,Gφ(x) ≤ 0. We apply a similar reasoning in the case u − φ has a strict

maximum at x. This proves, that u is a viscosity solution of ∆N
p,Gu = 0 in Ω.

Remark 3.20. Mean value formulas similar to the ones proved in Theorem 3.1 have been used
in [LMR20] to study random walks and random tug of war in the Heisenberg group. In [LMR20],
the authors implemented the approach of Peres-Sheffield [PS08] to provide a game-theoretical
interpretation of the p-Laplacian in the Heisenberg group, they also characterized its viscosity
solutions via an asymptotic mean value expansion similar to the one proved in [MPR10]. We
expect that our result could be used to generalize [LMR20] to general Carnot groups.

3.4 Lemma 3.15 in the Heisenberg group H1

In this chapter we state and prove the special case of Lemma 3.15 when the Carnot group G is
assumed to be the Heisenberg group.

Lemma 3.21. Let Ω ⊂ H1 be an open set and x ∈ Ω be a point such that a ball B(x, ε) ⊂ Ω for
all small enough radii ε ≤ ε0(x). Let 1 ≤ p ≤ ∞ and ξ ∈ R2 \ {0}. Let further A be a symmetric
2×2 matrix with real coefficients. Moreover, consider the quadratic function q : B(x, ε)→ R given
by

q(y) = q(x) + 〈ξ, (x−1y)h〉+ w(x−1y)v +
1
2
〈A(x−1y)h, (x−1y)h〉, y ∈ B(x, ε), (3.15)

where (x−1y)h and (x−1y)v are the horizontal and the vertical components of x−1y, respectively
and w ∈ R is fixed. Then it holds that

µp(ε, q) = q(x) + ε2C(p)
(

tr(A) + (p− 2)
〈Aξ, ξ〉
|ξ|2

)
+ o(ε2), (3.16)

for C(p) := 2
(p+2)(p+4)

(
Γ( p+6

4 )
Γ( p+4

4 )

)2

. Furthermore, if u ∈ C2(Ω) with the horizontal gradient ∇V1u(x) =

∇Hu(x) 6= 0, then it holds

µp(ε, u)(x) = u(x) + C(p)∆N
p,H1

u(x)ε2 + o(ε2), as ε→ 0. (3.17)
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Proof. In the proof we follow the steps of the proof of Lemma 3.1 in [IMW17]. However, since
the setting of Carnot groups differs from the Euclidean one, the computations are to some extent,
more demanding and nontrivial.

We begin with computing µp(ε, q). For z = (z1, z2, z3) ∈ B(0, 1) =: B we introduce the
following

qε(z) = q(xδε(z)), vε(z) =
qε(z)− q(x)

ε
and v(z) = 〈ξ, (z1, z2)〉 := 〈ξ, zh〉.

We know that µp(ε, q)(x) = µp(1, qε)(0) by Corollary 3.12. Then, by parts (4) and (5) of Theorem
3.11, we see that

µp(ε, q)(x)− q(x)
ε

= µp(1, vε)(0).

Let us observe, that

vε(z) =
1
ε

(
〈ξ, δε(z)h〉+

1
2
〈Aδε(z)h, δε(z)h〉+ aδε(z)3

)
= 〈ξ, zh〉+

ε

2
〈Azh, zh〉+ wεz3, (3.18)

which shows that vε converges uniformly to v as ε → 0 on B. We appeal to the second part of
claim (2) in Theorem 3.11 to obtain that µp(1, vε)(0) → µp(1, v)(0) as ε → 0. Recall that the
characterization of λ = µp(1, v)(0) given by (3.8) in Theorem 3.11 states that if p ∈ [1,∞), then
λ is the unique number such that∫

B

|〈ξ, yh〉 − λ|p−2(〈ξ, yh〉 − λ)dy = 0.

On the other hand ∫
B

|〈ξ, yh〉|p−2(〈ξ, yh〉)dy = 0,

which follows from the symmetry of the unit ball and the following natural change of variables

Φ(y1, y2, y3) = (−y1, y2, y3), |JΦ|= 1, Φ(B) = B.

It now follows that µp(1, v)(0) = λ = 0.
If p =∞, then by (3.9):

µ∞(1, v)(0) =
1
2

(
min
B
〈ξ, yh〉+ max

B
〈ξ, yh〉

)
=

1
2

(−|ξ|+|ξ|) = 0.

Next, we split the discussion into the cases depending on the value of p. Let us define

γε =
µp(ε, q)(x)− q(x)

ε2 .

3.4.1 Case 1: 1 < p <∞
For the sake of brevity we introduce a function f(s) = |s|p−2s. Then, upon applying (3.8) to
µp(1, vε)(0) = εγε we obtain ∫

B

f(vε(z)− εγε)dz = 0.

By using (3.18) this can be transformed to the following expression:∫
B

f

(
〈ξ, zh〉+ ε

(
1
2
〈Azh, zh〉 − γε + wz3

))
dz = 0. (3.19)

Without loss of generality we may assume that |ξ|= 1, since otherwise we can consider the quadratic
function q̃ = q/|ξ|. Let us apply the change of variables z = (z1, z2, z3) = (R(y1, y2), y3) in (3.19),
where R is a 2× 2 rotation matrix

R =
[
ξ1 −ξ2
ξ2 ξ1

]
.
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Notice that RT ξ = e1 = (1, 0, 0). Set C = RTAR, then (3.19) reads∫
B

f

(
y1 + ε

(
1
2
〈Cyh, yh〉 − γε + wy3

))
dy = 0.

Since
∫
B
f(y1)dy = 0, it follows that for all ε > 0, we have:

1
ε

∫
B

f

(
y1 + ε

(
1
2
〈Cyh, yh〉 − γε + wy3

))
− f(y1)dy = 0.

Therefore, by the Fundamental Theorem of Calculus, we have:∫
B

[∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cyh, yh〉 − γε + wy3

))
dt

](
1
2
〈Cyh, yh〉 − γε + wy3

)
dy = 0. (3.20)

Equality (3.20) implies that γε is a weighted mean value of the function 1
2 〈Cyh, yh〉+wy3 over B

with respect to a weighted Lebesgue measure ω(y)dy for

ω(y) :=
∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cyh, yh〉 − γε + wy3

))
dt, y ∈ B.

The weight function w is nonnegative since f ′(s) = (p− 1)|s|p−2≥ 0. Therefore, γε is bounded by
c :=

∥∥ 1
2 〈Cyh, yh〉+ wy3

∥∥
L∞(B).

Let us consider any subsequence of (γε) converging to γ0 as ε → 0+, which for the sake of
brevity, we also denote by (γε). Let us consider two cases. If 2 ≤ p < ∞, then for all y ∈ B we
obtain ∣∣∣∣∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cyh, yh〉 − γε + wy3

))
dt

(
1
2
〈Cyh, yh〉 − γε + wy3

)∣∣∣∣
≤ 2c(p− 1)

∫ 1

0

∣∣∣∣y1 + tε

(
1
2
〈Cyh, yh〉 − γε + wy3

)∣∣∣∣p−2

dt ≤ 2c(p− 1)(1 + 2cε).

Therefore, by the dominated convergence theorem the sequence (γε) converges to

γ0 := lim
ε→0

γε =

∫
B
|y1|p−2

(
1
2 〈Cyh, yh〉+ wy3

)
dy∫

B
|y1|p−2dy

. (3.21)

Let now 1 < p < 2. Fix 0 < θ < 1 and split the integral (3.20) into two parts: over the set
Gθ := B ∩ {|y1|> θ} and Fθ := B ∩ {|y1|≤ θ}. Observe that for all y ∈ Gθ and for all ε > 0
satisfying 2cε < θ, we have the following:∣∣∣∣∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cyh, yh〉 − γε + wy3

))
dt

(
1
2
〈Cyh, yh〉 − γε + wy3

)∣∣∣∣
≤ 2c ||y1|−2cε|p−2

.

Moreover,

lim
ε→0

∫
Gθ

||y1|−2cε|p−2
dy =

∫
Gθ

|y1|p−2dy <

∫
B

|y1|p−2dy, (3.22)

where the inequality holds uniformly for all θ ∈ (0, 1). Furthermore, the last integral turns out
to be finite which can be seen from the explicit calculation below in (3.23). Hence, by applying
Theorem 5.4 in [IMW17] to X = Gθ with ν being the Lebesgue measure, we obtain the following:

lim
ε→0

∫
Gθ

∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cyh, yh〉 − γε + wy3

))
dt

(
1
2
〈Cyh, yh〉 − γε + wy3

)
dy

=
∫
Gθ

(p− 1)|y1|p−2
(

1
2
〈Cyh, yh〉+ wy3 − γ0

)
.
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Observe that here the upper bound in (3.22) allows us to conclude that the limit as θ → 0+ is
finite. We now focus on the part of the integral in (3.20) involving the set Fθ. Since |Fθ|=

∫
Fθ

1dy,
then upon writing this integral as in (3.23), one sees that |Fθ|= c(k)θ, and so |Fθ|→ 0, as θ → 0+.
Moreover, it suffices to consider θ = 2cε and the related

∫
F2cε
||y1|−2cε|p−2

dy. We again appeal
to integral (3.23) and reduce our computations to finding∫

D(0,r)∩{|y1|≤2cε}
(2cε− |y1|)p−2

dyh,

D(0, r) denotes the disc centered at 0 with radius r. However, direct computation shows that this
integral is of order εp−1, which then allows us to let ε→ 0+, and in turn conclude (3.21).

In order to approach the proof of (3.11), we first need to compute integrals in (3.21). We
begin with computing the denominator of (3.21). Once this is completed, the computation of the
numerator will be more straightforward.

I =
∫
B

|y1|p−2dy =
∫ 1

−1

(∫
D(0, 4
√

1−y2
3)
|y1|p−2dy1dy2

)
dy3, (3.23)

where B = {(y1, y2, y3) :
√
y2

1 + y2
2 ≤

4

√
1− y2

3}. In general we have∫
D(0,r)

|y1|p−2dy1dy2 =
∫ r

−r

∫ √r2−y2
2

−
√
r2−y2

2

|y1|p−2dy1dy2 = 4
∫ r

0

∫ √r2−y2
2

0
yp−2

1 dy1dy2

=
4

p− 1

∫ r

0
(r2 − y2

2)
p−1

2 dy2 =
4rp

p− 1

∫ 1

0
(1− z2)

p−1
2 dz (3.24)

=
2rp

p− 1

∫ 1

0
t−

1
2 (1− t)

p−1
2 dt =

2rp

p− 1
B
(

1
2
,
p+ 1

2

)
,

where B stands for the beta-function. Here we also use the change of variables: y2 = rz in the
second line and z2 = t in the last line. Inserting this into I we obtain

I =
2

p− 1
B
(

1
2
,
p+ 1

2

)∫ 1

−1
(1− y2

3)
p
4 dy3 =

4
p− 1

B
(

1
2
,
p+ 1

2

)∫ 1

0
(1− y2

3)
p
4 dy3

=
2

p− 1
B
(

1
2
,
p+ 1

2

)∫ 1

0
t−

1
2 (1− t)

p
4 dt =

2
p− 1

B
(

1
2
,
p+ 1

2

)
B
(

1
2
,
p+ 4

4

)
.

Next we consider the integral in the numerator of (3.21), namely

J :=
∫
B

|y1|p−2
(

1
2
〈Cyh, yh〉+ wy3

)
dy.

Notice, that
∫
B
y3|y1|p−2= 0. Let C =

[
a b
b c

]
, then 〈Cyh, yh〉 = ay2

1 + 2by1y2 + cy2
2 . Therefore,

2J = a

∫
B

|y1|pdy︸ ︷︷ ︸
J1

+2b
∫
B

|y1|p−2y1y2dy︸ ︷︷ ︸
J2

+c
∫
B

|y1|p−2y2
2dy︸ ︷︷ ︸

J3

.

Observe, that by the symmetry ofB the middle integral J2 = 0. We deal with J1 and J3 analogously
to I computing the following integral∫

D(0,r)
|y1|p−2y2

2dy1dy2 = 4
∫ r

0
y2

2

∫ √r2−y2
2

0
yp−2

1 dy1dy2 =
4

p− 1

∫ r

0
y2

2(r2 − y2
2)

p−1
2 dy2

=
4rp+2

p− 1

∫ 1

0
z2(1− z2)

p−1
2 dz =

2rp+2

p− 1

∫ 1

0
t

1
2 (1− t)

p−1
2 dt

=
2rp+2

p− 1
B
(

3
2
,
p+ 1

2

)
,
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where again we used the change of variables y2 = rz and z2 = t. Notice, that (3.24) works for
an arbitrary p > 1. We use this observation to obtain that

∫
D(0,r)|y1|pdy1dy2 = 2rp+2

p+1 B
(

1
2 ,

p+3
2

)
.

Next, we focus our attention on J1 and J3:

J1 =
2

p+ 1
B
(

1
2
,
p+ 3

2

)∫ 1

−1
(1− y2

3)
p+2

4 dy3 =
4

p+ 1
B
(

1
2
,
p+ 3

2

)∫ 1

0
(1− y2

3)
p+2

4 dy3

=
2

p+ 1
B
(

1
2
,
p+ 3

2

)∫ 1

0
z−

1
2 (1− z)

p+2
4 dz =

2
p+ 1

B
(

1
2
,
p+ 3

2

)
B
(

1
2
,
p+ 6

4

)
.

Similarly,

J3 =
2

p− 1
B
(

3
2
,
p+ 1

2

)∫ 1

−1
(1− y2

3)
p+2

4 dy3 =
2

p− 1
B
(

3
2
,
p+ 1

2

)
B
(

1
2
,
p+ 6

4

)
.

We sum up our calculations and upon dividing J by I we arrive at the following:

γ0 =
J

I
= B

(
1
2
,
p+ 6

4

)
a 2
p+1B

(
1
2 ,

p+3
2

)
+ c 2

p−1B
(

3
2 ,

p+1
2

)
2 2
p−1B

(
1
2 ,

p+1
2

)
B
(

1
2 ,

p+4
4

) . (3.25)

In order to simplify the fraction in (3.25) we need to recall the following property of the beta
function: B(x, y + 1) = y

x+yB(x, y) and B(x + 1, y) = x
x+yB(x, y) which follows from the relation

between the Beta and Gamma function and the identity Γ(x+1) = xΓ(x). We apply these identities
to get

B
(

1
2
,
p+ 3

2

)
=
p+ 1
p+ 2

B
(

1
2
,
p+ 1

2

)
, B

(
3
2
,
p+ 1

2

)
=

1
p+ 2

B
(

1
2
,
p+ 1

2

)
.

We apply these formulas in the numerator of (3.25) to obtain the following

γ0 = B
(

1
2
,
p+ 6

4

)
B
(

1
2
,
p+ 1

2

) a
p+2 + c

(p−1)(p+2)
2
p−1B

(
1
2 ,

p+1
2

)
B
(

1
2 ,

p+4
4

)
=
a(p− 1) + c

2(p+ 2)
B
(

1
2 ,

p+6
4

)
B
(

1
2 ,

p+4
4

) =
a(p− 1) + c

2(p+ 2)
Γ
(
p+6

4

)2
Γ
(
p+4

4

)
Γ
(
p+8

4

)
= 2

a(p− 1) + c

(p+ 2)(p+ 4)

(
Γ
(
p+6

4

)
Γ
(
p+4

4

))2

.

In order to finish this part of the proof, we express coefficients a and c of matrix C in terms of
matrix A and the horizontal vector ξ. Recall that C = RTAR, which implies that

a = ξ2
1a11 + 2ξ1ξ2a12 + ξ2

2a22 and c = ξ2
2a11 − 2ξ1ξ2a12 + ξ2

1a22.

Therefore, a = 〈Aξ, ξ〉 and c = tr(C)− a. Noting that tr(C) = tr(A), we conclude that

γ0 = 2
(p− 2)〈Aξ, ξ〉+ tr(A)

(p+ 2)(p+ 4)

(
Γ
(
p+6

4

)
Γ
(
p+4

4

))2

.

Then, upon substituting ξ with ξ/|ξ| we arrive at the assertion (3.16).
We now consider the second assertion of the lemma, namely the asymptotic formula (3.17) for

µp(ε, u) and u ∈ C2(Ω). Suppose ε > 0 is chosen so that B(x, ε) ⊂ Ω. Consider the function q(y)
as in (3.15), with

q(x) = u(x), ξ = ∇Hu(x), A = ∇2
Hu(x), and η = 2

∂u

∂x3
(x).
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Notice that with this notation (and by the assumption ξ 6= 0), it holds that

∆N
p,H1

u(x) = tr(A) + (p− 2)
〈Aξ, ξ〉
|ξ|2

.

Set uε(z) = u(xδε(z)) and qε(z) = q(xδε(z)). Since u ∈ C2(Ω), it follows that for all t > 0,
there exists ε(t) > 0 such that for every z ∈ B and all ε ∈ (0, ε(t)) it holds |uε(z) − qε(z)|< tε2.
Furthermore, by claims (4) and (5) of Theorem 3.11 we have µp(ε, q± tε2)(x) = µp(ε, q)(x)± tε2.
These observations together with Corollary 3.12 and Part (3) of Theorem 3.11 allow us to obtain
the following estimates:

µp(ε, q)− u(x)
ε2 − t ≤ µp(ε, u)− u(x)

ε2 ≤ µp(ε, q)− u(x)
ε2 + t.

Applying (3.16) we obtain

C(p)∆N
p,H1

u(x)− t ≤ lim inf
ε→0

µp(ε, q)− u(x)
ε2

≤ lim sup
ε→0

µp(ε, q)− u(x)
ε2 ≤ C(p)∆N

p,H1
u(x) + t,

which implies the assertion (3.17) for 1 < p <∞.

3.4.2 Case 2: p =∞
We need to show that there exists the limit of the following expression

γε =
µ∞(ε, q)− q(x)

ε2 (3.26)

=
1
2ε

(
min
y∈B

[
〈ξ, yh〉+ ε

(
wy3 +

1
2
〈Ayh, yh〉

)]
+ max

y∈B

[
〈ξ, yh〉+ ε

(
wy3 +

1
2
〈Ayh, yh〉

)])
.

Let us define a function g : H1 → R with g(y) = 〈ξ, yh〉+wy3 + 1
2 〈Ayh, yh〉. Observe further, that

by z := δε(y) there holds

min
y∈B

[
〈ξ, yh〉+ ε

(
wy3 +

1
2
〈Ayh, yh〉

)]
=

1
ε

min
z∈B(0,ε)

g(z),

and

max
y∈B

[
〈ξ, yh〉+ ε

(
wy3 +

1
2
〈Ayh, yh〉

)]
=

1
ε

max
z∈B(0,ε)

g(z),

and it follows that

γε =
1

2ε2

(
min

z∈B(0,ε)
g(z) + max

z∈B(0,ε)
g(z)

)
.

Furthermore, notice that ∇Hg(0) = ξ 6= 0. Therefore, we apply Lemma 3.1 and 3.2 in [FLM14] to
obtain, that for all small enough ε, there exist points PMε = (xMε , y

M
ε , t

M
ε ) and Pmε = (xmε , y

m
ε , t

m
ε )

in ∂B(0, ε) with the following properties:

max
B(0,ε)

g = g(xMε , y
M
ε , t

M
ε ), min

B(0,ε)
g = g(xmε , y

m
ε , t

m
ε ).

Moreover,

lim
ε→0

(xMε , y
M
ε )

ε
=

ξ

|ξ|
, lim

ε→0

(xmε , y
m
ε )

ε
= − ξ

|ξ|
. (3.27)
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We use these to estimate (3.26) in the following way

1
2ε2 (g(Pmε ) + g(−Pmε )) ≤ 1

2ε2

(
min

z∈B(0,ε)
g(z) + max

z∈B(0,ε)
g(z)

)
≤ 1

2ε2

(
g(PMε ) + g(−PMε )

)
.

(3.28)
Compute

1
2ε2 (g(PMε ) + g(−PMε )) =

1
4ε2

(
〈A(xMε , y

M
ε ), (xMε , y

M
ε )〉+ 〈A(−xMε ,−yMε ), (−xMε ,−yMε )〉

)
=

1
2
〈A
(
xMε
ε
,
yMε
ε

)
,

(
xMε
ε
,
yMε
ε

)
〉 ε→0−−−→ 1

2
〈Aξ, ξ〉
|ξ|2

.

We treat the left-hand side of (3.28) similarly to conclude that

µ∞(ε, q) = q(x) +
ε2

2
〈Aξ, ξ〉
|ξ|2

+ o(ε2).

We are now in a position to show the second assertion of the lemma, namely the asymptotic
formula (3.17) for µp(ε, u).

