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Abstract

This PhD dissertation is devoted to the study of ergodic properties of Markov processes corres-
ponding to systems of interval increasing homeomorphisms with probabilities. These systems in
general arise in connection with fractals and partially hyperbolic dynamical systems. Our ob-
jects of interest appeared to be important due to relations to Kan’s example of a diffeomorphism
possessing two attractors with intermingled basins. This is briefly explained in Chapter 1.

Chapter 2 describes basic facts on the behaviour of the Markov processes under consideration.
The dynamics depends on the values of, so called, the average Lyapunov exponents at 0 and
1. It is proved that if both exponents are positive, then there exists a stationary distribution µ
with µ((0, 1)) = 1. In that case systems appear to be synchronizing, i.e. the distance between
corresponding trajectories starting from two arbitrary points tends to 0 almost surely.

In Chapter 3 it is proved that the average distance between two trajectories is diminishing
exponentially fast provided the system is consisted of C2 diffeomorphisms. The proof strongly
relies on certain version of the Baxendale theorem proved by Gharaei and Homburg, which says
that the volume Lyapunov exponent of the system is negative. The exponential convergence allows
us to show the classical probability limit theorems for the stochastic processes under consideration.
The method is based on solving the Poisson equation and the Gordin method.

In the general case it is unknown whether the average distance between two trajectories is
diminishing exponentially fast. Nevertheless it is possible to exploit certain result of Dominique
Malicet from 2014 to estimate the average distance and show the classical limit theorems. Here the
method is again based on martingale approximation and uses the Maxwell-Woodroofe criterion.
This is the content of Chapter 4.

Chapter 5 is devoted to the study of very specific systems of homeomorphisms with place-
dependent probabilities, called Alsedà-Misiurewicz systems. All known methods of proving er-
godicity and stability of iterated function systems with place-dependent probabilities rely on the
contractivity in average, which for our system is not satisfied. Nevertheless we demonstrate that
these properties hold.

Keywords: iterated function systems, Kan’s diffeomorphisms, partially hyperbolic dynamics,
synchronization, Baxendale theorem, central limit theorem, Poisson equation, g-measures

AMS subject classification: 37A25, 37E05, 60F05, 60G10, 60J05, 60J25, 76N10
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Streszczenie

Niniejsza rozprawa doktorska jest poświęcona badaniom ergodycznych własności procesów Mar-
kowa stowarzyszonych z układami rosnących homeomorfizmów odcinka z prawdopodobieństwami.
Takie systemy w ogólności są powiązane z fraktalami i dynamiką częściowo hiperboliczną. Nasze
obiekty zainteresowań stały się ważne z powodu związków z przykładem Kana dyfeomorfizmu z
dwoma atraktorami, których baseny atrakcji są wszędzie gęste i mają dodatnią miarę Lebesgue’a.
Rozdział 1 wyjaśnia zwięźle powyższe związki.

Rozdział 2 opisuje podstawowe fakty na temat zachowania rozważanych procesów Markowa.
Dynamika zależy od wartości tak zwanych średnich wykładników Lyapunowa w 0 i 1. Jest tam
dowiedzione, że jeśli obydwa wykładniki są dodatnie, to istnieje rozkład stacjonarny µ, taki że
µ((0, 1)) = 1. W tym wypadku systemy okazują się być synchronizujące, to znaczy odległość
pomiędzy trajektoriami startującymi z dwóch punktów zbiega do zera prawie na pewno.

W Rozdziale 3 dowodzi się, że średnia odległość pomiędzy trajektoriami maleje wykładniczo
szybko, o ile system składa się z dyfeomorfizmów klasy C2. Dowód silnie polega na pewnej wersji
twierdzenia Baxendale’a dowiedzionej przez Gharaei i Homburga, które mówi, że średni wykładnik
Lyapunova względem miary stacjonarnej jest ujemny. Wykładnicza zbieżność pozwala nam po-
kazać klasyczne probabilistyczne twierdzenia graniczne. Metoda polega na rozwiązaniu równania
Poissona i aproksymacji martyngałem.

W ogólnym przypadku nie wiadomo, czy średnia odległość pomiędzy trajektoriami maleje wy-
kładniczo. Niemniej jednak można wykorzystać pewne wyniki Dominique’a Malicet z 2014 roku
do podania oszacowania górnego na średnią odległość i pokazania klasycznych probabilistycznych
twierdzeń granicznych. Tutaj metoda polega na aproksymacji martyngałem i wykorzystuje kryte-
rium Maxwell’a-Woodroofe’a. To jest zawartość Rozdziału 4.

Rozdział 5 poświęcony jest studiowaniu pewnego szczególnego systemu homeomorfizmów od-
cinka z prawdopodobieństwami zależnymi od położenia, zwanymi układami Alsedy-Misiurewicza.
Wszystkie znane techniki dowodzenia ergodyczności i stabilności iterowanych układów funkcyjnych
z prawdopodobieństwami zależnymi od położenia polega na średnim zwężaniu, które nie zachodzi
w rozważanych systemach. Niemniej jednak udało się znaleźć dowody tych własności.

Słowa kluczowe: iterowane układy funkcyjne, dyfeomorfizm Kana, dynamika częściowo hiper-
boliczna, synchronizacja, twierdzenie Baxendale’a, centralne twierdzenie graniczne, równanie Po-
issona, g-miary

Klaysfikacja AMS: 37A25, 37E05, 60F05, 60G10, 60J05, 60J25, 76N10
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Chapter 1

Introduction

1.1 Iterated function systems
The main object of my research are iterated function systems. Let X be a Polish space, and
let f1, . . . , fm be continuous transformations from X to X. The m-tuple (f1, . . . , fm) is called an
iterated function system. If a probability distribution

(
p1(x), . . . , pm(x)

)
is assigned to (f1, . . . , fm),

then the system is called an iterated function system with probabilities. Probabilities are called to
be place-independent if pi’s are constant functions. Otherwise the probabilities are called place-
dependent.

Iterated function systems appeared in mathematics as processes with complete connections
[OM35]. The authors considered a process on {0, 1} in which the position in the next step depends
on the whole past. This kind of process may be equivalently represented as an iterated function
system with place-dependent probabilities on the Cantor set. The work has been continued in
[DR37], [ITM48], [ITM50], [DF66]. It should be pointed out that a relation to machine learning
has been found [BM53], [Kar53].

The golden era of iterated functions systems started in eighties, when they were exploited to
code and generate fractals [Hut81]. Later it was discovered also that iterated function systems
with probabilities may generate a fractal image as well (see [DS86] and [DHN85]). This launched
more exhaustive research on ergodicity and stability of Markov processes corresponding to iterated
function systems with probabilities. The most important papers in this matter are probably
[BDEG88] and [LY94]. A comprehensive survey on elaborated methods is [Ste12].

The connections to the ergodic theory of smooth dynamical systems comes through g-measures
[Kea72]. There is an important connection of g measures to thermodynamical formalism: a g-
measure µ is an equilibrium measure for the potential log g. The explanation of relations between
g-measures, equilibrium measures and Gibbs measures is the content of [BFV19].

An interesting survey on iterated function systems is [DF99].

1.2 Smooth dynamical systems
In the modern theory of smooth dynamical systems a huge effort is being made to answer the
questions what the behaviour of a typical dynamical system is and how much chaotic it is. A rep-
resentative example of chaotic dynamical system are hyperbolic diffeomorphisms whose dynamics
is well understood.
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Definition. The set Λ is hyperbolic provided there exists its open neighbourhood U of Λ along with
a Riemannian metric g on it, and a splitting TxM = Esx ⊕ Eux for x ∈ Λ

• which is invariant, thus Dxf(Esx) ⊆ Esf(x) and Dxf(Eux ) ⊆ Euf(x) for every x ∈ Λ, and

• there exist constants C > 0, λ ∈ (0, 1) such that for any x ∈ Λ, u ∈ Esx, v ∈ Eux and n ≥ 1,

‖Dxf
n(u)‖ < cλn and ‖Dxf

n(v)‖ > c−1λ−n.

The most fundamental theorems about topological and ergodic aspects of hyperbolic dynamics are
provided in [KH95].