Let ε > 0 be such that B(x, ε) ⊂ Ω. Consider function q(y) as in (3.15) with

q(x) = u(x), ξ = ∇Hu(x), A = ∇2
Hu(x), w = 2

∂u

∂x3
(x).

Notice that with this notation

∆N
p,H1

u(x) = tr(A) + (p− 2)
〈Aξ, ξ〉
|ξ|2

.

Set uε(z) = u(xδε(z)) and qε(z) = q(xδε(z)). Since u ∈ C2(Ω) it holds that for all η > 0 there is
ε = ε(η) > 0 such that for every z ∈ B and all ε ∈ (0, ε(η)) it holds

|uε(z)− qε(z)|< ηε2.

Furthermore, by parts (4) and (5) of Theorem 3.11 we have µp(ε, q ± ηε2)(x) = µp(ε, q)(x)± ηε2.
These observations together with Corollary 3.12 and Part (3) of Theorem 3.11 allow us to obtain
the following estimates:

µp(ε, q)− u(x)
ε2 − η ≤ µp(ε, u)− u(x)

ε2 ≤ µp(ε, q)− u(x)
ε2 + η.

By applying (3.16) we obtain

C(p)∆N
p,H1

u(x)− η ≤ lim inf
ε→0

µp(ε, q)− u(x)
ε2 ≤ lim sup

ε→0

µp(ε, q)− u(x)
ε2 ≤ C(p)∆N

p,H1
u(x) + η,

where C(p) := 2
(p+2)(p+4)

(
Γ( p+6

4 )
Γ( p+4

4 )

)2

.

3.4.3 Case 3: p = 1

Recall, that by the discussion at the beginning of the proof of Lemma 3.21 (cf. (3.18)), the unique
number γε for p = 1 is defined with the following equation

|{z ∈ B : 〈ξ, zh〉+
ε

2
〈Azh, zh〉+ wεz3 < εγε}|= |{z ∈ B : 〈ξ, zh〉+

ε

2
〈Azh, zh〉+ wεz3 > εγε}|.
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We apply the same change of variables via the matrix R, as described in the paragraph following
formula (3.19) (for the sake of simplicity we still use the variable z) and divide both inequalities
by ε to arrive at

|{z ∈ B :
z1

ε
+

1
2
〈Czh, zh〉+ wz3 < γε}|= |{z ∈ B :

z1

ε
+

1
2
〈Czh, zh〉+ wz3 > γε}|. (3.29)

We again assume that |ξ|= 1 and let C = RTAR, where R denotes the rotation matrix as defined
in the discussion following (3.19). Equation (3.29) means that for each fixed ε > 0, γε is the median
µ1(1, h) =: µ1(h) of the function h : B → R defined with the following formula

h(z) :=
z1

ε
+

1
2
〈Czh, zh〉+ wz3.

Denote by c′ :=
∥∥ 1

2 〈Czh, zh
∥∥
L∞(B) <∞. Let us observe, that by monotonicity of µ1 and property

(4) in Theorem 3.11, we obtain the following estimates

γε = µ1

(
z1

ε
+

1
2
〈Czh, zh〉+ wz3

)
≤ µ1

(z1

ε
+ wz3 + c′

)
= µ1

(z1

ε
+ wz3

)
+ c′,

(3.30)

and

γε = µ1

(
z1

ε
+

1
2
〈Czh, zh〉+ wz3

)
≥ µ1

(z1

ε
+ wz3 − c′

)
= µ1

(z1

ε
+ wz3

)
− c′.

(3.31)

Let us observe, that for all ε > 0 we have

|{z ∈ B :
z1

ε
+ wz3 < 0}|= |{z ∈ B :

z1

ε
+ wz3 > 0}|.

since the two quantities are equivalent under the change of variables z 7→ −z. It then follows that

µ1

(z1

ε
+ wz3

)
= 0,

and estimates (3.30) and (3.31) reads −c′ ≤ γε ≤ c′. Hence γε is bounded, and after passing to a
subsequence, there exists γ0 := limε→0 γε.

Now let us apply the following change of variables to both sides of (3.29)

(z1, z2, z3) 7→ (εz1, z2, z3) =: εz1e1 + z̃,

where z̃ := (0, z2, z3). The Jacobian of this transformation is constant, hence it cancels out on
both sides and (3.29) becomes

|{z ∈ R3 : |εz1e1 + z̃|H1< 1, z1 +
(

1
2
〈C(εz1, z2), (εz1, z2)〉+ wz3

)
< γε}|

= |{z ∈ R3 : |εz1e1 + z̃|H1< 1, z1 +
(

1
2
〈C(εz1, z2), (εz1, z2)〉+ wz3

)
> γε}|.

(3.32)

Let us denote by B̃ := {(z2, z3) ∈ R2 : |(0, z2, z3)|H1< 1} and consider a function F : {z ∈ R3 :
|εz1e1 + z̃|H1< 1} → R defined by

F (z) := z1 +
(

1
2
〈C(εz1, z2), (εz1, z2)〉+ wz3

)
.
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For small ε, we are going to represent the intersection of the boundaries of sets in (3.32), i.e., the
surface {F (z) = γε : |εz1e1 + z̃|H1< 1}, as the graph of a function of the form z̃ → gε(z̃)e1 + z̃
where gε : B̃ → R.

Let us observe, that the derivative Fz1 can be estimated from below:

Fz1(z) = 1 + ε2c11z1 + εc12z2 >
1
2

for ε sufficiently small. This follows from |εz1e1 + z̃|H1< 1 and the fact that

−ε(|c11|+ |c12|) ≤ ε2c11z1 + εc12z2 ≤ ε(|c11|+ |c12|).

Hence, for a fixed z̃ ∈ B̃ the function z1 → F (z1e1 + z̃) is monotone increasing and, therefore,
has an inverse denoted hε,z̃(t). It follows that F (hε,z̃(t)e1 + z̃) = t and gε(z̃) = hε,z̃(γε) is a point
in the intersection of the boundaries of sets in (3.32). Furthermore, let us observe that, possibly
after passing to a subsequence, the following limit exists for all z̃ ∈ B̃

gε(z̃)→ γ0 −
1
2
c22z

2
2 − wz3 as ε→ 0+. (3.33)

Indeed, for all z̃ ∈ B̃ the equation F (gε(z̃)e1 + z̃) = γε equivalently reads:

gε(z̃) +
1
2
〈C(εgε(z̃), z2), (εgε(z̃), z2)〉+ wz3 = γε.

From this we get that

gε(z̃) +
1
2

(
ε2c11g

2
ε(z̃) + 2εc12gε(z̃)z2 + c22z

2
2

)
+ wz3 = γε,

which for fixed z̃ and c11 6= 0 is the following quadratic equation in gε(z̃):

g2
ε(z̃)

ε2c11

2
+ gε(z̃) (1 + 2εc12z2) +

1
2
c22z

2
2 + wz3 − γε = 0.

Therefore, gε(z̃) has to be either equal to

gε(z̃) =
−1− 2εc12z2 +

√
(1 + 2εc12z2)2 − 2ε2c11

(
1
2c22z2

2 + wz3 − γε
)

ε2c11
,

or equal to

gε(z̃) =
−1− 2εc12z2 −

√
(1 + 2εc12z2)2 − 2ε2c11

(
1
2c22z2

2 + wz3 − γε
)

ε2c11
.

Observe, that the second solution is of order ε−2 and hence does not lie in the set

{z : |εgε(z̃)e1 + z̃|H1< 1}

for ε→ 0+. We consider the first solution, which after simplification reads

gε(z̃) =
2
(
γε − 1

2c22z
2
2 − wz3

)√
(1 + 2εc12z2)2 − 2ε2c11

(
1
2c22z2

2 + wz3 − γε
)

+ 1 + 2εc12z2

.

If c11 = 0, then

gε(z̃) (1 + 2εc12z2) = γε −
1
2
c22z

2
2 − wz3.
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Therefore, we conclude (3.33). Thus, we can represent the measures of the sets appearing in (3.32)
as integrals, and obtain the following∫

B̃

[min {gε(z̃), Gε(z̃)}+Gε(z̃)] dz̃ =
∫
B̃

[Gε(z̃)−max {gε(z̃), Gε(z̃)}] dz̃, (3.34)

where

Gε(z̃) :=
1
ε

√√
1− z2

3 − z2
2 .

The function Gε is the non-negative solution z1 to the equation |εz1e1 + z̃|H1= 1 describing the
boundary of B. Observe, that (3.34) is equivalent to∫

B̃

[min {gε(z̃), Gε(z̃)}+ max {gε(z̃), Gε(z̃)}] dz̃ = 0. (3.35)

Applying the dominated convergence theorem to the case ε→ 0+ in (3.35) we obtain that∫
B̃

(
γ0 −

1
2
c22z

2
2 − wz3

)
dz̃ = 0. (3.36)

The symmetry of B̃ shows that
∫
B̃
wz3 = 0 and so (3.36) becomes

γ0 =
c22

2

∫
B̃

z2
2dz̃. (3.37)

Let us calculate the above integral

∫
B̃

z2
2dz̃ =

∫
{z4

2+z2
3<1}

z2
2dz2dz3 =

∫ 1

−1

∫ (1−z2
3)

1
4

−(1−z2
3)

1
4

z2
2dz2dz3 =

∫ 1

−1

2
3

(1− z2
3)

3
4 dz3

=
4
3

∫ 1

0
(1− z2

3)
3
4 dz3

t:=z2
3=

2
3

∫ 1

0
(1− t) 3

4 t−
1
2 dt =

2
3
B
(

7
4
,

1
2

)
.

We follow the above reasoning to compute the measure of B̃ in the following way

|B̃|=
∫ 1

−1

∫ (1−z2
3)

1
4

−(1−z2
3)

1
4

1dz2dz3 =
∫ 1

−1
2(1− z2

3)
1
4 dz3

t:=z2
3= 2
∫ 1

0
(1− t) 1

4 t−
1
2 dt = 2B

(
5
4
,

1
2

)
.

We sum up the above calculations to rewrite (3.37) in the following way

γ0 =
c22

6
B
(

7
4 ,

1
2

)
B
(

5
4 ,

1
2

) .
Therefore,

γ0 =
c22

6
B
(

7
4 ,

1
2

)
B
(

5
4 ,

1
2

) (tr(A)− 〈Aξ, ξ〉
|ξ|2

)
,

which follows from the same argument used in the case 1 < p <∞, and the same reasoning allows
us to conclude (3.11) and (3.12) for p = 1 as well. Thus, the proof of Lemma 3.15 is completed for
all 1 ≤ p ≤ ∞.

3.5 Lemma 3.15 in the Carnot group of step 2

In what follows we are going to prove Lemma 3.15 in the setting of Carnot groups of step 2. In
order to obtain this result, we need to find a generalization of Lemma 3.21 for H1. Observe, that
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a reasonable counterpart of the formula for the quadratic function q would arise from the Taylor
expansion in step 2 Carnot groups. In the next lemma we deal with a step 2 Carnot group G
(recall Definition 3.2 for k = 2). For the sake of brevity let us denote by n := v1 and k := v2 the
dimensions of subspaces V1 and V2, respectively. Recall, that we compute the distance to 0 of an
element x = (x(1), x(2)) = (x1, . . . , xn, xn+1, . . . , xn+k) ∈ G by using formula (3.3):

d(0, x) =
((
x2

1 + . . .+ x2
n

)2
+ x2

n+1 + . . .+ x2
n+k

) 1
4

=
(
‖x(1)‖4Rn + ‖x(2)‖2Rk

) 1
4
.

Then, the following result is a generalization of Lemma 3.21 to the Carnot groups of step 2.

Lemma 3.22. Let G be a Carnot group of step 2. Moreover, let Ω ⊂ G be an open set and x ∈ Ω
be a point such that ball B(x, ε) ⊂ Ω for all small enough radii ε ≤ ε0(x). Let 1 ≤ p ≤ ∞ and
ξ ∈ Rn \ {0}, η ∈ Rk. Let further A be a symmetric n× n matrix with real coefficients. Moreover,
consider the quadratic function q : B(x, ε)→ R given by

q(y) = q(x) + 〈ξ, (x−1y)(1)〉Rn + 〈η, (x−1y)(2)〉Rk +
1
2
〈A(x−1y)(1), (x−1y)(1)〉Rn , y ∈ B(x, ε),

(3.38)
where (x−1y)(1) and (x−1y)(2) are the horizontal and the vertical components of x−1y, respectively.
Then it holds that

µp(ε, q) = q(x) + ε2C(p, n, k)
(

tr(A) + (p− 2)
〈Aξ, ξ〉
|ξ|2

)
+ o(ε2), (3.39)

for C(p, n, k) := 1
2(n+p)

B( k2 ,n+p+4
4 )

B( k2 ,n+p+2
4 ) . Furthermore, if u ∈ C2(Ω) with ∇V1u(x) 6= 0, then it holds

µp(ε, u)(x) = u(x) + C(p)∆N
p,Gu(x)ε2 + o(ε2), as ε→ 0. (3.40)

Proof. The proof goes verbatim to the proof of Lemma 3.21. We begin with computing µp(ε, q).
For z = (z(1), z(2)) ∈ B := B(0, 1), where B denotes the unit open ball in G:

B =
{
z ∈ Rn+k : (z2

1 + . . .+ z2
n)2 + z2

n+1 + . . .+ z2
n+k < 1

}
we introduce the following

qε(z) = q(xδε(z)), vε(z) =
qε(z)− q(x)

ε
and v(z) = 〈ξ, (z1, . . . , zn)〉Rn := 〈ξ, z(1)〉Rn .

We know that µp(ε, q)(x) = µp(1, qε)(0) by Corollary 3.12. Then, by points (4) and (5) of Theorem
3.11, we see that

µp(ε, q)(x)− q(x)
ε

= µp(1, vε)(0).

Let us observe, that

vε(z) =
1
ε

(
〈ξ, δε(z)(1)〉+

1
2
〈Aδε(z)(1), δε(z)(1)〉+ 〈η, δε(z)(2)〉

)
= 〈ξ, z(1)〉+

ε

2
〈Az(1), z(1)〉+ ε〈η, z(2)〉.

(3.41)

Therefore, vε converges uniformly to v as ε→ 0 on B. We appeal to the second part of claim (2) in
Theorem 3.11 to obtain, that µp(1, vε)(0)→ µp(1, v)(0) as ε→ 0. Recall that the characterization
of λ = µp(1, v)(0) given by (3.8) in Theorem 3.11 states that if p ∈ [1,∞), then λ is the unique
number such that ∫

B

|〈ξ, y(1)〉 − λ|p−2(〈ξ, y(1)〉 − λ)dy = 0.
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On the other hand ∫
B

|〈ξ, y(1)〉|p−2(〈ξ, y(1)〉)dy = 0,

by symmetry of the unit ball and the change of variables

Φ(y(1), y(2)) = (−y1,−y2, . . . ,−yn, yn+1, . . . , yn+k), |JΦ|= 1, Φ(B) = B.

Therefore, µp(1, v)(0) = λ = 0.
If p =∞, then by (3.9):

µ∞(1, v)(0) =
1
2

(
min
B
〈ξ, y(1)〉+ max

B
〈ξ, y(1)〉

)
=

1
2

(−|ξ|+|ξ|) = 0.

Subsequently, we define

γε =
µp(ε, q)(x)− q(x)

ε2 .

3.5.1 Case 1: 1 < p <∞
For the sake of brevity let us introduce a function f(s) = |s|p−2s. Then, upon applying (3.8) to
µp(1, vε)(0) = εγε we obtain ∫

B

f(vε(z)− εγε)dz = 0.

By using (3.41) this can be transformed to the following expression:∫
B

f

(
〈ξ, z(1)〉+ ε

(
1
2
〈Az(1), z(1)〉 − γε + 〈η, z(2)〉

))
dz = 0. (3.42)

Without loss of generality we may assume that |ξ|= 1, since otherwise we can consider the quadratic
function q̃ = q/|ξ|. Let us apply the change of variables z = (z(1), z(2)) = (Ry(1), y(2)) in (3.42),
where R is a n× n rotation matrix with RT ξ = e1. Set C = RTAR, then (3.42) reads∫

B

f

(
y1 + ε

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))
dy = 0.

Therefore, by the Fundamental Theorem of Calculus, we have:∫
B

[∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))
dt

](
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)
dy = 0.

(3.43)
Equality (3.43) implies that γε is a weighted mean value of the function 1

2 〈Cy
(1), y(1)〉 + 〈η, y(2)〉

over B with respect to a weighted Lebesgue measure ω(y)dy for

ω(y) :=
∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))
dt, y ∈ B.

The weight function w is nonnegative since f ′(s) = (p− 1)|s|p−2≥ 0. Therefore, γε is bounded by
c :=

∥∥ 1
2 〈Cy

(1), y(1)〉+ 〈η, y(2)〉
∥∥
L∞(B).

Let us consider any subsequence of (γε) converging to γ0 as ε → 0+, which for the sake of
brevity, we also denote by (γε). Let us consider two cases. If 2 ≤ p < ∞, then for all y ∈ B we
obtain∣∣∣∣∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))
dt

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)∣∣∣∣
≤ 2c(p− 1)

∫ 1

0

∣∣∣∣y1 + tε

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)∣∣∣∣p−2

dt ≤ 2c(p− 1)(1 + 2cε).
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Therefore, by the dominated convergence theorem the sequence (γε) converges to

γ0 := lim
ε→0

γε =

∫
B
|y1|p−2

(
1
2 〈Cy

(1), y(1)〉+ 〈η, y(2)〉
)
dy∫

B
|y1|p−2dy

. (3.44)

Let now 1 < p < 2. Fix 0 < θ < 1 and split the integral (3.43) into two parts: over the set
Gθ := B ∩ {|y1|> θ} and Fθ := B ∩ {|y1|≤ θ}. Observe that for all y ∈ Gθ and for all ε > 0
satisfying 2cε < θ, we have the following:∣∣∣∣∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))
dt

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)∣∣∣∣
≤ 2c ||y1|−2cε|p−2

.

Moreover,

lim
ε→0

∫
Gθ

||y1|−2cε|p−2
dy =

∫
Gθ

|y1|p−2dy <

∫
B

|y1|p−2dy, (3.45)

where the inequality holds uniformly for all θ ∈ (0, 1). Furthermore, the last integral turns out
to be finite which can be seen from the explicit calculation below in (3.46). Hence, by applying
Theorem 5.4 in [IMW17] to X = Gθ with ν being the Lebesgue measure, we obtain the following:

lim
ε→0

∫
Gθ

∫ 1

0
f ′
(
y1 + tε

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))
dt

(
1
2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)
dy

=
∫
Gθ

(p− 1)|y1|p−2
(

1
2
〈Cy(1), y(1)〉+ 〈η, y(2)〉 − γ0

)
.

Observe that here the upper bound in (3.45) allows us to conclude that the limit as θ → 0+ is
finite. We now focus on the part of the integral in (3.43) involving the set Fθ. Since |Fθ|=

∫
Fθ

1dy,
then upon writing this integral as in (3.46), one sees that |Fθ|= c(k, n, k)θ, and so |Fθ|→ 0, as
θ → 0+. Moreover, it suffices to consider θ = 2cε and the related

∫
F2cε
||y1|−2cε|p−2

dy. We again
appeal to integral (3.46) and reduce our computations to finding∫

Bn(0,R1)∩{|y1|≤2cε}
(2cε− |y1|)p−2

dy(1).

However, direct computation shows that this integral is of order εp−1, which then allows us to let
ε→ 0+, and in turn conclude (3.44).

In order to complete the proof, we only need to compute the above two integrals. We begin
with the denominator of (3.44), cf. (3.23):

I =
∫
B

|y1|p−2dy =
∫
Bk(0,1)

(∫
Bn(0, 4

√
1−‖y(2)‖2)

|y1|p−2dy(1)

)
dy(2), (3.46)

where Bl(0, r) stands for a ball in Rl for l ∈ {k, n} centered at 0 with radius r > 0. Upon applying
the change of variables and Lemma 3.16 with α1 = p− 2 and αi = 0 for i = 2, . . . , n we have∫

Bn(0,r)
|y1|p−2dy(1) = rn+p−2

∫
Bn(0,1)

|y1|p−2dy(1) = rn+p−22n
∫
Tn

yp−2
1 dy(1)

= rn+p−2 Γ
(
p−1

2

)
Γ
(

1
2

)n−1

Γ
(
n+p

2

) . (3.47)

We apply (3.47) in I with r = 4

√
1− ‖y(2)‖2 to obtain

I =
Γ
(
p−1

2

)
Γ
(

1
2

)n−1

Γ
(
n+p

2

) ∫
Bk(0,1)

(
1−

∥∥y(2)
∥∥2
)n+p−2

4
dy(2).
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Since the integrand is a radial function, we apply the spherical coordinates and obtain that

I =
Γ
(
p−1

2

)
Γ
(

1
2

)n−1

Γ
(
n+p

2

) 2π
k
2

Γ
(
k
2

) ∫ 1

0
(1− r2)

n+p−2
4 rk−1dr

=
2
√
π
k+n−1Γ

(
p−1

2

)
Γ
(
n+p

2

)
Γ
(
k
2

) 1
2

∫ 1

0
(1− t)

n+p−2
4 t

k−2
2 dt (t := r2)

=

√
π
k+n−1Γ

(
p−1

2

)
Γ
(
n+p

2

)
Γ
(
k
2

) B(k
2
,
n+ p+ 2

4

)
.