It may be proven ([AS70]) that hyperbolic diffeomorphisms do not form a dense set in the space
of all C1 diffeomorphisms on a given manifold M . Therefore to understand the behaviour of a
typical dynamical system some conditions in the definition of hyperbolicity must be relaxed. To
this end partially hyperbolic dynamical systems where introduced.

Definition. A partially hyperbolic set Λ for diffeomorphisms f is a compact, invariant set for
which there exists a continuous splitting of the tangent spaces TxΛ = Esx ⊕ Ecx ⊕ Eux , which

• is invariant for Df and

• there exist constants c > 0 and λ ∈ (0, 1) such that for every x ∈ Λ and vectors u ∈ Esx,
w ∈ Ecx, v ∈ Eux and for every n ≥ 1,

‖Dxf
nu‖ ≤ cλn‖Dxf

nw‖ and ‖Dxf
nw‖ ≤ cλn‖Dxf

nv‖.

See [CP15] for an excellent treatment of partially hyperbolic dynamics.
Partially hyperbolic dynamical systems are mentioned here since iterated function systems

may serve as a model of partial hyperbolicity (a good example here is the porcupine-like horseshoe
[DG12]). Then the space on which an iterated function system is defined corresponds to the central
direction in the definition of partial hyperbolicity. This is exactly the reason why I was studying
iterated function systems as explained in the next section.

Let f : M →M be a dynamical system, and let ϕ be a smooth observable. Let us pick a point
x ∈ M randomly according to some distribution. Then (ϕ(x), ϕ(f(x)), . . .) becomes a stochastic
process. It is a feature of chaotic dynamical systems that this process satisfies classical probability
limit theorems for some "good" choice of the distribution.

This way of looking at dynamical systems has been started by Sinai and developed by many
mathematicians. Nowadays this is a central branch of smooth ergodic theory. See [Den89], [Liv96],
[Dol08], [DSL15], [Gou15] for good surveys.

1.3 Kan’s example
In 1963 Lorenz proposed a simplified model of atmospheric convection ([Lor63]). He observed that
a small change of initial condition may cause a considerable change in qualitative behaviour of
solutions. He found also numerically an attractor with fractal structure bearing now his name.
Later this class of attractors was called "strange attractors" [RT71]. The presence of a strange
attractor may be considered as a kind of chaos as well.

In the history of dynamical systems some other definitions of attractors appeared. For example,
in [Kan94] an attractor was defined as a closed invariant subset containing the ω limit set of the
set of points of positive Lebesgue measure. The set points with this property is called the basin
of attraction. Kan has found an example of diffeomorphism for which there exist two attractors
with basins which are intermingled, i.e. every open subset of the space contains points from both
basins.
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Theorem 1.1 ([Kan94]). For k ≥ 1 there exists an open set of Ck diffeomorphisms of T2 × I (in
Ck topology) for which there are two coexisting attractors whose basins are intermingled, and the
union of both basins has full Lebesgue measure.

The set in the statement is some Ck neighbourhood of

f(x, y, z) = (3x+ y, 2x+ y, z + cos(2πx)
z

32
(1− z)), (1.1)

where we used the correspondence T2 = R2/Z2. This is a partially hyperbolic diffeomorphism
with the central direction being I. The levels [0, 1] × {0} and [0, 1] × {1} are attractors. Kan
only announces the result postponing the proof to another paper, and he gives the idea of the
proof in the case of noninvertible map (and thus much simpler to deal with) given by f(x, z) =
(3x, z + cos(2πx) z32 (1 − z)) on S1 × I. However, to my best knowledge Kan has never published
the proof.

The proof of the existence of two intermingled basins for (1.1) itself was given in [BM08]. In
fact more general theorem was proven. Recall that the Schwarzian derivative of C3 transformation
is given by the formula

Sf(y) =
f ′′′(y)

f ′(y)
− 3

2

(
f ′′(y)

f ′(y)

)2

.

Theorem 1.2 ([BM08]). Let T : X → X be a continuous transformation of a compact metric space
X with an ergodic invariant Borel measure µ. Let f be a skew product of a form f : X × [0, 1]→
X × [0, 1], f(x, z) = (Tx, fx(z)). If f is C3, Sfx < 0 µ × Leb almost everywhere, and the levels
[0, 1] × {0} and [0, 1] × {1} are attractors (hence if their basins have positive µ × Leb measure),
then there exists a measurable function σ : X → [0, 1] such that (x, z) us in the basin of attraction
of [0, 1]× {0} if z < σ(x) and in the basin of attraction of [0, 1]× {0} if z > σ(x).

The authors define also quantities

Λ0 =

∫
X

log f ′x(0)dµ and Λ1 =

∫
X

log f ′x(1)dµ,

which are the average Lyapunov exponents at 0 and 1. It is proved that the negative Lyapunov
exponent implies that the corresponding level is an attractor.

For an invertible f we can inverse the dynamics. Then the graph σ in the statement appears
to attract the trajectory of µ × Leb almost every point. The graph carries the measure ν being
the pullback of µ by the projection to the base X. This measure is a physical measure if X is a
manifold and µ is the volume.

If the transformation in the base is T : S1 → S1, T (x) = kx, then the system is noninvertible.
However it is still possible to show the existence of SRB measure by representing this dynamical
systems as a projection of a suitable invertible system defined on solenoid. We can apply the
reasoning to obtain the measure ν̃ which is SRB for the extended system, and then project it back
to S1 × I to obtain SRB measure ν for f .

In both papers continuity played an important role. This assumption has been dropped in
[AM14], where the case of positive average Lyapunov exponents has been treated.

Theorem 1.3. Let F : X × [0, 1]→ X × [0, 1] be an invertible skew-product F (x, y) = (Tx, fx(y)),
where T possesses an ergodic stationary measure µ. If

(I) Λ0,Λ1 > 0,

(II) {fx : x ∈ X} is finite, or fx are C2 diffeomorphisms with f ′′x /((f ′x)2 bounded uniformly in x
and y,
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(III) F is essentially contracting, i. e. |F (x, y1) − F (x, y2)| → 0 for every y1, y2 ∈ [0, 1] and µ
almost every x ∈ X.

Then there exists a measurable function σ : X → [0, 1] whose graph is F invariant and such that

1. |Fn(x, y)− Fn(x, σ(x))| → 0 as n goes to infinity,

2. |F−n(x, y)− (T−n(x), 0)| → 0 as n goes to infinity if y < σ(x),

3. |F−n(x, y)− (T−n(x), 1)| → 0 as n goes to infinity if y > σ(x).

Although two first assumptions appears to be easy to check, the third one is rather mysterious.
In the second part of the paper an example of a nontrivial system satisfying the hypothesis is
provided. In the base there is two-sided Bernoulli shift (X = {0, 1}Z, T

(
(xi)i∈Z

)
= (xi+1)i∈Z

µ is the product measure corresponding to the probability vector (1/2, 1/2)). In the fiber there
are two transformations depending only on x0. Namely we fix parameter c ∈ (0, 1/2) and define
f0(y) = 1

2cy if y ≤ c and f0(y) = 1
2(1−c) (y−1)+1 if y > c. The second transformation f1 is defined

by f1(y) = 1 − f0(1 − y) for y ∈ [0, 1] (see Figure 1.1). Then fx if defined by fx0
thus there are

finitely many transformations in the fiber.1 The first assumption is trivially satisfied but the proof
of the third one is technical and quite complicated.

f0

f1

c 1− c

1/2

Figure 1.1: The fiber transformations in the Alsedà, Misiurewicz’s paper.

This work was later developed by two independent groups of mathematicians: M. Gharaei, A.
J. Homburg ([GH17]) and T. Szarek, A. Zdunik ([SZ16]). Both groups were focused on step skew
products with Bernoulli shift in the base. In the first paper (which was published first) stronger
assumptions are imposed that the transformations in the fiber are C2 diffeomorphisms, and in
the latter one it is only assumed that the transformations are homeomorphisms differentiable at
0 and 1. In both papers it was proven (among other theorems) that if the Lyapunov exponents
Λ0,Λ1 are positive, then there exists a function σ from the assertion in the theorem from [AM14].
In other words, it has been proven that if in the theorem from [AM14] we restrict to step skew-
products over Bernoulli shift then one can drop the assumption of being essentially contractive.
What is interesting, in [GH17] (thus under the stronger assumptions) it was proven that a system

1A skew product over Bernoulli shift in which the fiber transformation depends only on the first coordinate is
called a step skew-product.
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satisfying these assumptions must necessarily be essentially contractive. Actually [Mal17] combined
with [SZ16] implies the same for the systems of homeomorphisms.