Next we consider the integral in the numerator of (3.44), namely

J :=
∫
B

|y1|p−2
(

1
2
〈Cy(1), y(1)〉+ 〈η, y(2)〉

)
dy.

Notice, that
∫
B
〈η, y(2)〉|y1|p−2= 0. Let us denote the coefficients of matrix C as follows C =

[cij ]i,j=1,...,n, then

2J = c11

∫
B

|y1|pdy︸ ︷︷ ︸
J1

+
∑
i 6=j

cij

∫
B

|y1|p−2yiyjdy︸ ︷︷ ︸
J2

+
n∑
i=2

cii

∫
B

|y1|p−2y2
i dy︸ ︷︷ ︸

J3

.

Observe, that by the symmetry of B every integral term of the sum J2 vanishes. We will handle
J1 and J3 analogously to I. First, we compute the following integrals∫

Bn(0,r)
|y1|p−2y2

i dy
(1) = rn+pΓ

(
p−1

2

)
Γ
(

3
2

)
Γ
(

1
2

)n−2

Γ
(
p+n+2

2

) = rn+p

√
π
n−1Γ

(
p−1

2

)
2Γ
(
p+n+2

2

) , for i = 2, . . . , n

(3.48)

where we again use Lemma 3.16 for α1 = p−2, αi = 2 and αj = 0 for the remaining j 6= i; we also
apply familiar property of Γ functions: Γ(1 + s) = sΓ(s) for s = 1

2 . Moreover, notice that (3.47)
works for an arbitrary p > 1. We use this observation to obtain that∫

Bn(0,r)
|y1|pdy(1) =

rn+p√πn−1Γ
(
p+1

2

)
Γ
(
n+p+2

2

) .

We are in a position to complete the computations for J1 and J3:

J1 = c11

√
π
n−1Γ

(
p+1

2

)
Γ
(
n+p+2

2

) ∫
Bk(0,1)

(
1−

∥∥y(2)
∥∥2
)n+p

4
dy(2)

= c11

√
π
n−1Γ

(
p+1

2

)
Γ
(
n+p+2

2

) 2π
k
2

Γ
(
k
2

) ∫ 1

0
(1− r2)

n+p
4 rk−1dr

= c11

√
π
n+k−1Γ

(
p+1

2

)
Γ
(
n+p+2

2

)
Γ
(
k
2

) B(k
2
,
n+ p+ 4

4

)
,

where in the second line we used the fact that the integrand is radial and the spherical coordinates
can be applied simplifying the integrand. Similarly, by (3.48) we get

J3 =
n∑
i=2

cii

√
π
n−1Γ

(
p−1

2

)
2Γ
(
p+n+2

2

) ∫
Bk(0,1)

(
1−

∥∥y(2)
∥∥2
)n+p

4
dy(2)

=
n∑
i=2

cii

√
π
n+k−1Γ

(
p−1

2

)
2Γ
(
p+n+2

2

)
Γ
(
k
2

)B(k
2
,
n+ p+ 4

4

)
.
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We collect the above calculations to arrive at

J =
J1 + J3

2
=

√
π
n+k−1

2Γ
(
p+n+2

2

)
Γ
(
k
2

)B(k
2
,
n+ p+ 4

4

)(
c11Γ

(
p+ 1

2

)
+

1
2

n∑
i=2

ciiΓ
(
p− 1

2

))

=

√
π
n+k−1Γ

(
p−1

2

)
2Γ
(
p+n+2

2

)
Γ
(
k
2

)B(k
2
,
n+ p+ 4

4

)(
c11

p− 1
2

+
n∑
i=2

cii

)

=

√
π
n+k−1Γ

(
p−1

2

)
4Γ
(
p+n+2

2

)
Γ
(
k
2

)B(k
2
,
n+ p+ 4

4

)
(c11(p− 2) + tr(C)) .

Above, we again appeal to the same property of Gamma functions as in (3.48). We sum up our
calculations and upon dividing J by I to obtain the following

γ0 =
I

J
=

√
πn+k−1Γ( p−1

2 )
4Γ( p+n+2

2 )Γ( k2 ) B
(
k
2 ,

n+p+4
4

)
(c11(p− 2) + tr(C))

√
πk+n−1Γ( p−1

2 )
Γ(n+p

2 )Γ( k2 ) B
(
k
2 ,

n+p+2
4

)
=

Γ
(
n+p

2

)
4Γ
(
n+p+2

2

) B (k2 , n+p+4
4

)
B
(
k
2 ,

n+p+2
4

) (c11(p− 2) + tr(C))

=
1

2(n+ p)
B
(
k
2 ,

n+p+4
4

)
B
(
k
2 ,

n+p+2
4

) (c11(p− 2) + tr(C)).

In order to finish this part of the proof, we express the constants c11 and tr(C) in terms of matrix
A and the vector ξ. Recall that C = RTAR and RT ξ = e1, which implies that

c11 = 〈Ce1, e1〉 = 〈CRT ξ,RT ξ〉 = 〈R(RTAR)RT ξ, ξ〉 = 〈Aξ, ξ〉

and due to the orthogonality of R there holds tr(C) = tr(RTAR) = tr(A). Therefore, we conclude
that

γ0 =
1

2(n+ p)
B
(
k
2 ,

n+p+4
4

)
B
(
k
2 ,

n+p+2
4

) (〈Aξ, ξ〉(p− 2) + tr(A)).

Then, upon substituting ξ with ξ/|ξ| we arrive at the assertion (3.39).
We are now in a position to show the second assertion of the lemma, namely the asymptotic

formula (3.40) for µp(ε, u).
Let ε > 0 be such that B(x, ε) ⊂ Ω. Consider function q(y) as in (3.38) with

q(x) = u(x), ξ = ∇V1u(x), A = ∇2
V1
u(x), η = 2∇V2u(x).

Notice that with this notation

∆N
p,Gu(x) = tr(A) + (p− 2)

〈Aξ, ξ〉
|ξ|2

.

Set uε(z) = u(xδε(z)) and qε(z) = q(xδε(z)). Since u ∈ C2(Ω) it holds that for all t > 0 there is
ε = ε(t) > 0 such that for every z ∈ B and all ε ∈ (0, ε(t)) it holds

|uε(z)− qε(z)|< tε2.

Furthermore, by parts (4) and (5) of Theorem 3.11 we have µp(ε, q ± tε2)(x) = µp(ε, q)(x)± tε2.
These observations together with Corollary 3.12 and part (3) of Theorem 3.11 allow us to obtain
the following estimates:

µp(ε, q)− u(x)
ε2 − t ≤ µp(ε, u)− u(x)

ε2 ≤ µp(ε, q)− u(x)
ε2 + t.
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By applying (3.39) we obtain

C(p, n, k)∆N
p,Gu(x)−t ≤ lim inf

ε→0

µp(ε, q)− u(x)
ε2 ≤ lim sup

ε→0

µp(ε, q)− u(x)
ε2 ≤ C(p, n, k)∆N

p,Gu(x)+t,

where C(p, n, k) := 1
2(n+p)

B( k2 ,n+p+4
4 )

B( k2 ,n+p+2
4 ) .

3.5.2 Case 2: p =∞
The main difference between this case and the proof presented in Chapter 3.4.2 is hidden in the
auxiliary results to which we refer. While in Chapter 3.4.2 we refer to the work of Ferrari–Liu–
Manfredi (Lemma 3.1 and 3.2 in [FLM14]) concerning the Heisenberg group, here we have to use
a more refined result by Ferrari–Pinamonti (Lemma 1.5 and 1.6 in [FP15]) valid in general Carnot
group.

Recall that for p =∞ there holds

γε =
µ∞(ε, q)− q(x)

ε2

=
1
2ε

(
min
y∈B

[
〈ξ, y(1)〉+ ε

(
〈η, y(2)〉+

1
2
〈Ay(1), y(1)〉

)]
+ max

y∈B

[
〈ξ, y(1)〉+ ε

(
〈η, y(2)〉+

1
2
〈Ay(1), y(1)〉

)])
.

(3.49)

In order to show that there exists the limit of γε we define a function g : G → R with g(y) =
〈ξ, y(1)〉+ 〈η, y(2)〉+ 1

2 〈Ay
(1), y(1)〉. Observe further, that by δε(y) =: z there holds

min
y∈B

[
〈ξ, y(1)〉+ ε

(
〈η, y(2)〉+

1
2
〈Ay(1), y(1)〉

)]
=

1
ε

min
z∈B(0,ε)

g(z),

and

max
y∈B

[
〈ξ, y(1)〉+ ε

(
〈η, y(2)〉+

1
2
〈Ay(1), y(1)〉

)]
=

1
ε

max
z∈B(0,ε)

g(z).

Furthermore, notice that ∇V1g(0) = ξ 6= 0.
Before we apply Lemma 1.5 and 1.6 in [FP15] let us comment on the differences between these

results and Lemma 3.1 and 3.2 in [FLM14] which we applied in the proof of analogous case in
Chapter 3.4.2. Lemma 3.1 in [FLM14] and Lemma 1.5 in [FP15] assert existence of points Pε,M
and Pε,m (see below) and their proofs are the same. The main difference lies in the asymptotic
results: Lemma 3.2 in [FLM14] is rather straightforward (the main tool used in the proof is the
method of Lagrange multipliers), while the proof of Lemma 1.6 in [FP15] is much more technically
involved, which is due to a complicated geometry of general Carnot groups. We apply Lemma 1.5
and 1.6 in [FP15] to obtain, that for all small enough ε, there exist points Pε,M = (y(1)

ε,M , y
(2)
ε,M )

and Pε,m = (y(1)
ε,m, y

(2)
ε,m) in ∂B(0, ε) with the following properties:

max
B(0,ε)

g = g(Pε,M ), min
B(0,ε)

g = g(Pε,m).

Moreover,

lim
ε→0

y
(1)
ε,M

ε
=

ξ

|ξ|
, lim

ε→0

y
(1)
ε,m

ε
= − ξ

|ξ|
. (3.50)

We use these to estimate (3.49) in the following way

1
2ε2 (g(Pε,m) + g(−Pε,m)) ≤ 1

2ε2

(
min

z∈B(0,ε)
g(z) + max

z∈B(0,ε)
g(z)

)
≤ 1

2ε2 (g(Pε,M ) + g(−Pε,M )) .

(3.51)
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Compute

1
2ε2 (g(Pε,M ) + g(−Pε,M )) =

1
4ε2

(
〈Ay(1)

ε,M , y
(1)
ε,M 〉+ 〈A− y(1)

ε,M ,−y
(1)
ε,M 〉

)
=

1
2

〈
A
y

(1)
ε,M

ε
,
y

(1)
ε,M

ε

〉
ε→0−−−→ 1

2
〈Aξ, ξ〉
|ξ|2

.

We treat the left-hand side of (3.51) similarly to conclude that

µ∞(ε, q) = q(x) +
ε2

2
〈Aξ, ξ〉
|ξ|2

+ o(ε2).

3.5.3 Case 3: p = 1

Recall, that for p = 1 the unique number γε is defined with the following equation (cf. (3.41)):

|{z ∈ B : 〈ξ, z(1)〉+ ε

(
1
2
〈Az(1), z(1)〉+ 〈η, z(2)〉

)
< εγε}|

= |{z ∈ B : 〈ξ, z(1)〉+ ε

(
1
2
〈Az(1), z(1)〉+ 〈η, z(2)〉

)
> εγε}|.

Let us apply the change of variables as described in the paragraph following formula (3.42) (for
the sake of simplicity we still use the variable z) and divide both inequalities by ε to arrive at

|{z ∈ B :
z1

ε
+

1
2
〈Cz(1), z(1)〉+ 〈η, z(2)〉 < γε}|= |{z ∈ B :

z1

ε
+

1
2
〈Cz(1), z(1)〉+ 〈η, z(2)〉 > γε}|.

(3.52)
As previously we assume that |ξ|= 1 and denote C = RTAR, where R denotes the rotation matrix
as defined in the discussion following (3.42). Equation (3.52) means that for each fixed ε > 0, γε
is the median µ1(1, h) =: µ1(h) of the function h : B → R defined with the following formula

h(z) :=
z1

ε
+

1
2
〈Cz(1), z(1)〉+ 〈η, z(2)〉.

Denote by c′ :=
∥∥ 1

2 〈Cz
(1), z(1)

∥∥
L∞(B) < ∞. Similarly to the reasoning in the proof in Chapter

3.4.3 we observe that by monotonicity of µ1 and property (4) in Theorem 3.11, we obtain the
following estimates

γε = µ1

(
z1

ε
+

1
2
〈Cz(1), z(1)〉+ 〈η, z(2)〉

)
≤ µ1

(z1

ε
+ 〈η, z(2)〉

)
+ c′,

(3.53)

and

γε = µ1

(
z1

ε
+

1
2
〈Cz(1), z(1)〉+ 〈η, z(2)〉

)
≥ µ1

(z1

ε
+ 〈η, z(2)〉

)
− c′.

(3.54)

As in the proof for p = 1 in Chapter 3.4.3 it holds that for all ε > 0 we have

|{z ∈ B :
z1

ε
+ 〈η, z(2)〉 < 0}|= |{z ∈ B :

z1

ε
+ 〈η, z(2)〉 > 0}|,

and so µ1
(
z1
ε + 〈η, z(2)〉

)
= 0. By estimates (3.53) and (3.54) we get that −c′ ≤ γε ≤ c′. Hence all

γε are bounded, and after passing to a subsequence, there exists γ0 := limε→0 γε.

54



We apply to both sides of (3.52) the following change of variables

(z1, z2, . . . , zn, z
(2)) 7→ (εz1, z2, z3, . . . , zn, z

(2)) =: εz1e1 + z̃,

where z̃ := (0, z2, . . . , zn, z
(2)). The Jacobian of this transformation is constant, hence it cancels

out on both sides and (3.52) becomes

|{z ∈ Rm : |εz1e1 + z̃|G< 1, z1 +
(

1
2
〈C(εz1e1 + z̃(1)), (εz1e1 + z̃(1))〉+ 〈η, z(2)〉

)
< γε}|

= |{z ∈ Rm : |εz1e1 + z̃|G< 1, z1 +
(

1
2
〈C(εz1e1 + z̃(1)), (εz1e1 + z̃(1))〉+ 〈η, z(2)〉

)
> γε}|.

(3.55)

Let us denote by B̃ := {(z2, . . . , zn, z
(2)) ∈ Rm−1 : |(0, z2, . . . , zn, z

(2))|G< 1} and consider a
function F : {z ∈ Rm : |εz1e1 + z̃|G< 1} → R defined by

F (z) := z1 +
(

1
2
〈C(εz1e1 + z̃(1)), (εz1e1 + z̃(1))〉+ 〈η, z(2)〉

)
.

For small ε, we are going to represent the intersection of the boundaries of sets in (3.55), i.e., the
surface {F (z) = γε : |εz1e1 + z̃|G< 1}, as the graph of a function of the form z̃ → gε(z̃)e1 + z̃
where gε : B̃ → R and e1 = (1, 0, 0, . . . , 0) ∈ Rn+k.

Let us observe, that the derivative Fz1 can be estimated from below:

Fz1(z) = 1 + ε2c11z1 + ε(c12z2 + c13z3 . . .+ c1nzn) >
1
2

for ε sufficiently small. This follows from |εz1e1 + z̃|G< 1 and the fact that

−ε
n∑
i=1

|c1i|≤ ε2c11z1 + ε(c12z2 + c13z3 . . .+ c1nzn) ≤ ε
n∑
i=1

|c1i|.

Hence for a fixed z̃ ∈ B̃ the function z1 → F (z1e1 + z̃) is monotone increasing and therefore
has an inverse hε,z̃(t). It follows that F (hε,z̃(t)e1 + z̃) = t and gε(z̃) = hε,z̃(γε) is a point in the
intersection of the boundaries of sets in (3.55). Furthermore, let us observe that, possibly after
passing to a subsequence, the following limit exists for all z̃ ∈ B̃

gε(z̃)→ γ0 −
1
2
〈Cz̃(1), z̃(1)〉 − 〈η, z(2)〉 as ε→ 0+. (3.56)

Indeed, for all z̃ ∈ B̃ the equation F (gε(z̃)e1 + z̃) = γε equivalently reads:

gε(z̃) +
1
2
〈C(εgε(z̃)e1 + z̃(1)), (εgε(z̃)e1 + z̃(1))〉+ 〈η, z(2)〉 = γε.

From this we get that

gε(z̃) +
1
2

(
ε2c11g

2
ε(z̃) + 2ε

n∑
i=2

c1igε(z̃)zi + 〈Cz̃(1), z̃(1)〉

)
+ 〈η, z(2)〉 = γε,

which for fixed z̃ and c11 6= 0 is the following quadratic equation in gε(z̃):

g2
ε(z̃)

ε2c11

2
+ gε(z̃)

(
1 + 2ε

n∑
i=2

c1izi

)
+

1
2
〈Cz̃(1), z̃(1)〉+ 〈η, z(2)〉 − γε = 0.

Therefore, gε(z̃) has to be either equal to

gε(z̃) =
−1− 2ε

∑n
i=2 c1izi +

√
(1 + 2ε

∑n
i=2 c1izi)

2 − 2ε2c11
(

1
2 〈Cz̃(1), z̃(1)〉+ 〈η, z(2)〉 − γε

)
ε2c11

,

55



or equal to

gε(z̃) =
−1− 2ε

∑n
i=2 c1izi −

√
(1 + 2ε

∑n
i=2 c1izi)

2 − 2ε2c11
(

1
2 〈Cz̃(1), z̃(1)〉+ 〈η, z(2)〉 − γε

)
ε2c11

.

Likewise for G = H1 and p = 1 we observe, that the second solution is of order ε−2 and therefore
does not lie in the set {z : |εgε(z̃)e1 + z̃|G< 1} for ε → 0+. We consider the first solution, which
after cancellation reads

gε(z̃) =
2
(
γε − 1

2 〈Cz̃
(1), z̃(1)〉 − 〈η, z(2)〉

)√
(1 + 2ε

∑n
i=2 c1izi)

2 − 2ε2c11
(

1
2 〈Cz̃(1), z̃(1)〉+ 〈η, z(2)〉 − γε

)
+ 1 + 2ε

∑n
i=2 c1izi

.

If c11 = 0 then

gε(z̃)

(
1 + 2ε

n∑
i=2

c1izi

)
= γε −

1
2
〈Cz̃(1), z̃(1)〉 − 〈η, z(2)〉.

Therefore, we conclude (3.56). Thus, we can represent the measures of the sets appearing in (3.55)
as integrals, and obtain the following∫

B̃

[min {gε(z̃), Gε(z̃)}+Gε(z̃)] dz̃ =
∫
B̃

[Gε(z̃)−max {gε(z̃), Gε(z̃)}] dz̃, (3.57)

where

Gε(z̃) :=
1
ε

√√
1− (z2

n+1 + . . .+ z2
n+k)− (z2

2 + . . .+ z2
n).

The function Gε is the non-negative solution z1 to the equation |εz1e1 + z̃|G= 1 describing the
boundary of B. Observe, that (3.57) is equivalent to∫

B̃

[min {gε(z̃), Gε(z̃)}+ max {gε(z̃), Gε(z̃)}] dz̃ = 0. (3.58)

Applying the dominated convergence theorem to the case ε→ 0+ in (3.58) gives the following∫
B̃

(
γ0 −

1
2
〈Cz̃(1), z̃(1)〉 − 〈η, z(2)〉

)
dz̃ = 0. (3.59)

The symmetry of B̃ shows that
∫
B̃
〈η, z(2)〉 = 0 and so (3.59) becomes

γ0 =
1
2

∫
B̃

〈Cz̃(1), z̃(1)〉dz̃.