Kan’s work attracted much more attention. In [MW05] the authors prove that for every positive
integer k or even k =∞ there exists a diffeomorphism of T2×S2 with exactly k intermingled basins.
In [IKS08] and [Ily08] the authors give examples of open subset of C1 diffeomorphisms with C1

topology where all diffeomorphisms have two intermingled basins (in fact the latter paper contains
the first published proof of Kan’s result).

1.4 The content of the dissertation
The goal of the dissertation is to launch the study of ergodic properties of Kan’s type transform-
ations with the emphasis on limit theorems. Our research was restricted to the case of step skew
products over Bernoulli shift (thus to the setting of [GH17] and [SZ16]). This case reduces to the
study of the corresponding Markov processes, and to use some standard techniques in probability
theory.

Chapter 2 contains basic info about this kind of processes. This is a collection of results from
previous papers, mainly [GH17] and [SZ16]. Although the form of presentation is rather new, no
result is due to myself in this chapter.

The main theorem of mine is that the Markov processes under consideration have exponential
decay of correlations assuming that diffeomorphisms are of class C2. The whole Chapter 3 is
devoted to the proof and consequences of this result and is due to me, however one should take into
account that some ideas are borrowed from previous paper [CS20b] without explicit mentioning.

Chapter 4 is devoted to the analysis of systems of homeomorphisms. It is the result of work of
mine and Tomasz Szarek ([CS20b]).

In Chapter 5 we study the case when transition probabilities are place-dependent. The situation
arise when some g-measures are considered on Kan’s diffeomorphisms. The content is a part of my
paper [Czu20].

The results of Chapter 3 are based on the result that volume Lyapunov exponents are negative
(Lemma 4.1 in [GH17]). Since in [GH17] only a sketch of proof is given, an appendix is included
here in which the details are filled.
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Chapter 2

Basic facts about systems of
homeomorphisms with
place-independent probabilities

2.1 The definition of the process and the average Lyapunov
exponents

Let f1, . . . , fm be increasing homeomorphisms of the interval (0, 1), and let p1, . . . , pm be positive
numbers summing up to 1 (in the sequel every m-tuple of numbers with this property will be
referred to as a probability vector). Let us fix also a Borel probability measure µ with µ

(
(0, 1)

)
= 1.

The present chapter is intended to study stochastic processes defined as follows. In the first
step draw a point X0 with respect to the probability distribution µ. After that, pick one of the
homeomorphims randomly according to the assigned probability vector and independently of the
choice of X0, and move to the point X1 := fi(X0), where fi is the outcome of the drawing.
Then repeat the latter step: pick homeomorphisms with respect to the assigned probability vector
and independently of the previous drawings. If the result at the step n is fi, move to the point
Xn+1 := fi(Xn).

It is evident that the designed process is a Markov process with the initial distribution µ. Its
transition probabilities, which may be easily found, are of the form

m∑
i=1

piδfi(x). (∗)

Our purpose is to give a general picture of how the behaviour of this random walk depends on
the transformations fi. The theorems presented in this chapter are the result of work of several
mathematicians: Alsedà, Misiurewicz, Volk, Kleptsyn, Gharaei, Homburg, Szarek and Zdunik. In
Section 2.8 more exact description is provided.

First of all, let us observe that it may happen that transformations are chosen in such a way
that the investigation of the behaviour of the process is actually reduced to the study of one or
more simpler systems as explained below.

12



Figure 2.1

Example 1. Let us consider two interval homeomorphisms each with exactly one fixed point at
1/2 (see the box on the left on Figure 2.1). In that case there are two invariant subintervals, and
the analysis of the random walk is reduced to the analysis of the system on each of the invariant
subintervals.

Example 2. Let f1 has exactly one fixed point at 1/2 and satisfies f1(x) < x for x > 1/2 and
f1(x) > x for x < 1/2. Let f2 satisfies f2(x) > x for x ∈ (0, 1) (see the middle box in Figure 2.1).
It is easy to see that whatever the starting point is, the sequence eventually gets to [1/2, 1) and
stays there forever. Therefore, similarly to the previous example, investigation of the random walk
on the whole interval (0, 1) is reduced to the investigation of the random walk on (1/2, 1). Note
the latter system is not a system of homeomorphisms anymore.

Example 3. This time we request both homeomorphisms to be under diagonal (see the right box
on Figure 2.1). It is easy to show that Xn → 0 almost surely.

To exclude situations like above we assume in the sequel that

for every x ∈ (0, 1) there exist i, j with fi(x) < x < fj(x). (A1)

It will turn out that the behaviour of the process depends strongly on the properties of the
transformations fi close to zero and one. To formulate a suitable condition we introduce the second
assumption that1

every fi is differentiable at 0 and 1, and all derivatives are nonzero. (A2)

This assumption allows us to define quantities called the average Lyapunov exponents

Λ0 :=

m∑
i=1

pi log f ′i(0) and Λ1 :=

m∑
i=1

pi log f ′i(1),

which for short we shall refer to as Lyapunov exponents at 0 or 1, respectively. Observe that
log f ′i(0) < 0 when 0 is an attractive fixed point of fi and log f ′i(0) > 0 when repelling. Therefore
Λ0 < 0 means intuitively that 0 is attracting in average, whereas Λ0 > 0 means 0 is repelling in
average. Bearing that in mind, the statements of the main theorems in the present section should
not be surprising. The analysis will be preceded with two propositions concerning the behaviour
of the process in the neighbourhood of 0 when Λ0 < 0 and when Λ0 > 0.

1We state it by abuse of notation. The homeomorphisms transform (0, 1) onto itself and formally the derivative
at 0 or 1 cannot be defined. However, it is clear that any homeomorphisms of (0, 1) may be uniquely extended to
a homeomorphism of [0, 1] and this correspondence is one to one. This gives the derivatives at 0 and 1 the strict
meaning.

13



2.2 The behaviour in the neighbourhood of 0 when Λ0 < 0

Λ0 < 0

X0 ξ ζ

0

Figure 2.2: If (Xn) starts from (0, ξ), then at least half of its total mass never escapes (0, ζ].

Proposition 2.1. Let Λ0 < 0. Then for every ζ > 0 there exists 0 < ξ < ζ such that a Markov
process (Xn) defined on some probability space (Ω,F ,P) with transition probabilities (∗) and X0 ≤ ξ
a.s. satisfies

P
( ⋂
n≥0

{Xn ≤ ζ}
)
≥ 1/2.

f2

f1

a2x

a1x

ζ

Figure 2.3

Proof. Without loss of generality we may as-
sume ζ to be as close to zero as we wish. In
particular we may assume that one can find (by
Λ0 < 0 and the definition of derivative) positive
numbers a1, . . . , am with (see Figure 2.3)

1.
∑m
i=1 pi log ai < 0 and

2. fi(x) ≤ aix for i = 1, . . . ,m and x ≤ ζ.

Consider a function of α defined by α → aα,
where a is certain fixed positive number. The
application of the Taylor formula (at 0) to this
function yields

aα = 1 + α log a+ o(α).

Therefore by
∑m
i=1 pi log ai < 0 there exists α such that

m∑
i=1

pia
α
i =: c < 1. (2.1)

Pick k0 so large that ck0 =: p < 1/4, and take positive ξ with ξ < ζ which is so close to zero that
the transition from (0, ξ] to [ζ, 1) is impossible in less than k0 + 1 steps. Let (Xn) be a Markov
process with transition probabilities (∗) and X0 ≤ ξ a.s., and denote Yn := Xnk0 .

14



ξ ζ

· · ·· · ·

Xk0

X2k0

X3k0

Xnk0

Figure 2.4: The set Cn.

By the choice of k0 it suffices to prove

P
( ⋂
n≥0

{Yn ≤ ξ}
)
≥ 1/2.