Due to symmetries of B̃ the right-hand side can be written as

γ0 =
1
2

n∑
i=2

cii

∫
B̃

z2
i dz̃. (3.60)

Observe, that the calculation of the above integrals is essentially covered in (3.44) and that due
to symmetries of B̃ they do not depend on the choice of i. Recall, that z̃(1) = (z2, . . . , zn) and
z̃(2) = (zn+1, . . . , zn+k). Let us go ahead the computations in case i = 2:∫

B̃

z2
2dz̃ =

∫
Bk(0,1)

∫
Bn−1(0, 4

√
1−‖z̃(2)‖2)

z2
2 dz̃

(1)dz̃(2)

=
∫

Bk(0,1)

∫
Bn−1(0,1)

(
1−

∥∥z̃(2)
∥∥2
)n−1

4
y2

2

(
1−

∥∥z̃(2)
∥∥2
) 1

2
dỹ(1) dz̃(2)

=
∫

Bk(0,1)

(
1−

∥∥z̃(2)
∥∥2
)n+1

4
dz̃(2)

∫
Bn−1(0,1)

y2
2 dỹ

(1),

(3.61)
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where we applied the change of variables formula z2 = y2
4

√
1−

∥∥z̃(2)
∥∥2
, . . . , zn = yn

4

√
1−

∥∥z̃(2)
∥∥2

in the inner integral. We apply Lemma 3.16 to calculate the second integral of (3.61):∫
Bn−1(0,1)

y2
2 dỹ

(1) =
Γ
(

3
2

)
Γ
(

1
2

)n−2

Γ
(
n+3

2

) . (3.62)

Let us proceed with the first integral in (3.61):∫
Bk(0,1)

(
1−

∥∥z̃(2)
∥∥2
)n+1

4
dz̃(2) =

∫ 1

0

∫
∂Bk(0,r)

(1− r2)
n+1

4 dSk−1(z̃(2))dr

= |∂Bk(0, 1)|
∫ 1

0
(1− r2)

n+1
4 rk−1dr

=
kπ

k
2

Γ
(
n+2

2

) ∫ 1

0
(1− t)

n+1
4 t

k−1
2

1
2
t−

1
2 dt

=
kπ

k
2

2Γ
(
n+2

2

)B(k
2
,
n+ 5

4

)
,

(3.63)

where we used the change of variables t := r2. Notice, that in order to calculate the measure of B̃
we need to compute the following integral

|B̃|=
∫

Bk(0,1)

(
1−

∥∥z̃(2)
∥∥2
)n−1

4
dz̃(2)

∫
Bn−1(0,1)

1 dỹ(1), (3.64)

which is analogous to (3.62) and (3.63). Therefore, we conclude that∫
Bn−1(0,1)

1 dỹ(1) = |Bn−1(0, 1)| = π
n−1

2

Γ
(
n+1

2

) (3.65)

∫
Bk(0,1)

(
1−

∥∥z̃(2)
∥∥2
)n−1

4
dz̃(2) =

kπ
k
2

2Γ
(
n+2

2

)B(k
2
,
n+ 3

4

)
. (3.66)

We sum up observations (3.61)–(3.63) and (3.64)–(3.66) to rewrite (3.60) in the following way

γ0 =
1
2

kπ
k
2

2Γ
(
n+2

2

)B(k
2
,
n+ 5

4

)
Γ
(

3
2

)
Γ
(

1
2

)n−2

Γ
(
n+3

2

) 2Γ
(
n+2

2

)
kπ

k
2B
(
k
2 ,

n+3
4

) Γ
(
n+1

2

)
π
n−1

2

n∑
i=2

cii,

which upon simplification reads

γ0 =
B
(
k
2 ,

n+5
4

)
2(n+ 1)B

(
k
2 ,

n+3
4

) n∑
i=2

cii.

Therefore,

γ0 =
1

2(n+ 1)
B
(
k
2 ,

n+5
4

)
B
(
k
2 ,

n+3
4

) (tr(A)− 〈Aξ, ξ〉
|ξ|2

)
,

which follows from the same argument used in the case 1 < p <∞, and the same reasoning allows
us to conclude (3.39) and (3.40) for p = 1 as well. Thus, the proof of Lemma 3.22 is completed for
all 1 ≤ p ≤ ∞.
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Chapter 4

AMV harmonic functions on
metric measure spaces

4.1 Introduction

This chapter is based on results obtained in [AKS20]. The results presented here are obtained in
the setting of locally doubling metric measure spaces, which is more general than those studied
in Chapters 2 and 3. For the courtesy of interested reader at the end of this chapter we briefly
describe those results from [AKS20], which for the sake of consistency are not discussed entirely.

Let us define the central object of this chapter. Let X = (X, d, µ) be a metric measure space
and function u ∈ L1

loc(X). The r-laplacian of u is defined as follows

∆µ
ru(x) = ∆ru(x) =

uB(x,r) − u(x)
r2 , x ∈ X, (4.1)

where uB(x,r) stands for the mean-value of u over a ball B(x, r).
In this chapter we consider the notion of strongly asymptotically mean value harmonic func-

tions, often abbreviated to (strongly) amv-harmonic functions, arising from assuming that the
following limit exists almost uniformly

lim
r→0

∆ru = 0,

see Definition 4.3 below. Recall from Chapter 2, that classical mean value property states that, in
a Euclidean domain Ω, a harmonic function u satisfies ∆ru(x) = 0 for all 0 < r < dist(x, ∂Ω), cf.
Definition 2.1 and Definition 4.7.

It turns out that harmonic functions rarely enjoy the mean value property outside the Euclidean
setting, see the discussion in Chapter 2.6 summed up by an observation, that the space of strongly
harmonic functions in R2 with respect to lp-norm is finite dimensional for p 6= 2. Instead of
considering the mean value property as in Definition 2.1, we believe that it is better to study
functions which satisfy an asymptotic mean value property, where the pointwise limit r → 0
in (4.1) vanishes. For example, harmonic functions in the smooth Riemannian manifolds have
asymptotic mean value property, whereas the mean value property for harmonic functions on
manifolds is known to hold on the so-called harmonic manifolds. The Lichnerowicz conjecture,
proven for manifold dimensions 2-5, characterizes harmonic manifolds as either flat or rank-one
symmetric, see Example 4 in [AGG19] and references therein. The converse statement, namely
when the asymptotic mean value property implies that a function satisfies the appropriate Laplace
equation is known as the Blaschke–Privaloff–Zaremba (BPZ) theorem, and will be discussed in
more detail below. Apart from the classical setting, the r-laplacian also arises in approximation
problems of Riemannian manifolds by graphs [BIK13], and the mean value property plays a role
in geometric group theory in Kleiner’s proof of Gromov’s polynomial growth theorem [Kle10].
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In the setting of Carnot groups the r-Laplacian and its relations to the subelliptic harmonic
functions have been studied, for instance, in [AW20; FLM14; FP15]. Furthermore, Theorem 1
in [CO20] indirectly relates the amv-harmonicity to functions with bounded variations. Namely,
the result characterizes C1-minimal surfaces S by observing that a certain piecewise constant
function fS is amv-harmonic in the sense that ∆rfS → 0, as r → 0 on S. Moreover, the proof
of [CO20, Theorem 1] uses the relation between the amv-harmonic operator and a nondegenerate
1-Laplacian: div(∇/

√
1 + |∇|2).

In the setting of Heisenberg groups we obtain a BPZ-type result, whereby pointwise vanishing
of the limit r → 0 in (4.1) for a continuous function implies harmonicity and thus strong amv-
harmonicity, see Chapter 4.3.3.

In metric spaces with a doubling measure we consider strongly amv-harmonic functions and
prove that they are Hölder continuous for any exponent below 1, see Theorem 4.18. This result
is in fact true for a larger class of functions with finite L∞ amv-norm, which we introduce below.
Moreover, using the method of refined averaging, we obtain an auxiliary regularity result for
strongly harmonic functions in Theorem 4.8. For a complete discussion we refer the reader to
Chapter 4.3, where we also study the finite dimensionality of the space of strongly harmonic
functions with polynomial growth.

In Chapter 4.4 we discuss Hajłasz–Sobolev functions in amv-harmonic class with their blow-
ups. We show that at almost every point such blow-up satisfy the global mean value property
(Theorem 4.41), which in general is very rare, see the discussion above. Theorem 4.41 can be
seen as an infinitesimal connection between amv- and strong harmonicity, and may serve as an
obstruction to having many amv-harmonic functions on metric spaces that are too irregular.

As a toy model, we study amv-harmonicity in weighted Euclidean spaces, where it becomes
evident that the connection between weak amv-harmonicity and energy-minimizers breaks down
in the presence of weights. This is related to the failure of the r-laplacian to be asymptotically
self-adjoint. Nevertheless, in the weighted Euclidean spaces, we obtained more concrete PDE
description of the amv-harmonic functions, see operator (4.23), Theorem 4.45 and Chapter 4.5 for
full discussion of the results.

Let us now describe the results from [AKS20], which we are not included in this Chapter.
First of all, a weaker version of amv-harmonicity is considered, namely we say that a function

u ∈ L2(X) is weakly amv-harmonic if limr→0
∫
X
ϕ∆rudµ = 0 for every compactly supported

Lipschitz function ϕ.
Moreover, the results of [AKS20] are obtained for the setting of RCD spaces. The notion of

the RCD spaces (Riemannian curvature dimension spaces) grows from the synthetic approach
to curvature bounds and the idea of introducing the unifying notion of a curvature in metric
measure spaces. The origins of RCD spaces go back to works by Otto, Villani, Sturm, Ambrosio,
Gigli, Savare to mention just few names and in recent 5-10 years, the area of RCD and CD
spaces has become one of the most rapidly developing areas of analysis and geometry on metric
measure spaces. It combines techniques of Ricci curvature and the Riemannian geometry (with the
Bochner identity as one of the cornerstones), heat semigroups with functional analysis, measure
theory and the optimal transportation theory. The precise definition of the RCD spaces requires
introducing, among others, the entropy functional and the Wasserstein distance and will not be
used in our work. Instead, for the definition and further properties of the RCD spaces we refer to
extensive literature on the subject, e.g. [Amb18; AGS14b; AGS14a; Gig15; LV09; Stu06a; Stu06b;
Vil16]). For our needs let us emphasize that one of the key features of the RCD spaces is that
the natural Sobolev space W 1,2 is a Hilbert space (infinitesimally Hilbertian), which equivalently
can be expressed in terms of the linearity if the harmonic heat flow and the fact that the Cheeger
differential is a quadratic form, see e.g. [AGS14b; AGS14a].

Let us denote by θN the Bishop–Gromov density defined with

θNr (x) :=
µ(Br(x))
ωNrN

, θN (x) := lim
r→0

θNr (x).

We say that an RCD(K,N)-space (X, d, µ) is non-collapsed, if θN (x) ≤ 1 for µ-almost every
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x ∈ X. We say that X has vanishing mm-boundary, if the signed Radon measures 1−θNr
r dµ for

0 < r ≤ 1 are uniformly bounded in the total variation norm, and converge weakly to zero as
r → 0.

In [KS93], the authors defined a Sobolev space of functions with values in a complete metric
space X by considering the so-called Korevaar–Schoen energy for u ∈ L2

loc(X):

E2
KS(u) := sup

ϕ∈Cc(X),0<ϕ≤1
lim sup
r→0

∫
X

ϕ(x)
1
2

∫
Br(x)

∣∣∣∣u(y)− u(x)
r

∣∣∣∣2 dµ(y)dµ.

In this setting it is proved in [AKS20] that harmonic functions on non-collapsed RCD spaces
with vanishing metric measure boundary are weakly amv-harmonic. Moreover, the relation between
the Korevaar-Schoen energy and the r-laplacian is obtained and the connection between weakly
amv-harmonic functions and local minimizers of the Korevaar-Schoen energy is attained.

In the next chapter we introduce preliminary notions and definitions used throughout this
chapter.

4.2 Preliminaries

Given a subset F ⊂ X of a metric space and r > 0, we denote

Nr(F ) = {x ∈ X : dist(x, F ) < r} and Nr(F ) = {x ∈ X : dist(x, F ) ≤ r}

the open and closed r-neighbourhood of F (note that Nr(F ) need not be the closure of Nr(F )
unless X is a length space). For x ∈ X, we denote by B(x, r) := Nr({x}) and B(x, r) := Nr({x}),
respectively, an open and closed ball centered at x with radius r. The Lipschitz constant of a map
f : (X, dx)→ (Y, dY ) between metric spaces is

LIP(f) := sup
x 6=y

dY (f(x), f(x))
dX(x, y)

.

A measure µ on a separable metric space X is called locally doubling if, for every compact
K ⊂ X, there exists rK > 0 and a constant CK > 0, such that NrK (K) is compact and

µ(B(x, 2r)) ≤ CKµ(B(x, r)) (4.2)

for every x ∈ K and 0 < r ≤ rK . If µ is locally doubling, for every compact K ⊂ X there exists a
constant CK > 0 for which

µ(B(y, r))
µ(B(x,R))

≥ C
( r
R

)Q
, y ∈ B(x,R), 0 < r ≤ R ≤ rK , (4.3)

where Q = log2 CK . If the constant CK = Cµ can be chosen independently of the set K ⊂ X, and
rK = ∞, we say that µ is doubling, and the number Q = log2 Cµ is called the doubling exponent
of µ.

The following definition is due to Buckley, see [Buc99, Section 1], and is stronger than the
doubling condition.

Definition 4.1. Let (X, d, µ) be a metric measure space with a doubling measure µ. We say that
X satisfies the α-annular decay property with some α ∈ (0, 1] if there exists A ≥ 1 such that for
all x ∈ X, r > 0 and ε ∈ (0, 1) it holds that

µ (B(x, r) \B(x, r(1− ε))) ≤ Aεαµ(B(x, r)). (4.4)

If α = 1, then we say that X satisfies the strong annular decay property.
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Example 4.2. The Euclidean space satisfies strong annular decay property. Metric measure spaces
with strong annular decay property include geodesic metric spaces with uniform measures and
Heisenberg groups Hn equipped with a left-invariant Haar measures. By [Buc99, Corollary 2.2], a
length space with a doubling measure has the α-annular decay property for some α ∈ (0, 1] with α
depending only on a doubling constant of the measure. In fact, it is enough for the metric measure
space to be the so-called (α, β)-chain space to conclude that it has the δ-annular decay property,
see Theorem 2.1 in [Buc99].

From now on a metric measure space X = (X, d, µ) is a separable metric space (X, d) equipped
with a measure µ that is finite and nontrivial on balls, i.e. 0 < µ(B) <∞ for all balls B ⊂ X.

Now we are in a position to define the central object of this chapter.

Definition 4.3. A function u ∈ L1
loc(X) is strongly amv-harmonic, if

lim
r→0
‖∆ru‖L∞(K)= 0

for any compact set K ⊂ X. Here ∆ru denotes the r-laplacian of u, see (4.1).

In general metric measure spaces there is no natural limit operator of ∆r as r → 0. Therefore,
it is highly non-obvious what should be a domain of such an limit operator. We define the space
of functions with finite amv-norm.

Definition 4.4. Let (X, d, µ) be a metric measure space and p ∈ [1,∞]. We set

AMVp(X) := {u ∈ Lp(X) : ‖u‖AMVp<∞} ,

where
‖u‖AMVp := lim sup

r→0
‖∆ru‖Lp(X)

is the amv-norm of u. Moreover, we define the class of functions with locally finite amv-norm:
AMVp

loc(X) consist of functions u ∈ Lploc(X) for which lim supr→0‖∆ru‖Lp(K) for every compact
set K ⊂ X.

Remark 4.5. Observe, that any strongly amv-function has locally finite amv-norm, but the
converse is not necessarily true. Let us consider a domain X = Ω ⊂ Rn. In Proposition 4.47 we
see that functions with locally finite amv-norm coincide with the space W 2,p

loc (Ω), while by the
Blaschke–Privaloff–Zaremba we know, that if for a continuous function u : Ω → R its r-laplacian
converges pointwise to 0, which holds true for strongly amv-harmonic functions, then the function
is harmonic, hence analytic.

4.2.1 Doubling measures and averaging operators

Let (X, d, µ) be a metric measure space and r > 0. Given a locally integrable function u ∈ L1
loc(X),

we denote by

Aµru(x) =
∫
B(x,r)

udµ, x ∈ X,

the r-average function of u. Whenever the measure µ is clear from the context, we will omit writing
the measure in the superscript. Note that

Aru(x) = uB(x,r);

we will use the two notations interchangeably, depending on whether we want to view the average
as a number, or an operator on a function space. Indeed, the function Aru : X → R is measurable,
and Ar defines a bounded linear operator Ar : L1(X)→ L1(X) if and only if ar ∈ L∞(X), where

ar(x) =
∫
B(x,r)

dµ(y)
µ(B(y, r))

, x ∈ X.
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Moreover, in this case the operator norm satisfies ‖Ar‖L1→L1= ‖ar‖L∞ , see [Ald19, thm 3.3]. This
is true in particular when µ is a doubling measure. On the other hand, it is true that by the
Lebesgue differentiation theorem

u(x) = lim
r→0

Aru(x) for almost every x ∈ X,

if µ is infinitesimally doubling, cf. [Hei+15, Remark 3.4.29].
If X is doubling as a metric space, then there exists C > 0 so that ‖Ar‖Lp→Lp≤ C for every

r > 0 and every 1 ≤ p < ∞, cf. [Ald19, thm 3.5]. However, Ar is not a self-adjoint operator; the
formal adjoint A∗r of Ar is given by

(Aµr )∗u(x) = A∗ru(x) :=
∫
B(x,r)

u(y)dµ(y)
µ(B(y, r))

, x ∈ X,

for u ∈ L1
loc(X). Indeed, a direct computation using the Fubini theorem yields that∫

X

vArudµ =
∫
X

uA∗rvdµ, u ∈ Lp(X), v ∈ Lq(X),

where 1/p+ 1/q = 1.
We may write the r-laplacian using the averaging operator as

∆ru =
Aru− u

r2 , u ∈ L1
loc(X).

We denote by

∆∗ru :=
A∗ru− u

r2 , u ∈ L1
loc(X),

the formal adjoint of the r-laplacian. Note that if Ar : Lp(X) → Lp(X) is bounded, then ∆r :
Lp(X)→ Lp(X) and ∆∗r : Lq(X)→ Lq(X) are both bounded, where 1/p+ 1/q = 1.

Remark 4.6. While most results are formulated for metric measure spaces, the results encompass
the case of an open set Ω ⊂ X in the introduction. Indeed, an open subset Ω ⊂ X of a metric
measure space can be regarded as a metric measure space Ω = (Ω, d|Ω, µ|Ω). In particular, if X is
locally doubling, then Ω is locally doubling.

4.3 Refined averaging and strongly harmonic functions

In Chapter 2 we broadly studied strongly harmonic functions in the weighted Euclidean case. In
this chapter we intend to refine regularity of such functions on metric measure spaces by showing
their local Lipschitz regularity assuming merely the doubling property of the underlying measure,
see Theorem 4.8. We also prove a dimension bound on the space of strongly harmonic functions
with polynomial growth in the spirit of the celebrated result of Colding–Minicozzi [CM97b] con-
firming Yau’s conjecture, see Proposition 4.22. Our approach emphasizes the role of the averaging
operators.

Let us rephrase Definition 2.1 equivalently using the notion of r-laplacian, cf. Chapter 2.1.

Definition 4.7. Let X = (X, d, µ) be a metric measure space. We say that a function u ∈ L1
loc(X)

is strongly harmonic (or has the mean value property) if

∆ru = 0 on K

for any compact set K ⊂ X and r < rK := sup{ρ > 0 : Nr(K) is compact}.
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Throughout the chapter we abbreviate the mean value of a function u ∈ L1
loc(X) over a ball

B(x, r) as follows:

ur(x) := Aru(x) =
∫
B(x,r)

u(y)dy.

If X is a complete doubling metric measure space with doubling exponent Q, and Ω ⊂ X domain,
then recall that by H(Ω) we denote the space of strongly harmonic functions on Ω. Note that, if
u ∈ H(Ω), then by the very definition it holds that

u(x) = Aru(x), x ∈ Ω, r < dist(x,X \ Ω).

4.3.1 Local Lipschitz continuity of strongly harmonic functions

In this chapter we show that the mean value property yields higher regularity than obtained in
[AGG19]. If a measure µ has the α-annular decay property (see Definition 4.1), then [AGG19,
Theorem 4.2] shows that strongly harmonic functions are α-Hölder continuous. Below, we will
prove that in fact strongly harmonic functions are Lipschitz continuous even when the doubling
measure does not satisfy the annular decay condition.

Theorem 4.8. Let Ω ⊂ X be an open subset of a complete locally doubling metric measure space
X = (X, d, µ), and u ∈ L1

loc(Ω) a strongly harmonic function on Ω. Then u is locally Lipschitz
and satisfies the bound

LIP(u|B(x0,r)) ≤
C

r
inf
c∈R

∫
B(x0,3r)

|u− c|dµ (4.5)

whenever B̄(x0, 3r) ⊂ Ω.

The idea of the proof of Theorem 4.8 is to consider a refined averaging process, wherein we
average over the radius as well as the space variable. Given a function u ∈ L1

loc(X) we define

Aru(x) :=
2
r

∫ r

r/2
ut(x)dt =

2
r

∫ r

r/2

(∫
B(x,t)

u(y)dy

)
dt, x ∈ X. (4.6)

For x ∈ X and r ≤ R we introduce the following notation

Ar,R(x) = B̄(x,R) \B(x, r)

for a closed annulus centered at x, with inner radius equal to r and outer to R. We use the
convention that B(x, r) = ∅ for r ≤ 0 and Ar,R(x) = ∅ if r > R. The following elementary lemma
will play a crucial role in proving that Aru is locally Lipschitz.

Lemma 4.9. Let f ∈ L1
loc(Ω) be a nonnegative function and x ∈ Ω. Let 0 ≤ r ≤ R < ∞, and

−∞ < d1 ≤ d2 <∞ Then∫ R

r

∫
At+d1,t+d2 (x)

fdµ dt ≤ (d2 − d1)
∫
Ar+d1,R+d2 (x)

fdµ.

Proof. Let us fix x ∈ Ω and define function g : R→ R as follows: g(t) = 0 for t ≤ 0 and

g(t) =

{
0 for t ≤ 0,∫
B(x,t) fdµ for t > 0.

Notice, that g is a nondecreasing function.
Let us fix t ∈ R. If R + d1 ≤ r + d2, then R − r ≤ d2 − d1 and the following estimate follows

trivially∫ R

r

∫
At+d1,t+d2 (x)

fdµdt ≤
∫ R

r

∫
Ar+d1,R+d2 (x)

fdµdt ≤ (d2 − d1)
∫
Ar+d1,R+d2 (x)

fdµ.
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Conversely, if R+ d1 > r + d2 then the following estimate holds true∫ R

r

∫
At+d1,t+d2 (x)

fdµ dt =
∫ R

r

[g(t+ d2)− g(t+ d1)]dt =
∫ R+d2

r+d2

gdt−
∫ R+d1

r+d1

gdt

=
∫ R+d2

R+d1

gdt−
∫ r+d2

r+d1

gdt ≤ (d2 − d1)g(R+ d2)− (d2 − d1)g(r + d1)

=(d2 − d1)
∫
Ar+d1,R+d2 (x)

fdµ,

which ends the proof.

Now we are in a position to prove Lipschitz regularity of Aru.

Proposition 4.10. Let (X, d, µ) be a locally doubling metric measure space, u ∈ L1
loc(X). Let

K ⊂ X be compact and rK > 0 such that (4.2) holds for r < rK . Then, for any r < rK , the
function Aru is Lipschitz on K and, for any c ∈ R, satisfies the Hajłasz type estimate

|Aru(x)−Aru(y)|≤ Cd(x, y)
r

(∫
B(x,2r)

|u− c|dµ+
∫
B(y,2r)

|u− c|dµ

)
, (4.7)

for any pair of points x, y ∈ K with distance d(x, y) < r. The constant C depends only on the
doubling constant of the measure µ on K. In particular

LIP(Aru|B(x0,r)) ≤
C

r

∫
B(x0,3r)

|u− c|dµ

whenever B̄(x0, 3r) ⊂ X is compact.

Proof of Proposition 4.10. We begin with the prove of the second part of the hypothesis, i.e.
the Lipschitz estimate assuming the first part (4.7). Let K = B(x0, r), c ∈ R and assume that
x, y ∈ B(x0, r) with d(x, y) < r. Then (4.7) directly yields

|u(x)− u(y)|≤ Cd(x, y)
r

(∫
B(x,2r)

|u− c|dµ+
∫
B(y,2r)

|u− c|dµ

)
≤ Cd(x, y)

r

∫
B(x0,3r)

|u− c|dµ.

If d(x, y) ≥ r, then d(x, x0) + d(y, x0) ≤ 2d(x, y), and thus

|Aru(x)−Aru(y)|≤|Aru(x)−Aru(x0)|+|Aru(y)−Aru(x0)|

≤C(d(x, x0) + d(y, x0))
r

∫
B(x0,3r)

|u− c|dµ

≤Cd(x, y)
r

∫
B(x0,3r)

|u− c|dµ.

Now it suffices to prove (4.7). Let K and r be as in the claim and denote by CK the doubling
constant of µ in K. Given x, y ∈ K with d := d(x, y) ≤ r and r/2 ≤ t < r, we have that for the
symmetric difference of two balls it holds

B(x, t)4B(y, t) ⊂ At−d,t+d(x) ⊂ N2r(K). (4.8)

Indeed, let us take a point z ∈ B(x, t)4B(y, t). Then either (1) d(x, z) < t and d(y, z) ≥ t or (2)
d(x, z) ≥ t and d(y, z) < t. In case (1) d(x, z) < t ≤ t + d and d(x, z) ≥ d(y, z) − d(x, y) ≥ t − d,
hence z ∈ At−d,t+d(x). In case (2) d(x, z) ≥ t ≥ t− d and d(x, z) ≤ d(y, z) + d(x, y) ≤ t+ d. The
second inclusion is trivial.
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Let us fix c ∈ R and follow the reasoning in the proof of [AGG19][Propostion 4.1]:

|ut(x)− ut(y)| =

∣∣∣∣∣
∫
B(x,t)

(u− c)dµ−
∫
B(y,t)

(u− c)dµ

∣∣∣∣∣
≤ µ(B(x, t)4B(y, t))
µ(B(x, t))µ(B(y, t))

∫
B(y,t)

|u− c|dµ+
1

µ(B(x, t))

∫
B(x,t)4B(y,t)

|u− c|dµ.

Let us apply (4.8) to the right-hand side

|ut(x)− ut(y)| ≤ µ(At−d,t+d(x))
µ(B(x, t))µ(B(y, t))

∫
B(y,t)

|u− c|dµ+
1

µ(B(x, t))

∫
At−d,t+d(x)

|u− c|dµ.

Use the doubling property of µ on K and the assumption r
2 ≤ t < r to obtain µ(B(x, t)) ≥

1
CK

µ(B(x, r)) and µ(B(y, t)) ≥ 1
CK

µ(B(y, r)). This together with monotonicity allows us to con-
clude

|ut(x)− ut(y)|≤ C2
Kµ(At−d,t+d(x))

µ(B(x, r))µ(B(y, r))

∫
B(y,r)

|u− c|dµ+
CK

µ(B(x, r))

∫
At−d,t+d(x)

|u− c|dµ. (4.9)

Notice, that by Lemma 4.9 for f ≡ 1, d2 = d and d1 = −d there holds∫ r

r/2
µ(At−d,t+d(x))dt ≤ 2dµ(Ar/2−d,r+d(x)).

Let us integrate both sides of (4.9) with respect to t ∈ (r/2, r) and apply the above observation∫ r

r/2
|ut(x)− ut(y)|dt ≤

2dC2
Kµ(Ar/2−d,r+d(x))

µ(B(x, r))µ(B(y, r))

∫
B(y,r)

|u− c|dµ+
2dCK

µ(B(x, r))

∫
Ar/2−d,r+d(x)

|u− c|dµ

≤ 2dC4
K

(∫
B(y,2r)

|u− c|dµ+
∫
B(x,2r)

|u− c|dµ

)
,

where in the last inequality we once again appeal to the doubling property (4.3) of µ, inclusion
Ar/2−d,r+d(x) ⊂ B(x, 2r) and the monotonicity of integral. We sum up the above observations

|Aru(x)−Aru(y)|≤ 2
r

∫ r

r/2
|ut(x)− ut(y)|dt ≤ 4C4

Kd(x, y)
r

(∫
B(y,2r)

|u− c|dµ+
∫
B(x,2r)

|u− c|dµ

)
,

proving assertion (4.7).

Proof of Theorem 4.8. By considering the metric measure space (Ω, d, µ|Ω) we may assume that
Ω = X, cf. Remark 4.6. Since u is strongly harmonic for every compact K ⊂ X, there exists
rK > 0 so that u = ur on K for all r < rK . In particular,

u = Aru on K

whenever r < rK . The Lipschitz continuity of u and the estimate (4.5) then follows by Proposi-
tion 4.10.

Remark 4.11. When X is complete and µ is globally doubling, strongly harmonic functions
satisfy u = uR on X, for any R > 0. Consequently (4.5) yields

LIP(u|B(x,R)) ≤
C

R

∫
B(x,3R)

|u− u(p)|dµ, p ∈ X.
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Remark 4.11 together with Harnack’s inequality [AGG19][Lemma 4.1] imply, in particular, that
there are no non-constant strongly harmonic functions of sublinear growth. A function u is said
to have sublinear growth, if

lim sup
R→∞

1
R

sup
B(x,R)

|u|= 0

for some, and hence any p ∈ X.
The following observation can be considered as a counterpart of Cheng’s result for harmonic

functions with sublinear growth on complete manifolds with nonnegative Ricci curvature, see
Corollary 1.5 in [Li06], and it is also related to the celebrated Phragmen-Lindelöf theorem.

Corollary 4.12. Let (X, d, µ) be a doubling metric measure space. If u is strongly harmonic and
has sublinear growth, then it is constant.

In the next chapter we discuss regularity of amv-harmonic functions.

4.3.2 Regularity of amv-harmonic functions

In this chapter we prove Hajłasz–Sobolev and Hölder regularity of functions with finite amv-norm.
Let us define local fractional Hajłasz–Sobolev spaces.

Definition 4.13. Let (X, d, µ) be a metric measure space, and 1 < p ≤ ∞, 0 < α ≤ 1. The
local fractional Hajłasz–Sobolev space Mα,p

loc (X) consists of Borel functions u ∈ Lploc(X) with the
following property: there exists a null set N ⊂ X and, for every compact K ⊂ X, a non-negative
function gK ∈ Lploc(X) and rK > 0 with NrK (K) compact, and

|u(x)− u(y)|≤ d(x, y)α[gK(x) + gK(y)], x, y ∈ K \N, d(x, y) < rK .

To our best knowledge the fractional Hajłasz–Sobolev functions were firstly defined on Eu-
clidean sets by Hu [Hu03] and then on metric spaces by Yang [Yan03]. The main motivation is to
study a counterpart of Sobolev spaces on fractals. These spaces help to investigate the geometry
of fractals from inside the set and enable to study analysis on fractals. For example, Hu showed
that there exists α > 1 such that Mα,2(S) is dense in C(S), where S is the Sierpiński gasket in
Rn.

We recall the fractional sharp maximal function, see [HK98, pg. 606], as follows. Let 0 < α <∞,
R > 0 and u ∈ L1

loc(X). Then

M#
α,Ru(x) := sup

0<r<R
r−α

∫
B(x,r)

|u− uB(x,r)|dµ, x ∈ X.

We denote by M#
Ru := M#

0,Ru and M#
α u := M#

α,∞u. Moreover, we denote by M the Hardy–
Littlewood maximal function and by MR the restricted maximal function

Mu(x) := sup
r>0

∫
B(x,r)

|u| dµ, MRu(x) := sup
0<r<R

∫
B(x,r)

|u| dµ.

Throughout this chapter X = (X, d, µ) denotes a locally compact and doubling metric measure
space with doubling exponent Q. We begin by considering the refined average Ar : L1

loc(X) →
LIPloc(X) defined in (4.6). We employ an iterative argument, which is based on the following
observation.

Proposition 4.14. Let Ω ⊂ X be a domain, and u ∈ AMVp(Ω). Then u ∈M1/2,p
loc (Ω). Moreover,

if u ∈Mα,p
loc (Ω) for some α ∈ (0, 1), then u ∈Mα′,p

loc (Ω), where

α′ =
2− 1/p

3− α− 1/p
> α.
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Proof. Let K ⊂ Ω be compact, and define

RK =
1
6

min{dist(K,X \ Ω)2, r2
K , 1},

where rK is given by the locally doubling condition (4.2). Let x, y ∈ K satisfy d(x, y) < RK . For
any rK > r > d(x, y) there holds

|u(x)− u(y)|≤|u(x)−Aru(x)|+|u(y)−Aru(y)|+|Aru(x)−Aru(y)|

≤2r
∫ r

0
(|∆tu(x)|+|∆tu(y)|)dt+

Cd(x, y)
r

∫
B(x,3r)

|u− uB(x,3r)|dµ,
(4.10)

where the third term is estimated using Proposition 4.10 with c = uB(x,3r) and the first two terms
are treated in the following way

|u(x)−Aru(x)| ≤ 2
r

∫ r

r
2

∣∣∣∣∣u(x)−
∫
B(x,t)

u(y)dµ(y)

∣∣∣∣∣ dt = 2r
∫ r

r
2

t2

r2 |∆tu(x)| dt

≤ 2r
∫ r

r
2

|∆tu(x)| dt ≤ 2r
∫ r

0
|∆tu(x)| dt.

By choosing r = d(x, y)1/2 > d(x, y) we obtain

|u(x)− u(y)|≤ d(x, y)1/2[g(x) + g(y)],

where

g(x) = 2
∫ rK

0
|∆tu(x)|dt+ CM#

3rKu(x).

Moreover, suppose that u ∈ Mα,p
loc (Ω), and let gK be the Hajłasz gradient and r̃K the scale in

Definition 4.13. Define

RK =
1
6

min{r̃K ,dist(K,X \ Ω)3−α−1/p, r2
K}

From (4.10) we obtain that as long as 6r < r̃K and d(x, y) < RK , then

|u(x)− u(y)|≤ Cr2−1/p
(∫ r

0
(|∆tu(x)|p+|∆tu(y)|p)dt

)1/p

+ C
d(x, y)
r1−α [A6rgK(x) +A6rgK(y)].

(4.11)

Indeed, applying the Hölder inequality to the first term in the right-hand side of (4.10) we obtain,
up to a multiplicative constant, that

r

∫ r

0
|∆tu(x)| dt ≤ r

(∫ r

0
|∆u(x)|p

) 1
p

r
p−1
p = r2− 1

p

(∫ r

0
|∆u(x)|p

) 1
p

.

Whereas the second term in (4.10) is estimated using the Hajłasz inequality, up to a multiplicative
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constant, in the following way

d(x, y)
r

∫
B(x,3r)

|u− uB(x,3r)|dµ

=
d(x, y)
r

∫
B(x,3r)

∣∣∣∣∣u(w)−
∫
B(x,3r)

u(z)dµ(z)

∣∣∣∣∣ dµ(w)

≤ d(x, y)
r

∫
B(x,3r)

∫
B(x,3r)

|u(w)− u(z)| dµ(z)dµ(w)

≤ d(x, y)
r

∫
B(x,3r)

∫
B(x,3r)

d(w, z)α(gK(w) + gK(z))dµ(z)dµ(w)

≤ d(x, y)
r

(6r)α
∫
B(x,3r)

∫
B(x,3r)

(
d(w, z)

6r

)α
(gK(w) + gK(z))dµ(z)dµ(w)

≤ C d(x, y)
r1−α [A6rgK(x) +A6rgK(y)].

We choose r in (4.11) such that

r2−1/p =
d(x, y)
r1−α ,

i.e.
r = d(x, y)1/(3−α−1/p) < r

1/(3−α−1/p)
K < r̃K ,

to obtain

|u(x)− u(y)|≤ Cd(x, y)α
′
[g(x) + g(y)]

where

α′ =
2− 1/p

3− α− 1/p

and

g(x) = C

(∫ r̃K

0
|∆tu(x)|pdt

)1/p

+ CMr̃KgK(x).

We iterate Proposition 4.14 to improve regularity of functions from AMVp
loc(Ω).

Theorem 4.15. Let Ω ⊂ X be an open subset of a complete locally doubling metric measure space
X = (X, d, µ), and let u ∈ AMVp

loc(Ω). Then u ∈Mα,p
loc (Ω) for every 0 < α < 1.

Proof. Define α0 = 1/2 and

αn+1 =
2− 1/p

3− αn − 1/p
, n ≥ 0.

We see that αn is an increasing sequence and converges to 1. By Proposition 4.14 we have that
u ∈Mαk,p

loc (Ω) for every k. The claim follows.

Theorem 4.15 is not quantitative, because it does not give an explicit bound on the fractional
Hajłasz–Sobolev gradient in terms of the amv-norm of the function u. We apply the regularization
Aru to function u ∈ AMVp

loc(X) to prove the following result which more explicitly describes the
Hajłasz gradient of u.
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Proposition 4.16. Suppose that X is a locally doubling metric measure space, function u ∈
AMVp

loc(X) and x0 ∈ X. For each k ∈ N there exists rk > 0 and gk ∈ Lp(B(x0, rk)) such that
B̄(x0, r

k/(k+1)
k ) =: B̄k is compact and

|u(x)− u(y)|≤ d(x, y)k/(k+1)[gk(x) + gk(y)], x, y ∈ Bk \ E,

where E is a null set.

Proof. Let x, y ∈ B(x0, r0) where B(x0, 3r
1/2
0 ) ⊂ Ω. For any r < r

1/2
0 we have

|u(x)− u(y)| ≤ |u(x)−Aru(x)|+|u(y)−Aru(y)|+|Aru(x)−Aru(y)|

≤ 2
r

∫ r

0
t2[|∆tu|(x) + |∆tu|(y)]dt+ |Aru(x)−Aru(y)|

≤ Cr
∫ r

0
[|∆tu|(x) + |∆tu|(y)]dt+

Cd(x, y)
r

∫
B(x,3r)

|u− c|dµ; (4.12)

cf. Proposition 4.10. Choosing r = d(x, y)1/2 we obtain

|u(x)− u(y)|≤ d(x, y)1/2[g1(x) + g1(y)], x, y ∈ B(x0, r0),

where

g1(x) := C

∫ r
1/2
0

0
|∆tu|(x)dt+ CM#

r
1/2
0

u(x).

We have that g1 ∈ Lp(B(x0, r0)), since∫
B(x0,r0)

gp1dµ ≤ Cr
(p−1)/2
0

∫ r
1/2
0

0

∫
B(x0,r0)

|∆tu|p(x)dµ(x) dt+C
∫
B(x0,r0)

(M#

r
1/2
0

u(x))pdµ(x) <∞.

To iterate this process, suppose the claim in the proposition holds for k ∈ N. Let 0 < rk+1 < rk be
such that B(x0, 3r

(k+1)/(k+2)
k+1 ) ⊂ Ω. For x, y ∈ B(x0, rk) we get, using (4.12) with c = u(x), that

|u(x)− u(y)| ≤ Cr
∫ r

1/2
0

0
[|∆tu|(x) + |∆tu(y)|]dt+

Cd(x, y)
r

∫
B(x,3r)

rk/(k+1)(gk(x) + gk(y))dµ(y)

≤ Cr
∫ r

1/2
0

0
[|∆tu|(x) + |∆tu(y)|]dt+

Cd(x, y)
r1/(k+1)

M
r

k+1
k+2
k

gk(x).

Here, M
r

k+1
k+2
k

gk(x) denotes the restricted Hardy–Littlewood maximal function for radii 0 < r <

r
k+1
k+2
k . Choosing r = d(x, y)(k+1)/(k+2) we obtain

|u(x)− u(y)|≤ Cd(x, y)(k+1)/(k+2)[gk+1(x) + gk+1(y)], x, y ∈ B(x0, rk),

where

gk+1(x) :=
∫ r

1/2
0

0
|∆tu|(x)dt+M

r
1/2
0
gk(x) ∈ Lp(B(x0, rk)).

Let us recall the fractional Morrey embedding theorem, see part i) and iii) in [Yan03][Corollary
1.4].

Proposition 4.17. Let X be locally compact doubling metric measure space. Suppose, that B ⊂ X
is a ball such that on B there holds (4.3) with doubling exponent Q. Suppose that 0 < α ≤ 1,
0 < p <∞ and αp > Q. Then, there holds the following embedding

Mα,p(B) ⊂ Cα−
Q
p (B).
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We apply the Morrey embedding theorem for fractional Hajłasz–Sobolev spaces and Theorem
4.15 to prove Hölder regularity of strongly amv-harmonic functions.

Theorem 4.18. Let Ω ⊂ X be a domain in a doubling metric measure space with doubling
exponent Q. If p > Q and u ∈ AMVp

loc(Ω), then u is locally α-Hölder continuous for every
α < 1−Q/p. Moreover, any strongly amv-harmonic function on Ω is locally α-Hölder continuous
for any α ∈ (0, 1).

Proof. Let us fix a ball B ⊂ Ω, an exponent α < 1 − Q
p and function u ∈ AMVp

loc(Ω). Then, by

Theorem 4.15 we get that u ∈ Mβ,p(B) for any β ∈ (0, 1). We choose β so that α < β − Q
p and

βp > Q. Apply Proposition 4.17 to obtain that u is β − Q
p -Hölder continuous on B and hence

α-Hölder continuous on B.
In order to prove that a strongly amv-harmonic function u is Hölder continuous we only need

to observe, that u ∈ AMVp
loc(Ω) for every p ∈ (1,∞) and use the first part of the hypothesis.