To this end observe that for every n and
for almost every ω one can find a sequence
i1, . . . , ik0 ∈ {1, . . . ,m} such that Yn(ω) = fik0 ◦
· · · ◦ fi1(Yn−1(ω)). In this way we can define a
random variable An(ω) := aik0 · · · ai1 . Notice
the choice of An is not necessarily unique2, but
surely it can be defined to be measurable with
respect to the σ-field σ(Y1, . . . , Yn).

By (2.1) we obtain

E(Aαn|Yn−1) =
∑

i1,...,ik0

pik0 · · · pi1a
α
ik0
· · · aαi1 =

m∑
i=1

pia
α
i

∑
i1,...,ik0−1

pik0−1
· · · pi1aαik0−1

· · · aαi1

= c
∑

i1,...,ik0−1

pik0−1
· · · pi1aαik0−1

· · · aαi1 .

Proceeding in this manner gives

E(Aαn|Yn−1) = ck0 = p < 1/4.

Now, define Bn := {Yn ≤ ξ} and Cn := B1 ∩ · · · ∩Bn (see Figure 2.4). By the definition of the
numbers ai and ζ we have {Yn−1 < ζ} ⊆ {Yn < AnYn−1}. Hence

{Yn > ξ} ∩ Cn−1 ⊆ {AnYn−1 > ξ} ∩ Cn−1

for every n, which implies

P
(
{Yn > ξ} ∩ Cn−1

)
≤ P

(
{AnYn−1 > ξ} ∩ Cn−1

)
≤ P

(
{AnAn−1Yn−2 > ξ} ∩ Cn−1

)
≤ . . . ≤ P

(
{An · · ·A1Y0 > ξ} ∩ Cn−1

)
≤ P

(
{An · · ·A1ξ > ξ} ∩ Cn−1

)
= P

(
{An · · ·A1 > 1} ∩ Cn−1

)
≤
∫

Ω

(An · · ·A1)αdP,

where the last step is the Chebyshev inequality.
To proceed recall that E(Aαn|Yn−1) = p. Thus∫

Ω

(An · · ·A1)αdP =

∫
Ω

E
(

(An · · ·A1)α|Yn−1, . . . Y1

)
dP =

∫
Ω

(An−1 · · ·A1)αE
(
Aαn|Yn−1

)
dP

= p

∫
Ω

(An−1 · · ·A1)αdP.

2Since it may happen that aik0 · · · ai1 = ajk0
· · · aj1 for two different sequences (i1, . . . , ik0

), (j1, . . . , jk0
)
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The induction argument combined with the preceding estimate gives P
(
{Yn > ξ} ∩ Cn−1

)
<∑∞

n=1 p
n <

∑∞
n=1

1
4n . Thus

P
( ⋂
n≥0

{Yn ≤ ξ}
)

= 1− P
( ⋃
n≥1

{Yn > ξ}
)

= 1−
∞∑
n=1

P
(
{Yn > ξ} ∩ Cn−1

)
> 1−

∞∑
n=1

1/4n = 1/2.

Remark 1. Obviously, we can assume that Λ1 < 0. Then the symmetric version of the statement
remains true.

2.3 The behaviour in the neighbourhood of 0 when Λ0 > 0

Λ1 > 0
ζ

1

x

Figure 2.5: Trajectory comes back to (0, ζ) almost surely.

Proposition 2.2. If Λ0 > 0, then for every ζ ∈ (0, 1) a Markov chain (Xn) with transition
probabilities (∗) and starting from some point x ∈ (0, 1) visits the set (ζ, 1) infinitely many times
almost surely.

f2

f1

a2x

a1x

ξ

Figure 2.6

Proof. Exactly like in the proof of the preceding
proposition we can find (using Λ1 > 0 and the
definition of derivative) numbers a1, . . . , am and
ξ > 0 with

1.
∑m
i=1 pi log ai > 0 and

2. fi(x) ≥ aix for i = 1, . . . ,m and x ≤ ξ.

The first condition may be written in the form∑m
i=1 pi log a−1

i < 0, thus again we can find
α > 0 with

m∑
i=1

pia
−α
i =: c < 1.
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Fix x ∈ (0, 1). Let (Xn) denote the Markov process with transition probabilities (∗) and
starting from the point x. For positive integers n, k put

Ckn := {Xn < ξ} ∩ · · · ∩ {Xn+k < ξ}.

For every n and almost every ω one can find an index i ∈ {1, . . . ,m} such that Xn(ω) =
fi(Xn−1(ω)). In this way we can define a random variable An(ω) := ai. The choice of An is not
necessarily unique but it may be done to be measurable with respect to the σ-field σ(X1, . . . , Xn).
It is readily seen from the definition of the numbers ai that

{Xn−1 < ξ} ⊆ {Xn > AnXn−1}

and consequently

Ckn = Ck−1
n ∩ {Xn+k < ξ} ⊆ Ck−1

n ∩ {ξ > An+kXn+k−1}

= Ck−2
n ∩ {Xn+k−1 < ξ} ∩ {ξ > An+kXn+k−1} ⊆ Ck−2

n ∩ {ξ > An+kAn+k−1Xn+k−2}

⊆ · · · ⊆ {ξ > An+k · · ·An+1Xn}. (2.2)

The proof of the assertion for the particular value ζ = ξ is completed by showing that P(Ckn)→ 0
as k →∞ for any fixed n. This implies the assertion as

P(lim inf{Xn > 1− ξ}) = P
( ∞⋃
n=1

∞⋂
k=n

Ckn

)
≤
∞∑
n=1

P
( ∞⋂
k=n

Ckn

)
= 0.

a x 1− a

u 1− u

Figure 2.7: Xn is contained in [u, 1− u] a.s.

Fix n ≥ 1. The random variable Xn is contained in some set (u, 1 − u), where u > 0, since
X0 = x almost surely (see Figure 2.7). By this fact and (2.2) we have

P(Ckn) ≤ P
(
ξ > An+k · · ·An+1Xn

)
≤ P

(
ξ > An+k · · ·An+1u

)
≤ P

(
(An+k · · ·An+1)−α >

(
ξ/u
)−α) ≤ (ξ/u)αE(An+k · · ·An+1)−α.

The last inequality is the Chebyshev inequality. It remains to estimate the last expression. For
k > 1 we have∫

Ω

A−αn+k · · ·A
−α
n+1dP =

∫
Ω

E
(
A−αn+k|Xn+k−1, · · · , Xn

)
A−αn+k−1 · · ·A

−α
n+1dP

=

∫
Ω

( m∑
i=1

pia
−α
i

)
A−αn+k−1 · · ·A

−α
n+1dP = c

∫
Ω

A−αn+k−1 · · ·A
−α
n+1dP.
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Continuing in this fashion yields
P(Ckn) ≤

(
ξ/u
)−α

ck. (2.3)

ξ ζ

· · ·· · ·

T1

T2

Tn

Figure 2.8

It is evident that the statement remains true for any ζ less or equal to ξ. Assume contrary to
the claim that there exists ζ ∈ (ξ, 1) and r > 0 such that Xn ≤ ζ for n ≥ r is an event of positive
probability. We find, by assumption (A1), some k0 and some β > 0 depending only on ξ and ζ
with P(Xn+k0 > ζ|Xn > ξ) > β . Let (Tn) be a sequence of increasing stopping times greater
than r with XTn > ξ and Tn+1 > Tn + k0 for every positive integer n. It is possible to find such
sequence as the process (Xn) visits (ξ, 1) infinitely many times from the first part of the proof (see
Figure 2.8). Again a simple conditioning argument yields

P(Xn ≤ ζ for all n ≥ r) ≤ P
( k⋂
n=1

{XTn+k0 ≤ ζ}
)

= EE
( k∏
n=1

1{XTn+k0
≤ζ}

∣∣∣∣FTk)

= E
( k−1∏
n=1

1{XTn+k0
≤ζ}E(1{XTk+k0

≤ζ}|FTk)

)
≤ P

( k−1⋂
n=1

{XTn+k0 ≤ ζ}
)

(1− β) ≤ (1− β)k

for every k, which leads to a contradiction.