4.3.3 Improving the regularity: the Blaschke-Privaloff-Zaremba theo-
rem for the amv-harmonic functions on the Heisenberg group

In this chapter we are going to present, that strongly amv-harmonic functions beyond the Eu-
clidean setting may posses higher regularity, than Hölder continuity proven in the previous chap-
ter. Namely, we discuss the so-called Blaschke-Privaloff-Zaremba theorem (the BPZ theorem, for
short). In its classical version in the setting of Euclidean spaces, see e.g. [Llo15, Theorem 2.1.5],
the BPZ theorem asserts that given an open set in Rn a continuous pointwise amv-harmonic func-
tion solves locally the Laplace equation. Thus, the pointwise nullity of the amv-harmonic operator
limr→0+ ∆r improves the regularity of amv-harmonic functions to being analytic. Below we show
that this is also the case of amv-harmonic functions in Heisenberg group H1. For the convenience
of the reader we briefly recall the setting of the Heisenberg group, cf. Example 3.5.

Our model for H1 is the group (R3, ◦) where the group law is given by

(x1, x2, x3) ◦ (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 +
1
2

(x1y2 − x2y1)).

By using this group law, one introduces a frame of left-invariant vector fields which agree with the
standard basis at the origin:

X1 :=
∂

∂x1
− 1

2
x2

∂

∂x3
, X2 :=

∂

∂x2
+

1
2
x1

∂

∂x3
, X3 :=

∂

∂x3
.

The Korányi–Reimann distance is a metric defined by

dH1(x, y) := ‖y−1x‖H1 , where ‖(x1, x2, x3)‖H1= 4

√
(x2

1 + x2
2)2 + x2

3.

Let p0 ∈ H1 and R > 0. An open ball in H1 centered at p0 with radius R with respect to metric dH1

is defined as follows: B(p0, R) := {p ∈ H1 : ‖p−1p0‖H1< R}. The subelliptic Laplace operator ∆H1

on the Heisenberg group is defined as ∆H1u := X2
1u+X2

2u and in the local coordinates (x1, x2, x3)
reads ∆H1u = ∂2

∂x2
1

+ ∂2

∂x2
2

+ 1
4 (x2

1+x2
2) ∂2

∂x2
3
−x2

∂2

∂x1∂x3
+x1

∂2

∂x2∂x3
. Solutions to the subelliptic Laplace

equation are C2 due to results e.g. in [Cap97] and [MM07]. The Dirichlet problem on Korányi–
Reimann balls for the continuous boundary data has the classical C2-solution for harmonic sub-
elliptic equation in H1, see [GV85]. The subelliptic Laplacian on Hn is hypoelliptic, which improves
the regularity of harmonic functions to being real analytic. Hovewer, it is shown in [HH87], that
for Hn for n ≥ 2 balls in the Carnot-Carathéodory distance are not regular at the characteristic
points. Therefore, due to the approach we take in the proof of Theorem 4.19 below, we will restrict
our discussion to the case of H1 and balls with respect to the Korányi–Reimann distance.
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Theorem 4.19 (The Blaschke-Privaloff-Zaremba theorem in H1). Let Ω ⊂ H1 be a domain in
the first Heisenberg group H1 equipped with metric dH1 and let f : Ω → R be a continuous amv-
harmonic function in Ω. Then f is a sub-elliptic harmonic function, i.e. for all x ∈ Ω it holds
that

lim
r→0+

∆rf(x) =
1

3π
∆H1f(x) = 0.

The constant 1
3π is computed in [FLM14, Lemma 3.3]. Notice, that in [FLM14] the authors

choose different vector fields X and Y , but their proof and hence the constant is independent on
that choice.

Proof. In the proof we follow the original idea of Privaloff developed for the setting of Rn,
see [Pri25, Theorem II]. Let p0 ∈ Ω and B = B(p0, R) be a ball centered at p0 with radius
R > 0 such that B ⊂ Ω. Theorem in [GV85] allows us to infer that the sub-elliptic Dirichlet prob-
lem on B with the boundary data f has the unique solution, denoted by u, such that u ∈ C(B)
and u = f |∂B . Set φ = f−u. Then φ ∈ C(B) and φ|∂B≡ 0. The assertion will be proven if we show
that φ ≡ 0 in B. We argue by contradiction. Namely, suppose that there exists q ∈ B such that
φ(q) 6= 0 and without the loss of generality we assume that φ(q) < 0. Let us define the following
function on B

F (p) = φ(p) +
φ(q)

2

(
‖(p−1p0)H‖2R2−R2

R2

)
,

where ‖(p−1p0)H‖R2 stands for the Euclidean length in R2 of the horizontal part of point p−1p0 ∈
Ω. It follows that F ∈ C(B), F |∂B≥ 0 and that F (q) < 0. Hence, there is qm ∈ B such that
F (qm) = minB F (in fact, qm ∈ B). Moreover, ∆rF (qm) ≥ 0 for all r ≤ R and by direct compu-
tations we verify that

∆rF (qm) = ∆rφ(qm) +
φ(q)

2
∆r

(
‖(p−1p0)H‖2R2−R2

R2

)
(qm).

Therefore, upon applying the definition of ∆r, we arrive at the following estimate

0 ≤ ∆rF (qm) = ∆rf(qm)−∆ru(qm) +
φ(q)

2
∆r

(
‖(p−1p0)H‖2R2−R2

R2

)
(qm).

Let us denote the coordinates of p and p0 as follows: p = (x, y, t) and p0 = (x0, y0, t0). Then

φ(q)
2

∆H1

(
‖(p−1p0)H‖2R2−R2

R2

)
(qm) =

φ(q)
2R2 ∆H1

(
(x− x0)2 + (y − y0)2) (qm).

Recall, that

∆H1 =
∂2

∂2
x

+
∂2

∂2
y

+
1
4

(x2 + y2)
∂2

∂t2
− y ∂2

∂x∂t
+ x

∂2

∂y∂t
.

Therefore, in our case the sub-Laplacian reduces to the Laplacian in R2

∆H1

(
(x− x0)2 + (y − y0)2) (qm) = ∆

(
(x− x0)2 + (y − y0)2) (qm) = 4.

Since f is assumed to be strongly amv-harmonic and u ∈ C2(B), the definition of amv-harmonic
functions together with [FLM14, Lemma 3.3] imply that upon r → 0+ it holds that ∆rf(qm)→ 0
and ∆ru(qm)→ 0. Moreover, by applying [FLM14, Lemma 3.3] again we obtain that

lim
r→0+

φ(q)
2

∆r

(
‖(p−1p0)H‖2R2−R2

R2

)
(qm) =

1
3π

φ(q)
2

∆H1

(
‖(p−1p0)H‖2R2−R2

R2

)
(qm) =

2φ(q)
3πR2 < 0,

since above we assume that φ(q) < 0. In a consequence, we get that 0 ≤ 2φ(q)
3πR2 < 0 contradicting

our assumption. The proof of the theorem is completed.

In the next chapter we prove, that the dimension of the space of strongly harmonic functions
of polynomial growth is finite.
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4.3.4 Mean value-harmonic functions of polynomial growth

Colding and Minicozzi proved in [CM97a; CM97b] a conjecture of Yau on the finite dimensionality
of the space of harmonic functions in the sense of solutions to the Beltrami–Laplace equation with
polynomial growth of degree m by showing that, in a Riemannian n-manifold M of non-negative
Ricci curvature holds the following bound

dimHm(M) ≤ C(n)mn−1.

This result has been extended to Alexandrov and RCD-spaces, see [Hua11; HKX16]. An argument
of Li [Li97] uses the doubling property and the mean value inequality of subharmonic functions
to obtain the estimate

dimHm(M) ≤ C(n)mQ (4.13)

for manifolds with a measure satisfying (4.3) with doubling exponent Q and a uniform Poincaré
inequality. By the latter we mean that there exists a constant C > 0 such that for every function
u ∈W 1,2

loc (M), point x ∈M and radius r > 0 there holds
∫
B(x,r)

∣∣u− uB(x,r)
∣∣2 ≤ Cr2

∫
B(x,r) |∇u|

2.
The estimate (4.13) remains valid in the context of strongly harmonic functions on doubling spaces.

In fact a modification of the same argument improves the bound (4.13) if µ satisfies an annular
decay property, cf. Definition 4.1. We follow the strategy in [Li97], see Lemmas 4.24 and 4.25
below, and present the modifications needed for our result.

Definition 4.20. A function u ∈ H(X) is said to have growth rate at most m for m > 0 if there
exists p ∈ X and C > 0 such that for all x ∈ X there holds

|u(x)|≤ C(1 + dp(x))m,

where dp : X → R is the distance function x 7→ d(p, x). We denote by Hm(X) the space of
u ∈ H(X) with growth rate at most m.

Remark 4.21. This definition is independent on the choice of point p ∈ X. Indeed, suppose that
u ∈ Hm(X) for some p ∈ X and take any q ∈ X. Then, the following estimate holds true

|u(x)| ≤ C(1 + d(p, x))m ≤ C(1 + d(p, q) + d(q, x))m

≤ C(1 + d(p, q))m
(

1 +
d(q, x)

1 + d(p, q)

)m
≤ C(1 + d(p, q))m(1 + d(q, x))m.

Therefore, u ∈ Hm(X) as well for the choice of point q and a constant C ′ = C(1 + d(p, q))m.
Notice, that for every m > 0 space Hm(X) is nonempty, because it contains constant functions.

In case of X being a harmonic Riemannian manifold the class Hm(X) consist of harmonic poly-
nomials of degree at most m. Moreover, if X is a Carnot group, then Hm(X) contains spherical
harmonic polynomials of degree at most m, see [AW20].

Proposition 4.22. Let (X, d, µ) be a complete doubling metric measure space with doubling expo-
nent Q := log2 Cµ > 1, and suppose µ has α-annular decay (4.4). Then, for any m > 0, we have
that

dimHm(X) ≤ CmQ−α,

where the constant C = C(Q,α) depends only on Q and α.

Doubling measures on length spaces always satisfy an annular decay property for some α, see
the discussion following Definition 4.1. Thus, Proposition 4.22 implies the following corollary.

Corollary 4.23. Let (X, d, µ) be a complete geodesic doubling metric measure space with Q > 1.
Then there exists δ > 0, depending only on a doubling exponent Q, so that

dimHm(X) ≤ C(Q)mQ−δ.
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Let (X, d, µ) be a complete doubling metric measure space, where µ has α-annular decay. Given
R > 0, we define a bi-linear form

AR(u, v) :=
∫
B(p,R)

uvdµ,

for u, v ∈ H(X). Note that AR is symmetric and positive semidefinite. It follows from the proof
of [Hua11][Lemma 3.4] that, for any finite dimensional vector subspace V ⊂ H(X), there exists a
radius R0 > 0 so that AR is an inner product on V for every R ≥ R0.

In order to prove Proposition 4.22 we need the following auxiliary results.

Lemma 4.24. Let V be a k-dimensional linear subspace of Hm(X). For any p ∈ X, β > 1, δ > 0,
R0 > 0 there exists R > R0 such that if u1, . . . , uk is an orthonormal basis for V with respect to
the inner product AβR, then ∫

B(p,R)
(u2

1 + . . .+ u2
k) dµ ≥ k

β2m+Q+δ .

Proof. The proof of [Li97, Lemma 2] for manifolds carries over to the setting of metric measure
spaces under our assumptions, because it is based only on linear tools and the measure growth con-
dition (4.3). See also [Hua11, Lemma 3.7], where the lemma is proven in the setting of Alexandrov
spaces, and [HKX16, Lemma 5.2] for the formulation of the lemma in the RCD∗(0, N) spaces.

Lemma 4.25. Let V be a k-dimensional linear subspace of Hm(X). Then, there exists a constant
C = C(Q) such that for any base u1, . . . , uk of V , any p ∈ X, R > 0 and any ε ∈ (0, 1

2 ) it holds
that ∫

B(p,R)
(u2

1 + . . .+ u2
k) dµ ≤ C

εQ−α
sup∑k

i=1
a2
i
=1

∫
B(p,(1+ε)R)

|a1u1 + . . .+ akuk|2dµ.

Proof. We follow closely the proof of [HKX16][Lemma 5.3]. Fix q ∈ B(p, r) and define Vq := {u ∈
V : u(q) = 0}. The subspace Vq ⊂ V is of codimVq ≤ 1 since, if u, v 6∈ Vq, then u− u(q)

v(q)v ∈ Vq.
There exists an orthogonal change of variables A on V such that A(ui) := vi for all i = 1, . . . , k

with vi ∈ Vq for i = 2, . . . , k.
We recall the relevant part of [AGG19][Proposition 3.1]: if f ∈ H(X) and F : f(X) → R is

convex, then F ◦ f is subharmonic, i.e. for all x ∈ X and r > 0 there holds

F (f(x)) ≥
∫
B(x,r)

F (f(y))dµ(y).

We apply this result for f = v1 and F (s) = s2 to obtain that

k∑
i=1

u2
i (q) =

k∑
i=1

v2
i (q) = v2

1(q) ≤
∫
B(q,(1+ε)R−dp(q))

v2
1(z) dµ(z)

≤ sup∑k

i=1
a2
i
=1

1
µ(B(q, (1 + ε)R− dp(q)))

∫
B(p,(1+ε)R)

∣∣∣∣∣
k∑
i=1

aiui(z)

∣∣∣∣∣
2

dµ(z). (4.14)

We apply (4.3) to obtain that

µ(B(q, (1 + ε)R− dp(q)))
µ(B(p, (1 + ε)R))

≥ 1
C2
µ

(
(1 + ε)R− dp(q)

(1 + ε)R

)Q
.

Therefore,

1
µ(B(q, (1 + ε)R− dp(q)))

≤
C2
µ

µ(B(p, (1 + ε)R))

(
(1 + ε)R

(1 + ε)R− dp(q)

)Q
.
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Hence, upon integrating (4.14), we arrive at

k∑
j=1

AR(uj , uj)

≤ C

µ(B(p,R))

(∫
B(p,R)

(
1 + ε− dp(q)

R

)−Q
dµ(q)

)

· sup∑k

i=1
a2
i
=1

∫
B(p,(1+ε)R)

|a1u1 + . . .+ akuk|2dµ.

(4.15)

Denote
f : [0, 1]→ R, f(t) = (1 + ε− t)−Q,

and note that the claim follows directly from (4.15) and the estimate∫
B(p,R)

f(dp/R)dµ ≤ C

εQ−α
. (4.16)

To obtain (4.16), note that f is smooth, the derivative f ′(t) = Q(1 + ε− t)−Q−1 is positive, hence
f is increasing and thus∫

B(p,R)
f(dp/R)dµ =

∫ ∞
0

µ(B(p,R) ∩ {q ∈ X : f ◦ (dp/R)(q) ≥ λ})dλ

=
∫ 1

−∞
f ′(s)µ(B(p,R) ∩ {dp ≥ sR})ds

after a change of variables f(s) = λ. The α-annular decay implies

µ(B(p,R) ∩ {dp ≥ sR}) = µ(B(p,R) \B(p, sR)) ≤ C(1− s)αµ(B(p,R))

and therefore∫
B(p,R)

f(dp/t)dµ ≤C
∫ 1

−∞
f ′(s)(1− s)αds ≤ CQ

∫ 1

−∞
(1 + ε− s)−Q−1+αds

=
CQ

Q− α
1

εQ−α
,

establishing (4.16).

Proof of Proposition 4.22. Let R be large enough, β = 1 + ε and ε = 1/(2m). Let {u1, . . . , uk} be
an orthonormal basis with respect to AβR. Combining the estimates in Lemmas 4.24 and 4.25 we
obtain

k

(1 + ε)2m+Q+δ ≤
k∑
j=1

AR(uj , uj) ≤
C(Q)
εQ−α

,

since

sup
a1,...,ak:

∑k

i=1
a2
i
=1

∫
B(p,(1+ε)R)

|a1u1 + . . .+ akuk|2dµ = 1.

Thus
k ≤ C(Q)(1 + 1/(2m))2m+Q+δ(2m)Q−α ≤ CmQ−α

after letting δ → 0.
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4.4 Blow-ups of Hajłasz–Sobolev functions with finite AMV-
norm

In this chapter we study blow-ups of functions with finite amv-norm. A blow-up of a metric
measure space and a function around a point is a pointed Gromov–Hausdorff limit of a rescaling,
see Chapter 4.4.3. Blow ups are a tool of analysis on metric spaces used to study local behaviour
and geometry of a metric measure space and functions on that space. One of the essential reasons
to study blow ups is that the class of doubling metric measure spaces supporting a Poincaré
inequality is closed under Gromov–Hausdorff convergence, see [Hei+15][Chapter 11].

The main result of this chapter is Theorem 4.41 which says, that a blow up of a Hajłasz–Sobolev
function u ∈ AMVp

loc(Ω) is strongly harmonic on the tangent space. An immediate consequence is
that tangent functions to a strongly amv-harmonic function are strongly harmonic.

We begin with a review of pointed measured Gromov–Hausdorff convergence of spaces and
functions, which we will abbreviate to pmGH-convergence. In the literature there are several
variants of pmGH-convergence. Here we follow the presentation of [Kei03], and refer the interested
reader to [Hei+15] for more extensive discussion and the relations between various notions.

4.4.1 Pointed measured Gromov–Hausdorff convergence

In this chapter we announce notions which are fundamental for our further studies: the Hausdorff
convergence of sets and pointed Gromov–Hausdorff convergence of metric measure spaces and
functions. Moreover, we present basic properties of these objects as semicontinuity of Hausdorff
convergence, compactness of proper metric measure spaces and the relation of Gromov–Hausdorff
convergence of functions to weak convergence.

We begin with introducing the notion of Hausdorff convergence of closed sets in metric spaces
and recalling the weak convergence of measures.

Definition 4.26. Let Fm, F ⊂ Z be closed sets in a metric space Z. We say that Fn Hausdorff-
converges to F and denote it by Fm → F , if

lim
m→∞

sup
z∈Fm∩B(q,R)

distZ(z, F ) = 0 and lim
m→∞

sup
z∈F∩B(q,R)

distZ(z, Fm) = 0

for every q ∈ Z and R > 0.

Definition 4.27. If νm, ν are Radon measures on Z, we say that νm converges to ν weakly,
denoted νm ⇀ ν, if

lim
m→∞

∫
Z

ϕdνm =
∫
Z

ϕdν

for every continuous function ϕ : Z → R with bounded support.

Let us prove the following semicontinuity-type result.

Lemma 4.28. Let νm be a sequence of measures on Z converging weakly to a measure ν. Suppose
that Fm is a sequence of compact sets Hausdorff-converging to a compact set F . Then for any fixed
ε > 0 there holds

lim sup
m→∞

νm(Fm) ≤ ν(F ) ≤ lim inf
m→∞

νm(Nε(Fm)).

Proof. Let us fix ε > 0. By Definition 4.26 there exists m0 ∈ N such that

F ⊂ Nε(Fm) and Fm ⊂ Nε(F )

whenever m ≥ m0. By [Hei+15][Remark 11.4.1] we obtain

lim sup
m→∞

νm(Fm) ≤ lim sup
m→∞

ν(N̄ε(F )) ≤ ν(N̄ε(F )).
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Taking infimum over ε > 0 we obtain the first inequality.
Similarly, to conclude the second inequality we use [Hei+15][Remark 11.4.1] and estimate

ν(F ) ≤ ν(Nε(F )) ≤ lim inf
m→∞

νm(Nε(F )) ≤ lim inf
m→∞

νm(N2ε(Fm)),

which ends the proof.

For the next definition, we recall that a pointed metric measure space (X, d, µ, p) consists of a
metric measure space (X, d, µ) and a distinguished point p ∈ X. We consider only proper spaces
here.

Definition 4.29. A sequence Xm = (Xm, dm, µm, pm) of pointed proper metric measure spaces

pmGH-converges to a pointed proper metric measure space X = (X, d, µ, p), denoted Xm
GH−→ X,

if there exists a pointed proper metric space (Z, q) and isometric embeddings ιm : Xm → Z and
ι : X → Z so that

(1) ιm(pm) = ι(p) = q, and ιm(Xm) Hausdorff-converges to ι(X);

(2) there holds the weak convergence of pushforwards ιm∗µm ⇀ ι∗µ.

We also define Gromov–Hausdorff convergence for sequences of functions. Since we consider
pointed measured spaces, we nevertheless include them (see also Definition 4.34).

Definition 4.30. Let um : Xm → R and u : X → R be functions on pointed proper metric
measure spaces. We say that um Gromov–Hausdorff converges to u, denoted um

GH−→ u, if there
are isometric embeddings ιm : Xm → Z and ι : X → Z satisfying conditions (1) and (2) in
Definition 4.29 and

(3) um(zm)→ u(z) whenever zm ∈ Xm, z ∈ X, and ιm(zm)→ ι(z).