The estimation of the measure of Ckn holds also when n = 0. Therefore the following proposition
is a by-product of (2.3).

Proposition 2.3. If Λ0 > 0, then there exists α ∈ (0, 1) such that for every ζ > 0 sufficiently
small and for a Markov process (Xn) with transition probabilities (∗) and starting point x < ζ we
have

P
( n⋂
k=1

{Xk < ζ}
)
≤ ζα/xαcn.

Proposition 2.3 will be used in Chapters 3 and 4.

Remark 2. As in the previous section, in both propositions we may assume that Λ1 > 0. Then the
symmetric versions of the statements remain true.
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2.4 The behaviour of the random walk when at least one
Lyapunov exponent is negative and both are non zero

We are in position to formulate the first of two main theorems of the present chapter.

Λ0 > 0 Λ1 < 0

Λ0 < 0 Λ1 > 0

Λ0 < 0 Λ0 < 0

Figure 2.9: The qualitative behaviour under various combinations of values of the Lyapunov ex-
ponents

Theorem 2.1. Let f1, . . . , fm be a system of homeomorphisms satisfying assumptions (A1), (A2),
and let (p1, . . . , pm) be a probability vector. Let (Zxn) denote a Markov process with transition
probabilities (∗) and starting from the point x in (0, 1).

1. If Λ0 < 0 and Λ1 > 0, then Zxn → 0 a.s. for an arbitrary x ∈ (0, 1).

2. If Λ0 < 0 and Λ1 < 0, then Zxn(ω) → 0 or Zxn(ω) → 1 a.s. for an arbitrary x ∈ (0, 1). If
x ≤ y, then P(Zxn → 1) ≤ P(Zyn → 1). Moreover,

lim
x→0

P(Zxn → 0) = 1 and lim
x→1

P(Zxn → 1) = 1.

Proof. The idea of the proof of the first point in the statement is very clear and simple. Fix
ζ > 0. Let ξ ∈ (0, ζ) stands for the constant in Proposition 2.1, and let x ∈ (0, 1). Since Λ1 > 0
the process visits (0, ξ] infinitely many times, by Proposition 2.2. By Proposition 2.1 after every
visit at most 1/2 of the mass escapes from (0, ζ]. This two facts combined yield that the process
eventually stays in (0, ζ] forever almost surely.

In order to explain the details set Ak to be the event that the number of transitions from (0, ξ]
to (ζ, 1) is at least k. We aim to show that P(Ak+1) ≤ 1/2P(Ak) for every positive integer k. Fix
k, and denote by T the moment of (k + 1)th return of (Zxk ) to (0, ξ], i.e. the kth number n such
that Zxn−1 > ξ and Zxn ≤ ξ (we define the moment of the first visit to be zero in the case when
x ≤ ξ). It is immediate to show that Ak ∈ FT , where FT is the stopping time σ-algebra. We have

P((Ω \Ak+1) ∩Ak) = EP
( ∞⋂
n=1

{ZxT+n ≤ ζ} ∩Ak|FT
)

= E
(
1AkP

( ∞⋂
n=1

{ZxT+n ≤ ζ}|FT
))

.
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The stopping time T is finite a.s. on the set Ak. By the strong Markov property,

P
( ∞⋂
n=1

{ZxT+n ≤ ζ}|FT
)

= P
( ∞⋂
n=1

{ZZ
x
T

n ≤ ζ}
)
,

almost surely on the set Ak. This random variable is greater than 1/2 almost surely by Proposition
2.1. Therefore

P((Ω \Ak+1) ∩Ak) > 1/2E1Ak = 1/2P(Ak).

Consequently

P(Ak+1) = P(Ak+1 ∩Ak) = P(Ak)− P
(
(Ω \Ak+1) ∩Ak)

)
≤ 1/2P(Ak).

Therefore P(
⋂∞
n=1An) = 0, and the number of transitions from (0, ξ] to [ζ, 1) is finite almost surely.

It has already been observed that Zxn ≤ ξ for infinitely many n’s almost surely by Proposition 2.2,
thus Zxn ≥ ζ for finitely many n’s almost surely. Taking the intersection of such events for ζ = 1/k
completes the proof.

To show the second part let us choose ζ > 0 and apply Proposition 2.1 (and its symmetric
version) to get a number ξ ∈ (0, ζ) such that

P
( ∞⋂
n=1

{Zyn ≤ ζ}
)
≥ 1/2 and P

( ∞⋂
n=1

{Z1−y
n ≥ 1− ζ}

)
≥ 1/2

provided y ≤ ξ. Let x ∈ (0, 1). From the assumption (A1) we conclude that

P(lim inf{ξ ≤ Zxn ≤ 1− ξ}) = 0,

which means that Zxn ∈ (0, ξ) ∪ (1 − ξ, 1) infinitely many times a.s. The reasoning from the first
part of the proof shows that the number of transitions from (0, ξ) to (ζ, 1) and from (1 − ξ, 1) to
(0, ζ) is finite almost surely. Thus

P(lim inf{Zxn ≤ ζ} ∪ lim inf{Zxn ≥ 1− ζ}) = 1.

Taking the intersection of the above events for ζ = 1/k yields the assertion.

We are left to show the properties from the
second part of the statement. To prove the first
one fix two points x < y, and consider a se-
quence of two dimensional random vectors on
some probability space (Ω,F ,P) defined in the
following way: pick randomly a transformation
fi with respect to the distribution (p1, . . . , pm)
and move from (X0, Y0) := (x, y) to (X1, Y1) :=
(fi(X0), fi(Y0)). Then repeat the procedure
with respect to a random vector (X1, Y1). De-
note the process by (Xn, Yn) (Figure 2.10).

0 1Xn Yn

Xn+1Yn+1

fi

Figure 2.10: At each step one fi
is chosen for both Xn and Yn.

Notice that the one dimensional distributions of this two dimensional process are exactly the
distributions of (Zxn) and (Zyn). Furthermore, the probability that Xn < Yn for every positive
integer is equal to one since fi’s are increasing. This implies that P(Yn → 1) ≥ P(Xn → 1). The
observation that the assertion does not depend on a probability space but on distribution only
completes the proof of the first property.
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0 x ξ2 ζ2 ξ1 ζ1

Figure 2.11: At most 1/2 of total
mass gets to (ζ2, 1), and at most
1/4 of total mass gets to (ζ1, 1).

To show the second property fix arbitrary
ζ1 > 0 and pick ξ1 ∈ (0, ζ1) given by Propos-
ition 2.1. Then take ζ2 < ξ1 so close to zero
that fi(ζ2) < ξ1 whatever i is (and hence the
transition from (0, ζ2] to (ξ1, 1) is impossible in
one step). Once again denote by ξ2 the number
given in Proposition 2.1 for ζ = ζ2. Let x < ξ2
(see Figure 2.11). By Proposition 2.1 the prob-
ability that Zxn visits [ζ2, 1) at least one time is
less that 1/2. Let T be the moment of the first
visit in [ζ2, 1).

We have

P
( ∞⋃
n=1

{Zxn > ζ1}
)

= EP
( ∞⋃
n=1

{ZxT+n > ζ1} ∩ {T <∞}|FT
)

= E
(
1{T<∞}P

( ∞⋃
n=1

{ZxT+n > ζ1}|FT
))

.

By the strong Markov property

P
( ∞⋃
n=1

{ZxT+n > ζ1}|FT
)

= P
( ∞⋃
n=1

{ZZ
x
T

n > ζ1}
)
,

on {T < ∞}. The transition from (0, ζ2) to (ξ1, 1) is impossible in one step thus ZxT ≤ ξ1 a.s.
Hence by Proposition 2.1 we have

P
( ∞⋃
n=1

{ZZ
x
T

n > ζ1}
)
< 1/2

almost surely on {T <∞}. Hence

P
( ∞⋃
n=1

{Zxn > ζ1}
)
< 1/2 · P(T <∞) < 1/4,

as P(T <∞) < 1/2 again by Proposition 2.1.
One can proceed with the construction of the sequence ζ1 > ξ1 > ζ2 > ξ2 > ζ3 > ξ3 > . . . in the

same way. Then P(Zxn → 0) > 1−1/2k provided x ≤ ξk a.s. The fact that limx→1 P(Z1−x
n → 1) = 1

may be proven in the same manner.