The embeddings ιm : Xm → Z and ι : X → Z satisfying (1) and (2) (resp. (3)) in Definition 4.29

are said to realize the convergence Xm
GH−→ X (resp. um

GH−→ u).

Two central properties of Gromov–Hausdorff convergence are its compactness properties, see
Proposition 4.32 below, and the stability of properties which are central in metric geometry and
analysis. For our purposes the stability of length spaces and the doubling property of the measure
is important. For a detailed discussion see [Hei+15][Section 11] and [Kei03].

Definition 4.31. Let (X, d, p) be a pointed metric space. We denote by NX(ε,R) the maximal
number of disjoint closed balls of radius ε inside B(p,R). We say that a sequence of pointed metric
spaces (Xm, dm, pm) is totally bounded if

sup
m
NXm(ε,R) <∞

for every choice ε,R > 0.

The following compactness property is proved in [Kei03][Proposition 5.1.9].

Proposition 4.32. Let Xm = (Xm, dm, µm, pm) be a totally bounded sequence of proper metric
measure spaces, satisfying

sup
m
µm(B(pm, R)) <∞ for every r > 0. (4.17)

Then there exists a subsequence and a pointed proper metric measure space X = (X, d, µ, p) so

that Xm
GH−→ X.
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Another compactness result for sequences of functions on pointed metric spaces can be proved
using Proposition 4.32 and a diagonal argument, as in the proof of the Arzela–Ascoli theorem.
Under a different notion of convergence (which is equivalent to ours under the hypotheses there),
Proposition 4.33 appears in [Kei04]. For the additional statement (2), see [Hei+15][Section 11] and
[Kei03].

To state the result, let (Xm) = (Xm, dm, µm, pm) be a sequence of pointed proper metric
measure spaces. We say that a sequence (fm) of functions fm : Xm → R for m = 1, 2, . . . is
equicontinuous if, for every ε,R > 0, there exists δ > 0 such that if xm, ym ∈ B(pm, R) satisfy
d(xm, ym) < δ, then |fm(xm)− fm(ym)|< ε.

Proposition 4.33. Let (Xm) = (Xm, dm, µm, pm) be a totally bounded sequence of pointed proper
metric measure spaces satisfying (4.17). If a sequence of functions (fm), where fm : Xm → R for
m = 1, 2, . . . is an equicontinuous sequence of functions, for which

sup
m
|fm(pm)|<∞,

then there exists a subsequence of (fm) and a continuous function f : X → R, defined on a proper

pointed metric measure space X, for which fm
GH−→ f . Moreover,

(1) if each fm is L-Lipschitz, then f is L-Lipschitz;

(2) if each Xm is a doubling length space with doubling constant ≤ C, then X is a length space
with doubling constant ≤ C2.

To study tangents of Hajłasz–Sobolev functions, we also consider a notion of weak convergence
for functions. The following definition is a slight modification of the weak convergence in [Eri+20].

Definition 4.34. Let (Xm) = (Xm, dm, µm, pm) and X = (X, d, µ, p) be pointed proper metric
measure spaces. A sequence (um) of functions um ∈ L1

loc(Xm) converges weakly to u ∈ L1
loc(X),

denoted um
GH
⇀ u, if there exist isometric embeddings ιm : Xm → Z, ι : X → Z satisfying (1) and

(2) in Definition 4.29, and for which

(3’) ιm∗((um)+dµm) ⇀ ι∗(u+dµ) and ιm∗((um)−dµm) ⇀ ι∗(u−dµ)

Here, for a function f : Z → R we denote

f+ = max{f, 0} and f− = −min{f, 0}.

The Gromov-Hausdorff convergence of functions is analogous to the uniform convergence on
compact sets and indeed coincides with this notion if Xm = X = Z for all m. The weak convergence
of functions as in Definition 4.34 corresponds to weak convergence of signed measures. In keeping
with these analogies, we indeed have the natural implication between the two notions.

Lemma 4.35. Let metric measure spaces (Xm) and X be as in Definition 4.34. Suppose further,
that a sequence (um) of functions um ∈ L1

loc(Xm) Gromov–Hausdorff converges to a continuous
function u : X → R. Then (um) converges to u weakly.

More precisely, if ιm : Xm → Z, ι : X → Z realize the convergence um
GH−→ u, then

lim
m→∞

∫
Xm

(ϕ ◦ ιm)(um)±dµm =
∫
X

(ϕ ◦ ι)u± dµ.

for any boundedly supported continuous ϕ : Z → R.

Proof. It is easy to see that if um
GH−→ u, then (um)±

GH−→ u±, and the embeddings realizing the
first convergence also realize the latter convergence. Thus we may assume that um and u are
non-negative, and ιm : Xm → Z, ι : X → Z realize the convergence um

GH−→ u. It suffices to show
that ιm∗(umdµ) ⇀ ι∗(udµ).

77



Let ũ : Z → R be a continuous extension of u ◦ ι−1 : ι(X)→ R, and set

ũm = u ◦ ι−1
m |ιm(Xm).

Given any continuous ϕ : Z → R with bounded (thus compact) support, we have∫
Xm

(ϕ ◦ ιm)umdµm−
∫
X

(ϕ ◦ ι)udµ =
∫
Z

ϕ(ũm − ũ)ιm∗(dµm) +
∫
Z

ϕũιm∗(dµm)−
∫
Z

ϕũι∗(dµ).

Since ιm∗(dµm) ⇀ ι∗(dµ), it suffices to prove that∫
Z

ϕ (ũm − ũ) ιm∗(dµm)→ 0.

If B ⊂ Z is a closed ball containing the support of ϕ, we obtain

lim sup
m→∞

∣∣∣∣∫
Z

ϕ (ũm − ũ) ιm∗(dµm)
∣∣∣∣ ≤ lim sup

m→∞
‖ϕ‖L∞(B)µm(ι−1

m B)‖ũm − ũ‖L∞(ιm(Xm)∩B)

≤‖ϕ‖L∞(B)µ(ι−1B) lim sup
m→∞

‖ũm − ũ‖L∞(ιm(Xm)∩B).

Suppose lim supm→∞‖ũm− ũ‖L∞(ιm(Xm)∩B)> ε0 for some ε0 > 0. Then, there is a sequence (xm)
such that xm ∈ Xm with zm := ιm(xm) ∈ B and

|ũm(zm)− ũ(zm)|= |um(xm)− ũ(ιm(xm))|> ε0

for m large enough. Since B is compact, a subsequence satisfies zm → z ∈ ι(X) for some z. By

the Gromov–Haudorff convergence um
GH−→ u and the continuity of ũ, we obtain

lim
m→∞

|um(xm)− ũ(ιm(xm))|= |u(ι−1(z))− ũ(z)|= 0,

which is a contradiction. This completes the proof.

4.4.2 Gromov–Hausdorff convergence and averaging operators

In this chapter we prove preliminary results which we will use in the proof of the main result of
Chapter 4.4, i.e. Theorem 4.41. We focus on characterizing limit of average operators applied to a
Gromov–Hausdorff convergent sequence of functions. This characterization is attained using the
following result.

Proposition 4.36. Let Xm = (Xm, dm, µm, pm) and X = (X, d, µ, p) be proper locally doubling
length spaces. Suppose the sequence um ∈ L1

loc(Xm) converges weakly to u ∈ L1
loc(X), and let

ιm : Xm → Z, ι : X → Z realize this convergence. If zm ∈ Xm and z ∈ X are such that
ιm(zm)→ ι(z), then

lim
m→∞

∫
B(zm,r)

umdµm =
∫
B(z,r)

udµ

for any r > 0.

Proof. By considering um±, we may assume that the functions um and u are non-negative. We
note that

ιm(B(zm, r))→ ι(B(z, r)) (4.18)

for every r > 0 in the sense of Hausdorff-convergence. Indeed, given q ∈ Z, R > 0 and arbitrary
ε > 0 the convergence ιm(Xm)→ ι(X) and ιm(zm)→ ι(z) imply that, for large enough m

B(q,R) ∩ ιm(B(zm, r))

= B(p,R) ∩ ιm(Xm) ∩B(ιm(zm), r) ⊂ Nε(ι(X)) ∩B(ι(z), r + ε) = Nε(ι(B(z, r)))
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and

B(q,R) ∩ ι(B(z, r))

= B(p,R) ∩ ι(X) ∩B(ι(z), r) ⊂ Nε(ιm(Xm)) ∩B(ιm(zm), r + ε) = Nε(ι(B(zm, r))).

The convergence (4.18) follows. Note that the property of being a length space was used in the
last equality, cf. [Hei+15][Lemma 11.3.10]. By Lemma 4.28 we have, for any ε > 0, that

lim sup
m→∞

νm(B̄(zm, r)) ≤ ν(B̄(z, r)) ≤ lim inf
m→∞

νm(B(zm, ε+ r))

where dν = udµ and νm = umdµm. Recall, that Ar,R(x) = B̄(x,R) \ B(x, r) for 0 < r ≤ R and
x ∈ Z. It holds that

lim inf
m→∞

νm(B(zm, ε+ r)) = lim inf
m→∞

[νm(B̄(zm, r)) + νm(Ar,r+ε(zm))]

≤ lim inf
m→∞

νm(B(zm, r)) + lim sup
m→∞

νm(Ar,r+ε(zm)).

The argument used to establish (4.18) also yields that

Ar,r+ε(zm)→ Ar,r+ε(z)

in the sense of Hausdorff-convergence. Applying Lemma 4.28 once more we obtain

lim sup
m→∞

νm(B̄(zm, r)) ≤ ν(B̄(z, r)) ≤ lim inf
m→∞

νm(B(zm, r)) + ν(Ar,r+ε(z)).

Since µ is a locally doubling measure on a length space it has an annular decay property (see the
discussion after Definition 4.1). Therefore,

lim
ε→0

µ(Ar,r+ε(z)) = 0

which, by the absolute continuity of ν with respect to µ, implies

lim
ε→0

ν(Ar,r+ε(z)) = 0.

We have obtained

lim sup
m→∞

νm(B̄(zm, r)) ≤ ν(B̄(z, r)) ≤ lim inf
m→∞

νm(B̄(zm, r)),

which completes the proof.

Proposition 4.36 has the following immediate corollary.

Corollary 4.37. Let (Xm) = (Xm, dm, µm, pm) and X = (X, d, µ, p) be proper locally doubling
length spaces and (um) be a sequence of functions um ∈ L1

loc(Xm) converging weakly to u ∈
L1
loc(X). Then

(a) Aµmr um
GH−→ Aµru, and

(b) (Aµmr )∗um
GH−→ (Aµr )∗u

for each r > 0. In particular, if u is continuous, then

∆µm
r um

GH
⇀ ∆µ

ru and (∆µm
r )∗um

GH
⇀ (∆µ

r )∗u.
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Proof. The first claim follows directly from Proposition 4.36. Note that, if ιm : Xm → Z and
ι : X → Z realize the convergence Xm

GH−→ X, Proposition 4.36 implies in particular that

µm(B(zm, r))→ µ(B(z, r)) whenever ιm(zm)→ ι(z).

It follows that, for any r > 0, the sequence fm ∈ L1
loc(Xm),

fm(z) =
um(z)

µm(B(z, r))

weakly converges to

f(z) :=
u(z)

µ(B(z, r))
.

This yields part (b) of the assertion.

4.4.3 Blow-ups of Hajłasz–Sobolev functions with finite amv-norm

In this chapter we prove Theorem 4.41. We begin with defining the main object considered in this
chapter, i.e. a blow up of a metric measure space.

Let us consider a proper locally doubling length space X = (X, d, µ). Given a point x ∈ X and
r > 0, the pointed metric measure space

Xr = (X, dr, µr, x), dr :=
d

r
, µr :=

1
µ(B(x, r))

µ

is called a rescaling of X at x by r.
Let (rm) be a sequence of positive numbers converging to zero, and denote by Xm := Xrm .

A pointed measured Gromov–Hausdorff limit X∞ of Xm is called a tangent space of X at x
subordinate to (rm).

Similarly, if f : X → R is a function, x ∈ X and r > 0, the function

fr :=
f − f(x)

r
: Xr → R

is a rescaling of f at x by r. A Gromov–Hausdorff limit f∞ : X∞ → R of fm := frm is called a
tangent of f at x subordinate to (rm). If the convergence fm → f∞ is weak (cf. Definition 4.34),
we say that f∞ is an approximate tangent of f at x, subordinate to (rm).

It is worth remarking that, in general, tangents are highly non-unique – different sequences
can produce different limits. However, any sequence of rescalings is totally bounded and satisfies
(4.17). Moreover, fm(x) = 0 for m, and thus Proposition 4.33 implies the existence of tangents of
Lipschitz functions at any point.

Proposition 4.38. Let X be a proper locally doubling metric measure space, and f : X → R an
L-Lipschitz function. Fix a sequence (rm) of positive numbers converging to zero. Then, for any
x ∈ X, there exists a subsequence of the rescalings fm : Xm → R at x, and a tangent function
f∞ : X∞ → R such that fm

GH−→ f∞.

In particular, any tangent space X∞ is doubling, and any tangent f∞ : X∞ → R is L-Lipschitz.
Next, we present a variant for Hajłasz–Sobolev functions.

Proposition 4.39. Let X be a proper locally doubling metric measure space, p > 1, and u ∈
M1,p(X). Given a sequence (rm), for µ-almost every point x ∈ X, there is a subsequence of the

rescalings um : Xm → R and a Lipschitz function u∞ : X∞ → R, so that um
GH
⇀ u∞.

It can be shown that the Lipschitz constant of u∞ satisfies

1
C
g(x) ≤ LIP(u∞) ≤ Cg(x)

for a constant depending only on the local doubling constant of µ near x; cf. [Eri+20].
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Proof of Proposition 4.39. We follow the ideas of [Eri+20]. Let g ∈ Lp(X) be a Hajłasz upper
gradient of u, and set

En = {x ∈ X : g(x) > n}, n ∈ N.

Then

lim
n→∞

µ(En) = 0 and lim
n→∞

∫
En

gdµ = 0.

Thus there exists a null set N ⊂ X for which every x ∈ X \N has the property that

lim
r→0

µ(B(x, r) ∩ En)
µ(B(x, r))

= 0 and lim
r→0

1
µ(B(x, r))

∫
B(x,r)∩En

g(y)dµ(y) = 0 (4.19)

for some n ∈ N. We fix x ∈ X \N and n ∈ N satisfying (4.19).
Note that u|X\En is 2n-Lipschitz and let ũn : X → R be a 2n-Lipschitz extension of u|X\En .

By Proposition 4.38 there is a subsequence of the rescalings (ũn)m : Xm → R and a Lipschitz

function ũ : X∞ → R so that (ũn)m
GH−→ ũ.

We show that, for this subsequence, the rescalings um : Xm → R converges weakly to ũ. (This

is different from claiming that (ũn)m
GH
⇀ ũ, which follows from Lemma 4.35.)

Let Z be a proper metric space and ιm : Xm → Z isometric embeddings realizing the conver-
gence (ũn)m → ũ. Given ϕ ∈ Cb(Z), fix a large number R > 0 so that sptϕ ⊂ B(ιm(x), R) for all
m ∈ N. Then spt(ϕ ◦ ιm) ⊂ BXmR (x) = B(x, rmR). We have∣∣∣∣∫

Xm

ϕ ◦ ιm umdµm −
∫
X∞

ϕ ◦ ι∞ ũdµ∞

∣∣∣∣
=
∣∣∣∣∫
X

ϕ ◦ ιm (ũn)mdµm −
∫
X∞

ϕ ◦ ι∞ ũdµ∞ +
∫
En

ϕ ◦ ιm [um − (ũn)m]dµm

∣∣∣∣
≤
∣∣∣∣∫
X

ϕ ◦ ιm (ũn)mdµm −
∫
X∞

ϕ ◦ ι∞ ũdµ∞

∣∣∣∣+
∫
En

|ϕ ◦ ιm um|dµm +
∫
En

|ϕ ◦ ιm (ũn)m|dµm

The first term converges to zero since (ũn)m
GH−→ ũ. We may estimate the second term by∫

En

|ϕ ◦ ιm| |um|dµm ≤
‖ϕ‖∞

µ(B(x, rm))

∫
En∩B(x,rmR)

(g(x) + g(y))dµ(y)

which, by (4.19) converges to zero as m→∞. Similarly,∫
En

|ϕ ◦ ιm| |(ũn)m|dµm ≤ 2n‖ϕ‖∞
µ(En ∩B(x, rmR))

µ(B(x, rm))

converges to zero as m→∞. This completes the proof.

By a suitable cut-off argument, we obtain the following corollary whose proof we omit.

Corollary 4.40. Let Ω ⊂ X be a domain in a proper locally doubling metric measure space, and
let u ∈M1,p

loc (Ω). Given a sequence rm ↓ 0, for µ-almost every x ∈ Ω, there is a subsequence of the

rescalings um : Xm → R at x, and Lipschitz function u∞ : X∞ → R, so that um
GH
⇀ u∞.

We are now ready to prove that having finite amv-norm forces tangent maps to be strongly
harmonic.

Theorem 4.41. Let Ω ⊂ X be an open subset of a proper locally doubling measured length
space X = (X, d, µ), and let 1 < p < ∞. Suppose u ∈ M1,p

loc (Ω) ∩ AMVp
loc(Ω) and (rk) is a

positive sequence converging to zero. Then for µ-almost every x ∈ Ω, any approximate tangent
map u∞ : X∞ → R at x, subordinate to a subsequence of (rk), is strongly harmonic.
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Proof. By Corollary 4.40, u has approximate tangent maps, subordinate to (rm), for µ-almost
every x ∈ X. For any k ∈ N, r ∈ Q+, and compact K ⊂ Ω, we have∫
K

lim inf
m→∞

∫
B(x,krm)

|∆rmru|dµ dµ(x) ≤ lim inf
m→∞

∫
K

∫
B(x,krm)

|∆rmru|dµ dµ(x) ≤ C lim sup
ρ→0

∫
K

|∆ρu|dµ,

cf. [Ald19, Theorem 3.3]. Thus, almost every x0 ∈ X has the following property: for every subse-
quence of (rm) there exists a further subsequence (not relabeled), for which

lim
m→∞

∫
B(x0,krm)

|∆rmru|dµ <∞ for every k ∈ N and r ∈ Q+. (4.20)

Let x0 ∈ Ω be a point where (4.20) and the claim of Corollary 4.40 holds for (rm). Furthermore,
let (X∞, d∞, µ∞, x∞) be a pointed measured Gromov–Hausdorff limit of a sequence

Xm = (X, dm, µm, x0) =
(
X,

d

rn
,

µ

µ(B(x0, rm))
, x0

)
,

and u∞ : X∞ → R a weak limit of the sequence

um :=
u− u(x0)

rm
: Xm → R,

for a subsequence of (rm). We pass to a further subsequence (again not relabeled) for which (4.20)
holds. Note that

Aµmr um(z)− um(z) =
∫
B(z,rmr)

u(y)− u(z)
rm

dµ(y) = rmr
2∆rmru(z)

for any z ∈ Xm and r > 0. Let ιm : Xm → Z and ι : X∞ → Z realize the convergence um
GH
⇀ u∞.

Corollary 4.37 implies that∫
X∞

ϕ ◦ ι∞(z) [Aµ∞r u∞(z)− u∞(z)] dµ∞(z) = lim
m→∞

∫
Xm

ϕ ◦ ιm(z) [Aµmr u∞(z)− um(z)] dµm(z)

= lim
m→∞

rmr
2
∫
Xm

ϕ ◦ ιm(z)∆rmru(z)dµm(z)

for every compactly supported ϕ ∈ C(Z). Since∣∣∣∣∫
Xm

ϕ ◦ ιm(z)∆rmru(z)dµm(z)
∣∣∣∣ ≤ ‖ϕ ◦ ιm‖∞µ(B(x0, rm))

∫
B(x0,krm)

|∆rmru(z)|dµ(z)

≤Ck,ϕ
∫
B(x0,krm)

|∆rmru|dµ <∞

it follows that ∫
X∞

ϕ ◦ ι∞(z)
[
(u∞)B∞(z,r) − u∞(z)

]
dµ∞(z) = 0.

Since ϕ is arbitrary, this establishes the claim for all rational r > 0. The claim follows for all r > 0
by continuity, since X∞ is a length space and µ∞ a doubling measure.