2.5 Stationary processes
In order to explore the dynamics in the case when Λ0,Λ1 > 0 we introduce the notion of a stationary
process.

Definition. A stochastic process (Xn)n (indexed by non-negative integers) defined on some prob-
ability space (Ω,F ,P) with values in a measurable space (S,B) is called stationary if for every
positive integers k, n and measurable subsets A0, . . . , Ak of S we have the equality

P(X0 ∈ A0, . . . , Xk ∈ Ak) = P(Xn ∈ A0, . . . , Xn+k ∈ Ak).
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Remark 3. The process in the definition is indexed by non negative integers but it may be assumed
to be indexed by integers as well. The only change then is that n is an arbitrary integer.

In particular for an arbitrary stationary process (Xn) the value of P(Xn ∈ A) does not depend on
n, where A is a fixed measurable subset of S. The significance of stationary processes follows from
the Birkhoff ergodic theorem, which we are going to invoke. To this end it is necessary to define
the σ-algebra of invariant subsets of S∞. Denote by θ the shift transformation on S∞.

Definition. A measurable3 subset A of S∞ is said to be invariant if θ−1(A) = A. The set of all
invariant subsets forms a σ-algebra (see [Kal02], the beginning of Chapter 9) denoted here by I ′.

Denote by X the transformation ω → (X1(ω), X2(ω), . . .) ∈ S∞. It is quite simple to show that
X is a measurable transformation4, therefore it defines the σ-algebra I of measurable subsets of Ω
which are preimages of the subsets of I ′ by X.

Definition. A process (Xn) is said to be ergodic if all subsets of I have probability either zero or
one.

We are in position to formulate the Birkhoff ergodic theorem.

Theorem (The Birkhoff ergodic theorem, Theorem 10.6 in [Kal02]). Let (Xn) be a stationary
stochastic process, and let ψ be a real valued, measurable function on S∞. Then

1

n

(
ψ(θn−1X) + · · ·+ ψ(X)

)
→ E(ψ(X)|I) a.s.

In particular ψ may be taken to be a function which takes value one if the first coordinate belongs
to some measurable subset A of S and zero otherwise. Then Birkhoff ergodic theorem yields

#{i ≤ n : Xi ∈ A}
n

→ E(1A(X)|I) a.s.

This gives a description of the statistical behaviour of the stationary process (Xn).
The present chapter is devoted to the study of Markov processes. It is natural to ask whether

a Markov process may be a stationary process and when it occurs.

Proposition. Let (Xn) be a Markov process with values in some measurable space (S,B) with the
transition probabilities p(x, ·), x ∈ S. Then (Xn) is stationary if and only if the one-dimensional
distributions are the same, i.e. the law of Xn is independent of n.

Proof. It is clear that the one-dimensional distributions of a stationary process are the same. Let
A0, . . . , Ak be measurable subsets of S. Then

P(Xn ∈ A0, . . . , Xn+k ∈ Ak)

=

∫
A0

µn(dx)

∫
A1

p(x0, dx1)

∫
A2

p(x1, dx2) . . .

∫
Ak−1

p(xk−1, Ak),

where µn denotes the distribution of Xn. It is evident from the formula that if µn is independent
of n, then the value of P(Xn ∈ A0, . . . , Xn+k ∈ Ak) is independent of n as well.

3Measurable means measurable with respect to the product σ-algebra of the σ-algebra B.
4The preimage of a measurable subset of S∞ is F-measurable.
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For a Markov process (Xn) the distribution of E(Xn+1|Xn = x) is p(x, ·), x ∈ S, thus
E(Xn+1|Xn = x) is independent of time. This implies that all one-dimensional distributions are
the same provided the distributions of X0 and X1 are the same. It is reasonable then to introduce
an operator P on the space of all measures on (S,B) with the property that the distribution of X2

is Pµ provided the distribution of X1 is µ.

Definition. Let M denote the space of all probability measures on (S,F). The Markov operator
P :M→M corresponding to the family of transition probabilities p(x, ·), x ∈ S is defined by the
formula

Pµ(A) =

∫
S

p(x,A)µ(dx).

In particular, if the transition probabilities are given by (∗), then

Pµ(A) =

m∑
i=1

piµ(f−1
i (A)). (2.4)

When a Markov operator P is given it is convenient also to introduce the dual operator U
acting on the space of bounded measurable functions. This operator is sometimes called a transfer
operator.

Definition. The operator U acting on the space B(S) of measurable real functions on (S,B) defined
by the formula

Uψ(x) =

∫
S

ψ(y)p(x, dy), x ∈ S,

is called a dual operator of the Markov operator P corresponding to transition probabilities p(x, ·),
x ∈ S. In particular if the transition probabilities are given by (∗), then it takes the form

Uψ(x) =

m∑
i=1

piψ(fi(x)).

Moreover,
Uψ(x) = E(ψ(X1) | X0 = x)

and
Unψ(x) = E(ψ(Xn) | X0 = x)

for n ≥ 1.

The name “dual” is due to the following property.

Proposition. If ψ ∈ B(S) and µ ∈M, then∫
S

ψdPµ =

∫
S

Uψdµ.

Proof. By the Fubini theorem∫
S

ψ(y)Pµ(dy) =

∫
S

∫
S

ψ(y)p(x, dy)µ(dx) =

∫
S

Uψ(x)µ(dx).
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It is trivial that U is a bounded operator on B(S) with the supremum norm (moreover, its norm
is equal to 1). We finish the section with the following definition.

Definition. The Markov operator P corresponding to transition probabilities p(x, ·), x ∈ S is a
Markov-Feller or Feller operator if its dual operator U preserves the space of continuous functions
C(S) on S.

Since fi’s are homeomorphisms the Markov operators corresponding to the processes with the
family of transition probabilities (∗) are always Markov-Feller operators.

2.6 The behaviour of the random walk when both Lyapunov
exponents are positive

In the case when Λ0,Λ1 > 0 one can indicate a measure which turns out to be a stationary distri-
bution. To this end observe that if the system f1, . . . , fm with probability vector (p1, . . . , pm) has
positive average Lyapunov exponents at 0 and 1, then the system of inverse functions (f−1

1 , . . . , f−1
m )

with the same probability vector has negative average Lyapunov exponents at 0 and 1, and The-
orem 2.1 holds. Define the function G on the real line by G(x) = 0 for x ≤ 0, G(x) = 1 for x ≥ 1
and

G(x) = P(Y xn → 1) for x ∈ (0, 1),

where (Y xn ) denotes the Markov process corresponding to the system of inverse functions and
starting from the point x. From Theorem 2.1 one conclude the following properties of G:

• 0 ≤ G(x) ≤ 1,

• limx→0G(x) = 0 and limx→1G(x) = 1,

• G is increasing.

According to the above G is almost a cumulative distribution function (note the lack of right- or
left-continuity). Observe that

G(x) = P(Y xn → 1) = EP(Y xn → 1|Y x1 ) = EG(Y x1 ).

Since Y x1 = f−1
i (x) with probability pi, i = 1, . . . ,m, we obtain

G(x) = EG(Y x1 ) =

m∑
i=1

piG(f−1
i (x)), (2.5)

which is exactly the condition (2.4) for A = (0, x]. Thus if we manage to show that G is continuous,
then the existence of a stationary distribution follows (clearly if two measures are equal on sets of
the form (0, x], then the measures are equal).

Theorem 2.2. Let f1, . . . , fm be a system of homeomorphisms satisfying (A1), (A2). If the
probability vector (p1, . . . , pm) is such that Λ0,Λ1 > 0, then there exists a unique measure µ such
that the Markov process (Xn) with the transition probabilities (∗) and with the law of X0 equal
to µ is stationary. The measure µ is atomless. Moreover, a Markov process (Yn) with transition
probabilities (∗) and arbitrary initial distribution is stable, which means that the law of Yn tends
to µ in the weak-∗ topology.
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Remark 4. The existence of a unique stationary distribution is equivalent to the existence of
a unique fixed point of P . The stability of the process (Yn) with the initial distribution ν is
equivalent to the convergence of (Pnν) to µ in the weak-∗ topology.

Proof. We start with proving that G is a cumulative distribution function. It will be done by
showing its continuity. By (2.5) this implies that µ is stationary and that µ has no atoms.

a f−1
i (a)f−1

j (a)

· · ·
· · ·

Figure 2.12

f−1
i1

(a) (fi1 ◦ · · · ◦ fik)−1(a)a

1

· · ·
· · ·

Figure 2.13

Assume contrary that G(a+) − G(a−) > 0 for some a ∈ (0, 1). We can assume that a is the
number which maximizes the value of G(x+)−G(x−), x ∈ (0, 1) (it exists as G is increasing and
bounded). The condition (2.5) leads to the equation

G(a+)−G(a−) =

m∑
i=1

pi
(
G(f−1

i (a)+)−G(f−1
i (a)−)

)
.

The right-hand side is a convex combination, and G(x+)−G(x−), x ∈ (0, 1), attains the maximum
value at a. Thus it necessarily holds (see Figure 2.12) that

G(f−1
i (a)+)−G(f−1

i (a)−) = G(a+)−G(a−)

for i = 1, . . . ,m. In the same manner we can show that G((fj ◦ fi)−1(a)+)−G((fj ◦ fi)−1(a)−) =
G(a+)−G(a−) for i, j = 1, . . . ,m and, generally,

G((fi1 ◦ · · · ◦ fik)−1(a)+)−G((fi1 ◦ · · · ◦ fik)−1(a)−) = G(a+)−G(a−)

for every k and i1, . . . , ik ∈ {1, . . .m}. By assumption (A1) one can find infinitely many finite
sequences (i1, . . . , ik) such that the points {(fi1 ◦ · · · ◦ fik)−1(a)} are pairwise different (see Figure
2.13), hence it gives infinitely many pairwise different points x with the same positive value of
G(x+) − G(x−), which contradicts the fact that G is increasing and G(1) − G(0) = 1. It proves
the existence of a stationary atomless distribution µ.

Uniqueness of µ will be a consequence of stability. To show the stability, in turn, let us first fix
a process (Yn) with transition probabilities (∗) starting from a point x ∈ (0, 1). To show the weak-∗
convergence of the distribution of Yn to µ as n→∞, we first prove that P(Yn ∈ (a, b))→ µ((a, b))
for any interval (a, b) ⊆ (0, 1). This may be deduced from the fact that P(Yn ≤ a)→ µ((0, a)) and
P(Yn < b)→ µ((0, b)) as n goes to infinity.

To prove the first statement fix a ∈ (0, 1), and define the Markov process (Zn) starting from a
but corresponding to the system of inverse functions with the same probability vector. Certainly
we can assume that (Zn) and (Yn) are defined on the same probability space. From the fact that
fi’s are increasing we deduce that P(Yn ≤ a) = P(Zn ≥ x), which tends to G(x) by the definition
of G. This is the desired claim. The proof of P(Yn < b) → µ((0, b)) as n → ∞ is the same. Note
the stability of the process starting from a point x is equivalent to the claim that Unψ(x)→

∫
ψdµ

pointwise for any ψ ∈ C
(
(0, 1)

)
. Indeed, Unψ(x) =

∫
(0,1)

Unψ(y)δx(dy) =
∫

(0,1)
ψ(y)Pnδx(dy).
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Finally if (Yn) has an arbitrary distribution ν ∈ M
(
(0, 1)

)
, then by the Lebesgue convergence

theorem ∫
(0,1)

ψ(x)Pnν(dx) =

∫
(0,1)

Unψ(x)ν(dx)→
∫

(0,1)

ψ(x)µ(dx).

This completes the proof.

2.7 Synchronization
Let us consider a specific probability space on which the processes under consideration are defined
(in the sequel we shall use this model frequently). Let Ω := {1, . . . ,m}N, let F be the standard
product σ-algebra, and let P be the product measure of (p1, . . . , pm).

Let us assume the system f1, . . . , fm with the probability vector (p1, . . . , pm) to have positive
Lyapunov exponents at 0 and 1. The system of inverse functions f−1

1 , . . . , f−1
m with the same

probability vector has negative Lyapunov exponents at 0 and 1. The processes corresponding
to both systems (assumed to start from some point x ∈ (0, 1)) may be defined on (Ω,F ,P) by
ω → fωn ◦ · · · ◦ fω1

(x) and ω → f−1
ωn ◦ · · · ◦ f

−1
ω1

(x), n ≥ 0.
Take S to be an arbitrary dense and countable subset of (0, 1). By Theorem 2.1 we can define

the subset Ω̃ of Ω (of full P measure) by

Ω̃ :=
⋂
x∈S

{
ω ∈ Ω : f−1

ωn ◦ · · · ◦ f
−1
ω1

(x)→ 0 or f−1
ωn ◦ · · · ◦ f

−1
ω1

(x)→ 1

}
.

Since the intersection of the decreasing sequence of subsets {ω ∈ Ω̃ : f−1
ωn ◦ · · · ◦ f

−1
ω1

(1− 1/k)→ 0}
(indexed by k) has probability 0 (again by Theorem 2.1), we deduce that for every ω ∈ Ω̃ there
exist x1, x2 ∈ S, x1 < x2, such that f−1

ωn ◦ · · · ◦ f
−1
ω1

(x1) → 0 and f−1
ωn ◦ · · · ◦ f

−1
ω1

(x2) → 1. Let us
define a function from Ω̃ to (0, 1) by the formula

xω := sup{x ∈ S : f−1
ωn ◦ · · · ◦ f

−1
ω1

(x)→ 0}.

Since S is dense, it may be written equivalently by

xω = inf{x ∈ S : f−1
ωn ◦ · · · ◦ f

−1
ω1

(x)→ 1}.

Fix t ∈ (0, 1), and observe that P({ω ∈ Ω : xω ≤ t}) = P({ω ∈ Ω : f−1
ωn ◦ · · · ◦ f

−1
ω1

(t) → 1}) thus
the distribution of the random variable ω → xω is µ (cf. Section 2.6).

Take ε > 0. By the definition of the function ω → xω for every ξ > 0 we have

P
(
{f−1
ωn ◦ · · · ◦ f

−1
ω1

(xω − ε/2) < ξ} ∩ {f−1
ωn ◦ · · · ◦ f

−1
ω1

(xω + ε/2) > 1− ξ}
)
→ 1

as n→∞. Equivalently

P
(
{xω − ε/2 < fω1 ◦ · · · ◦ fωn(ξ)} ∩ {xω + ε/2 > fω1 ◦ · · · ◦ fωn(1− ξ)}

)
→ 1 (2.6)

for every ξ > 0 and thus

P
(
|fω1
◦ · · · ◦ fωn(ξ)− fω1

◦ · · · ◦ fωn(1− ξ)| < ε
)
→ 1

as n goes to infinity. Since P is a product measure we can reverse the order of the sequence
ω1, · · · , ωn above and rewrite it equivalently

P
(
|fωn ◦ · · · ◦ fω1(ξ)− fωn ◦ · · · ◦ fω1(1− ξ)| < ε

)
→ 1
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0 1xω − ε/2 xω + ε/2

0 1

ξ 1− ξ

Figure 2.14: For every ω ∈ S the
dynamics parts interval into to
pieces: (0, xω) and (xω, 1).

for every ξ > 0 as n goes to infinity.
Hence we have just proven that if a system f1, . . . , fm with (p1, . . . , pm) has positive Lyapunov

exponents at 0 and 1, then for every ξ > 0 the sequence of random variables

(ω, n) 7−→ |fωn ◦ · · · ◦ fω1
(ξ)− fωn ◦ · · · ◦ fω1

(1− ξ)|

converges to zero in probability. We call a system synchronizing if this convergence holds almost
surely.