4.5 Weighted Euclidean spaces. Elliptic PDEs and amv-
harmonic functions

This chapter is mostly devoted to characterization of limits of r-laplacian in the weighted Euclidean
setting. We find the explicit PDE for the Lp-limit of the averaging operator ∆r assuming the W 1,∞

loc -
regularity for a positive weight, see Theorem 4.45. We discuss differences between weighted and
unweighted r-laplacian, which is best seen by (4.22) in Lemma 4.44.
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The difference between mean value and amv-harmonic functions is perhaps best seen by consid-
ering the Euclidean space Rn with an arbitrary norm ‖·‖. In Chapter 2.6.2 and 2.6.3, summarized
in (2.42) and Remark 2.26 we showed that strongly harmonic functions on (R2, ‖·‖p) form a fi-
nite dimensional space, when p 6= 2. In the presence of a weight, strongly harmonic functions on
weighted Euclidean domains satisfy system (2.1) of PDE’s which, in the case of smooth weights, is
infinite. In contrast, amv-harmonicity is characterized by an elliptic second order non-divergence
form PDE, as presented below.

We begin with recalling the setting of weighted Euclidean spaces introduced in Chapter 2.
Let ‖·‖ be a norm on Rn, and denote by Hn the corresponding Hausdorff n-measure, which is a
constant multiple of the Lebesgue measure. Given an open domain Ω ⊂ Rn, consider the metric
measure space (Ω, ‖·‖,Hn|Ω) and denote

|A|:= Hn|Ω(A),
∫
A

ϕdy :=
∫
A

ϕdHn|Ω, Ar := AH
n|Ω

r and ∆r := ∆H
n|Ω

r

for Borel sets A ⊂ Rn and integrable functions ϕ : A → R. The unit ball B(0, 1) := B‖·‖(0, 1) is
an open, symmetric convex set. Let M ∈ Rn×n denote the matrix of second moments of the unit
ball B(0, 1) ⊂ Rn of ‖·‖, given by

M = (mij), mij :=
∫
B(0,1)

yiyjdHn(y), 1 ≤ i, j ≤ n.

Remark 4.42. Notice, that entries mij correspond to coefficients Aα for |α| = 2 defined in lines
of Theorem 2.2. Therefore, the matrix M is symmetric and positive definite, see (2.22). Moreover,
ball B(x, r) is symmetric for every x ∈ Rn and r > 0, hence we have that∫

B(x,r)
(y − x)idy = r

∫
B(0,1)

zidz = 0, i = 1, . . . , n

for x ∈ Rn and r > 0.

Suppose that Ω ⊂ Rn is a domain, ‖·‖ is a norm on Rn and a weight w : Ω → R is positive
and locally Lipschitz. Let us consider the weighted metric measure space

Ωw = (Ω, ‖·‖, µ),

where µ := wHn|Ω. We use the notation (cf. Chapter 4.2.1)

Awr := Aµr , ∆w
r := ∆µ

r .

The following elementary facts follow from the assumptions on the weight function w.

Remark 4.43. Since w is continuous and positive on Ω, the measure wHn|Ω is locally doubling.
Moreover,

(1) Awr f → f locally uniformly in Ω as r → 0, whenever f : Ω→ R is continuous;

(2) For each p ∈ [1,∞], Lploc(Ω) = Lploc(Ωw) as sets, and Lp-convergence on compact subsets of
Ω with respect to Hn|Ω and wHn|Ω agree.

The next lemma provides two different representations for ∆w
r in terms of ∆r and will prove

useful in further parts of this chapter.

Lemma 4.44. Suppose f ∈ L1
loc(Ω). Then

∆w
r f =

1
Arw

(∆r(fw)− f∆rw), (4.21)
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and
∆w
r f = ∆rf +

1
Arw

〈f, w〉r, (4.22)

where

〈f, g〉r(x) :=
∫
B(x,r)

f(y)−Arf(x)
r

g(y)−Arg(x)
r

dy,

for f, g ∈ L1
loc(Ω) such that fg ∈ L1

loc(Ω).

Proof. The first claim of the lemma is a direct consequence of the pointwise identity

(f(y)− f(x))w(y) = f(y)w(y)− f(x)w(x) + f(x)(w(x)− w(y)), x, y ∈ Ω.

We integrate both sides with respect to y ∈ B(x, r) and divide by r2
∫
B(x,r) w(y)dy, which equals

to r2 |B(x, r)|Arw(x), to arrive at the following identity

∆w
r f(x) =

1
r2Arw(x)

(∫
B(x,r)

(f(y)w(y)− f(x)w(x))dy − f(x)
∫
B(x,r)

(w(y)− w(x))dy

)
.

This proves (4.21). To see the second assertion (4.22) we fix r > 0, x ∈ Ω and compute

〈f, w〉r(x)
Arw(x)

=
1

Arw(x)

∫
B(x,r)

(f(y)−Arf(x))(w(y)−Arw(x))
r2 dy

=
1

Arw(x)

∫
B(x,r)

f(y)w(y)−Arw(x)f(y)−Arf(x)w(y) +Arf(x)Arw(x)
r2 dy

=
1

r2Arw(x)

[∫
B(x,r)

f(y)w(y)dy −Arw(x)
∫
B(x,r)

f(y)dy

− Arf(x)
∫
B(x,r)

w(y)dy +Arf(x)Arw(x)

]

=
1

r2Arw(x)

[∫
B(x,r)

f(y)w(y)dy −Arf(x)Arw(x)

]

=
Awr f(x)−Arf(x)

r2

=
Awr f(x)− f(x)− (Arf(x)− f(x))

r2 = ∆w
r f(x)−∆rf(x).

Consider the unbounded operator Lw : Lp(Ωw)→ D∗(Rn) defined as

Lwu :=
1
2

div(M∇u) +
1
w
〈∇w,M∇u〉 =

1
2

div(M∇u) + 〈∇ lnw,M∇u〉. (4.23)

This can be interpreted as a distribution for any u ∈ Lp(Ωw) but makes sense as an Lploc-function
for u ∈W 2,p

loc (Ω). The main result of this chapter is the following result linking limit of ∆w
r to the

operator Lw.

Theorem 4.45. Let w be a locally Lipschitz positive weight on Ω and p ∈ (1,∞). Then W 1,p(Ω)∩
AMVp

loc(Ωw) = W 2,p
loc (Ω). Moreover, for every u ∈W 2,p

loc (Ωw) we have that ∆w
r u→ Lwu in Lploc(Ω)

as r → 0.

In order to prove Theorem 4.45 we firstly consider the case of a constant weight. We begin
with proving that under the C2-regularity assumption strong amv-harmonic functions solve the
second order elliptic PDE whose coefficients depend only on the geometry (i.e. on matrix M) of
the unit ball in the underlying metric, see Lemma 4.46.
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Lemma 4.46. If u ∈ C2(Ω), then

∆ru→
1
2

div(M∇u)

locally uniformly in Ω, as r → 0.

Proof. Let x ∈ Ω and r < dist(x, ∂Ω). For every fixed z ∈ B(0, 1) the Taylor expansion of u yields

u(x+ rz)− u(x) = r

n∑
i=1

∂u

∂xi
(x)zi +

1
2
r2

n∑
i,j=1

∂2u

∂xi∂xj
(x)zizj + Er(x, z),

where Er(x, z) is the Taylor remainder and Er(x, z)/r2 → 0 locally uniformly in Ω × B̄(0, 1), as
r → 0. Thus, upon dividing by r2 and taking the mean integral with respect to z ∈ B(0, 1) we
have

∆ru(x) =
∫
B(0,1)

u(x+ rz)− u(x)
r2 dz =

1
2

n∑
i,j=1

∂2u

∂xi∂xj
(x)
∫
B(0,1)

zizjdz +
∫
B(0,1)

Er(x, z)
r2 dz,

where the integral of the first order term over B(0, 1) vanishes by Remark 4.42. Thus,

lim
r→0

∆ru(x) =
1
2

n∑
i,j=1

∂2u

∂xi∂xj
(x)mij =

1
2

div(M∇u),

and the claim follows.

In the next result we weaken the regularity assumption from C2 to W 2,p
loc and prove the assertion

corresponding to Theorem 4.45 in Proposition 4.47. In particular, we identify the amv-harmonic
functions with locally finite amv-norms with functions in the Sobolev space W 2,p

loc . In the proof
of Proposition 4.47 we use the notion of W 2,p extension domain. Recall, that for p ∈ [1,∞] and
k ∈ N a domain Ω ⊂ Rn is called a W k,p extension domain, if there exists a continuous linear
extension operator TΩ : W k,p(Ω) → W k,p(Rn). Furthermore, recall that any Lipschitz domain is
an extension domain.

Proposition 4.47. Let p ∈ (1,∞). Then AMVp
loc(Ω) = W 2,p

loc (Ω). Moreover, for each u ∈
W 2,p
loc (Ω), we have that

∆ru→
1
2

div(M∇u) (4.24)

in Lploc(Ω), as r → 0.

Proof. Assume u ∈W 2,p
loc (Ω) and set

R(x, y) := u(y)− u(x)−
n∑
i=1

∂u

∂xi
(x)(y − x)i, x, y ∈ Ω.

Let us fix a W 2,p-extension domain Ω′ compactly contained in Ω. Denote by BE(x, r) an Euclidean
ball and by ∂BE(0, 1) an Euclidean unit sphere. We apply [BIK13, Theorem 2.5 and (21)] to arrive
at

lim
r→0

∫
Ω′

∫
BE(x,r)

∣∣∣∣R(x, y)
r2

∣∣∣∣p dydx = c(n, p)
∫

Ω′

∫
∂BE(0,1)

∣∣∣∣∣∣2
∑
i≤j

∂2u

∂xi∂xj
(x)eiej

∣∣∣∣∣∣
p

de dx. (4.25)

By Remark 4.42 we see that∫
B(x,r)

R(x, y)
r2 dy = ∆ru(x), B̄(x, r) ⊂ Ω. (4.26)

85



Together with (4.25) and the fact that ‖·‖ is comparable to the Euclidean norm, (4.26) implies
that

lim sup
r→0

∫
Ω′
|∆ru|pdx ≤ lim sup

r→0

∫
Ω′

∫
B(x,r)

∣∣∣∣R(x, y)
r2

∣∣∣∣pdydx ≤ c lim
r→0

∫
Ω′

∫
BE(x,r)

∣∣∣∣R(x, y)
r2

∣∣∣∣pdydx <∞.
(4.27)

Notice, that we showed (4.27) for any W 2,p-extension domain Ω′ compactly contained in Ω. We
want to use this observation to prove that u ∈ AMVp

loc(Ω). In order to do that, we fix a compact
K ⊂ Ω and for each point x ∈ K find its neighbourhood Ω′x which is a W 2,p-extension domain
and is a compact subset of Ω. By compactness of K we find a finite cover Ω′1, . . . ,Ω

′
N and estimate

using (4.27) in the following way

lim sup
r→0

∫
K

|∆ru|p dx ≤ lim sup
r→0

N∑
i=1

∫
Ω′
i

|∆ru|p dx <∞.

Hence, u ∈ AMVp
loc(Ω).

Conversely, suppose u ∈ AMVp
loc(Ω). Then, for any positive sequence (rm) converging to zero

there is a further subsequence and a function g ∈ Lploc(Ω) such that ∆rmu ⇀ g weakly in Lploc(Ω)
as m→∞. In particular, for any ϕ ∈ C2

c (Ω), we have

∫
Ω
ϕgdx = lim

m→∞

∫
Ω
ϕ∆rmudx = lim

m→∞

∫
Ω
u∆rmϕdx =

1
2

∫
Ω
udiv(M∇ϕ)dx,

since ∆rϕ → 1
2div(M∇ϕ) locally uniformly in Ω and we used the following Green-type identity,

see [MT19][Theorem 5.3]:

∫
X

ϕ∆ru− u∆rϕdµ =
1
r2

∫
X

u(x)
∫
B(x,r)

ϕ(y)
(

1
µ(B(y, r))

− 1
µ(B(x, r)

)
dµ(y)dµ(x).

Notice, that in our case µ(B(y, r)) = µ(B(x, r)) is constant, hence the right-hand side is equal
to zero. This shows that g is a unique limit and agrees with the distribution g = 1

2div(M∇u)
on Ω, because

∫
Ω

1
2div(M∇u)ϕ =

∫
Ω

1
2div(M∇ϕ)u. Since div(M∇u) ∈ Lploc(Ω) we have that

u ∈W 2,p
loc (Ω), see e.g. Theorem 6.29 in [Gru09] applied for the differential operator P = ∆.

It remains to prove the convergence in (4.24). For this assume u ∈ W 2,p
loc (Ω). Denote by ∇2u

the matrix of second weak partial derivatives of u and by Q(x, s) a concentric cube centered at x
with side length s. Then, by [BHS02, Theorem 3.3] (applied with m = 2, S = B(x, r) according
to the notation in [BHS02]) we observe that there exist constant C ′ = C ′(n) and σ ≥ 1 such that

|∆ru(x)| = 1
r2

∣∣∣∣∣u(x)−
∫
B(x,r)

u(y)dy

∣∣∣∣∣ ≤ C ′(n)
r2

∫
Q(x,σr)

∣∣∇2u
∣∣ (y)

|x− y|n−2 dy.

We apply [BHS02, Lemma 3.4] with u =
∣∣∇2u

∣∣, µ1 = µ2 = 2, according to the notation in [BHS02],
in the above observation to obtain that there exists a constant C = C(n) such that

|∆ru(x)|≤ C ′(n)
r2

∫
Qσr(x)

|∇2u|(y)
|x− y|n−2 dy ≤ CM√nσr|∇

2u|(x), B(x, σr) ⊂ Ω. (4.28)

Let Ω′ ⊂ Ω be compactly contained and let (um) be a sequence of smooth functions converging to
u in W 2,p(Ω′) as m → ∞. In particular, |∇2(u − um)|→ 0 and div(M∇(u − um)) → 0 in Lp(Ω′)
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as m→∞. By Lemma 4.46 and (4.28) we obtain

lim sup
r→∞

‖∆ru−
1
2

div(M∇u)‖Lp(Ω′)

≤ lim sup
r→0

(
‖∆r(u− um)‖Lp(Ω′)+‖∆rum −

1
2

div(M∇um)‖Lp(Ω′)+
1
2
‖div(M∇(u− um))‖Lp(Ω′)

)
≤ C lim sup

r→0
‖M√nσr|∇2(u− um)|‖Lp(Ω′)+

1
2
‖div(M∇(u− um))‖Lp(Ω′)

≤ C
∥∥∇2(u− um)

∥∥
Lp(Ω′) +

1
2
‖div(M∇(u− um))‖Lp(Ω′).

Upon letting m→∞ the claim follows.

The last auxiliary result which is needed in the proof of Theorem 4.45 in order to reduce to
the unweighted case is presented below.

Lemma 4.48. If f, g ∈W 1,1
loc (Ω) and in addition g ∈ Lnloc(Ω), then

〈f, g〉r
r→0−→ 〈M∇f,∇g〉

pointwise almost everywhere in Ω.

Proof. The Sobolev embedding implies that f ∈ Ln/(n−1)
loc (Ω). Thus fg ∈ L1

loc(Ω) and 〈f, g〉r is
finite. Sobolev functions in W 1,1

loc satisfy the following approximation by tangent planes for almost
every x ∈ Ω, cf. [EG92][Theorem 2 in Section 6.1.2]

lim
r→0

(∫
B(x,1)

∣∣∣∣f(x+ rz)− f(x)−∇f(x) · (rz)
r

∣∣∣∣n/(n−1)

dz

)(n−1)/n

= 0.

It follows that

lim
r→0

(∫
B(x,1)

∣∣∣∣f(x+ rz)−Arf(x)−∇f(x) · (rz)
r

∣∣∣∣n/(n−1)

dz

)(n−1)/n

= 0, (4.29)

since (∫
B(x,1)

∣∣∣∣f(x+ rz)−Arf(x)−∇f(x) · (rz)
r

∣∣∣∣n/(n−1)

dz

)(n−1)/n

≤

(∫
B(x,1)

∣∣∣∣f(x+ rz)− f(x)−∇f(x) · (rz)
r

∣∣∣∣n/(n−1)

dz

)(n−1)/n

+
∣∣∣∣Arf(x)− f(x)

r

∣∣∣∣
≤2

(∫
B(x,1)

∣∣∣∣f(x+ rz)− f(x)−∇f(x) · (rz)
r

∣∣∣∣n/(n−1)

dz

)(n−1)/n

.

For the next calculations we use the shorthand

Rfr (x, z) :=
f(x+ rz)−Arf(x)−∇f(x) · (rz)

r
, B̄(x, r) ⊂ Ω.

The definition of the matrix M yields

〈M∇f(x),∇g(x)〉 =
∫
B(x,1)

n∑
i,j=1

∂if(x)∂gj(x)zizjdz =
∫
B(x,1)

(∇f(x) · z)(∇g · z)dz
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which may be expanded to

〈M∇f(x),∇g(x)〉 =
∫
B(x,1)

(f(x+ rz)−Arf(x))
r

(∇g(x) · z)dz −
∫
B(x,1)

Rfr (x, z)(∇g(x) · z)dz

=
∫
B(x,1)

f(x+ rz)−Arf(x)
r

g(x+ rz)−Arg(x)
r

dz

−
∫
B(x,1)

[Rgr(x, z)(∇f(x) · z) +Rfr (x, z)(∇g(x) · z)]dz.

Thus

〈f, g〉r(x)− 〈M∇f(x),∇g(x)〉 =
∫
B(x,1)

[Rgr(x, z)(∇f(x) · z) +Rfr (x, z)(∇g(x) · z)]dz

tends to zero as r → 0 for almost every x ∈ Ω, by (4.29).

We are now in a position to discuss the proof of Theorem 4.45.

Proof of Theorem 4.45. We first observe that, if u ∈W 1,p
loc (Ω), then

|〈u,w〉r(x)|≤
∫
B(x,r)

|u−Aru(x)|
r

|w −Arw(x)|
r

dy

≤‖∇w‖L∞(B(x,r))

∫
B(x,r)

|u−Aru(x)|
r

dy ≤ C‖∇w‖L∞(B(x,r))Mr|∇u|(x),

which holds due to the fact that w is locally Lipschitz and by the boundedness of the maximal
function. From this we conclude, that for each compactly contained Ω′ ⊂ Ω there exists a function
g ∈ Lp(Ω′) such that

|〈u,w〉r|≤ g (4.30)

almost everywhere in Ω′. We apply Lemma 4.48 in (4.30) to obtain that

〈u,w〉r → 〈M∇u,∇w〉 in Lploc(Ω)

Now suppose that u ∈ W 2,p
loc (Ω). Then 〈u,w〉r → 〈M∇u,∇w〉 and ∆ru → 1

2div(M∇u) in
Lploc(Ω). Thus (4.22) in Lemma 4.44 implies that

∆w
r u = ∆ru+

〈u,w〉r
Arw

r→0−→ 1
2

div(M∇u) +
1
w
〈M∇u,∇w〉 = Lwu

in Lploc(Ω). This also implies that u ∈ AMVp
loc(Ωw).

Conversely, suppose that u ∈ W 1,p
loc (Ω) ∩ AMVp

loc(Ωw). Then, by (4.22) in Lemma 4.44 and
(4.30) we obtain for every compactly contained Ω′ ⊂ Ω that there exists a function g ∈ Lp(Ω′)
such that

|∆ru|≤ |∆w
r u|+

1
Arw

g on Ω′.

Thus u ∈ AMVp
loc(Ω) which, by Proposition 4.47, implies that u ∈W 2,p

loc (Ω).

In the last part of this chapter we briefly discuss the remaining results in [AKS20] obtained in
the setting of metric measure space Ωw.

Assuming higher regularity of the weight w ∈W 2,∞
loc (Ω) the authors can describe more precisely

the class AMVp
loc(Ωw) refining Theorem 4.45 in the following way.

Theorem 4.49. Suppose that the weight w ∈ W 2,∞(Ω) and p ∈ (1,∞). Then AMVp
loc(Ωw) =

W 2,p
loc (Ω). Moreover, for every u ∈W 2,p

loc (Ω) there holds ∆w
r u→ Lwu in Lploc(Ω) as r → 0.
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Additionally, the authors study in [AKS20] weakly harmonic functions. We say, that a function
u ∈ L2(X) is weakly amv-harmonic on a metric measure space (X, d, µ) if limr→0

∫
X
ϕ∆rudµ = 0

for every compactly supported Lipschitz function ϕ. The following characterization of both weakly
and strongly amv-harmonic functions is attained in [AKS20].

Theorem 4.50. Let u ∈W 1,2
loc (Ω). Then, the following conditions are equivalent:

1. u is a weak solution to Lwu = 0 in Ω,

2. u is weakly amv-harmonic in Ωw,

3. u ∈ AMV2
loc(Ω), and ∆w

r u→ 0 in L2
loc(Ωw) as r → 0.

Moreover, if w ∈ C∞(Ω), then all above conditions are equivalent to the following: u is strongly
amv-harmonic in Ωw.
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