The synchronization of an arbitrary system of C2 diffeomorphisms with positive Lyapunov
exponents has been proven by Gharaei and Homburg [GH17].
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0
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1

Figure 2.15: The system f1(x) =
x2 + 2

3x(1 − x)2 and f2(x) =
1 − f1(1 − x) with the probab-
ility vector (1/2, 1/2).
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Figure 2.16: The plot of
1/2 log f ′1(x) + 1/2 log f ′2(x).
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Theorem 2.3 (Theorem 4.1 in [GH17]). Let f1, . . . , fm be C2 orientation preserving diffeomorph-
isms of [0, 1] satisfying (A1) and (A2). If (p1, . . . , pm) is such that Λ0, Λ1 are positive, then

|fnω (x)− fnω (y)| → 0 a.s.

for every x, y ∈ (0, 1).

The proof relies on the following theorem (see Figure 2.15 and 2.16)

Theorem 2.4 (Lemma 4.1 in [GH17]). Let f1, . . . , fm be C2 orientation preserving diffeomorph-
isms of [0, 1] satisfying (A1) and (A2). If (p1, . . . , pm) is such that Λ0, Λ1 are positive, then the
volume Lyapunov exponent (with respect to the unique stationary distribution µ)

m∑
i=1

pi

∫
[0,1]

log f ′i(x)µ(dx)

is negative.

The history of the latter theorem goes back to works of Ledrappier ([Led86]), Baxendale
([Bax89]) and Crauel ([Cra90]). Malicet proved in 2014 an analogue of the Baxendale theorem
in non smooth setting [Mal17], which may be used to prove the synchronization for systems of
homeomorphisms with positive Lyapunov exponents at 0 and 1.

u v

Σ̃u,v

Σx

Figure 2.17: The red intervals are the images of I.
Their length decreases exponentially fast.

Theorem 2.5 (cf. Corollary 2.13 in [Mal17]). Let f1, . . . , fm be interval homeomorphisms. Let
(p1, . . . , pm) be such that

• there exists no nontrivial subinterval of (0, 1) which is invariant by all fi’s, and

• there exists a measure µ with µ((0, 1)) = 1 which is stationary for the random walk,

then there exist q < 1 such that for every x ∈ (0, 1) and for almost every ω ∈ Ω there exits an open
neighbourhood I of x such that

|fnω (I)| ≤ qn for every n ≥ 1. (2.7)

Corollary 2.1 (cf. [CWSS20]). Let f1, . . . , fm be interval increasing homeomorphisms satisfying
(A1) and (A2). If (p1, . . . , pm) is such that Λ0,Λ1 > 0, then

∑∞
n=1 |fn(x)− fn(y)| <∞ for every

x, y ∈ (0, 1). In particular the system is synchronizing.
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Proof of the Corollary. Recall that the distribution of the random variable ω 7−→ xω is µ. Let
us take x ∈ supp(µ) and take a neighbourhood I of x such that (2.7) holds for ω ∈ Σx, where
P(Σx) =: γ > 0.

Set β := µ(I)γ/2. For any u, v ∈ (0, 1), u < v, we may find a set Σu,v ⊂ Ω with P(Σu,v) ≥ β
such that

∞∑
n=1

|fnω (u)− fnω (v)| <∞ for ω ∈ Σu,v. (2.8)

Indeed, take u, v ∈ (0, 1), u < v. By (2.6), the stability (Theorem 2.2), the fact that µ(I) > 0

and ω 7−→ xω is µ there exist an integer k0 and a measurable set Σ̃u,v of sequences of length k0

of measure5 P(Σ̃u,v) > µ(I)/2 and such that fk0(u), fk0(v) ∈ I. Let Σu,v = Σ̃u,v × Σx. Then
P(Σu,v) ≥ µ(I)β/2 and (2.8) holds.

Fix x, y ∈ (0, 1). Set

A := {ω ∈ Ω :

∞∑
n=1

|fnω (x)− fnω (y)| <∞},

and assume, contrary to our claim, that P(A) < 1. Choose a compact subset A′ ⊂ Ω \ A such
that α := P(A′) > 0. Let Σ1, . . . ,ΣM , M ∈ N, be disjoint cylinders such that A′ ⊂

⋃M
i=1 Σi and

P(
⋃M
i=1 Σi\A′) < βα. Let Σi = (ωi1, . . . , ω

i
ni)×Ω for i ∈ {1, . . . ,M}. We set ui := fωini

◦· · ·◦fωi1(x)

and vi := fωini
◦ · · · ◦ fωi1(y), and define Σ̂i = (ωi1, . . . , ω

i
ni)× Σui,vi ⊂ Σi. Obviously,

∞∑
n=1

|fnω (x)− fnω (y)| <∞

for ω ∈ Σ̂i. Moreover, P(Σ̂i) ≥ βP(Σi), and consequently

P(

M⋃
i=1

Σ̂i) ≥ βP(

M⋃
i=1

Σi) ≥ βP(A′) ≥ βα.

Since P(
⋃M
i=1 Σ̂i \ A′) ≤ P(

⋃M
i=1 Σi \ A′) < βα, we finally obtain that P(

⋃M
i=1 Σ̂i ∩ A′) > 0, which

is impossible due to the fact that
∑∞
n=1 |fnω (x) − fnω (y)| < ∞ for ω ∈

⋃M
i=1 Σ̂i. Hence P(A) = 1,

and the proof is complete.

All known proofs of synchronization rely on some version of the Baxendale theorem. An
elementary proof of this property would be interesting.

2.8 Comments
All theorems and proofs demonstrated so far are the results of work of Alsedà, Misiurewicz, Gharaei,
Homburg, Szarek and Zdunik. More specifically, the problems here were initiated in [AM14], which
in turn is a generalization of [Kan94] and [BM08]. In [AM14] a very specific symmetric system
of two homeomorphisms was considered, and it has been proven that the Lebesgue measure is a
stationary distribution of the process and that the system is synchronizing. The last implies the
stability and the uniqueness of stationary distribution.

A further research was undertaken in [GH17] and [SZ16] independently and roughly at the
same time (prior belongs to [GH17]). Some partial results were obtained by Anna Gordenko in her

5By abuse of notation since by the definition P is a measure on the space of infinite sequences.
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master thesis [Gor15] but under very strong assumptions. It is curious that her interest came from
other direction (see the remark concerning [DKNP13] below). She was not aware of the existence
of [AM14].

The advantage of [SZ16] is that it treats systems consisted of homeomorphisms while in [GH17]
the proofs are restricted to systems of C2 diffeomorphisms. The advantage of [GH17] is it contains
a proof that the uniqueness of a stationary distribution implies the synchronization. It also handles
some cases where one of the Lyapunov exponents is zero (then the non zero exponent determines
the dynamics, see Theorem 5.5 and 6.1 therein; if Λ0 = 0 and Λ1 > 0, then the process tends to 0
almost surely, if Λ0 = 0 and Λ1 < 0, then the process tends to 1 almost surely). It is also proved
there, that if Λ0 = Λ1 = 0, then there is no stationary probability distribution (Theorem 5.4). In
other words, limn→∞

#{i≤n:Xi∈[ξ,1−ξ]}
n = 0 almost surely for every ξ > 0.

When there is no stationary probability distribution, then still some questions about the
ergodic behaviour may be asked. Although for any two compact intervals I and J the limits
limn→∞

#{i≤n:Xi∈I}
n and limn→∞

#{i≤n:Xi∈J}
n are zero, one can ask about the ratio

lim
n→∞

#{i ≤ n : Xi ∈ I}
#{i ≤ n : Xi ∈ J}

.

One can handle this kind of problems using Chacon-Ornstein theorem (see Section 3.8 in [Pet89]),
which says that if P (the Markov operator corresponding to the system) has an invariant ergodic6
measure µ, then the ratio has a limit almost surely being equal to µ(I)/µ(J). Note that this
implies the Birkhoff ergodic theorem if µ is a probability measure. The existence of ergodic P -
invariant measure µ gives the information about the value of the limit for all processes starting
from µ almost every point.

In [DKNP13] the existence and uniqueness of infinite invariant measures for symmetric systems
was proven. In [BBS20] it was generalized to a vast class of systems.

Recently a complete classification of possible backward and forward behaviour of random sys-
tems of homeomorphisms on the real line has been provided by Gordenko [Gor20].

One may ask whether all these results hold when circle homeomorphisms are applied randomly.
This appeared to be much more attractive. In eighties Antonov proved that if the system of
homeomorphisms is forward and backward minimal (there is no nontrivial closed subset invariant
for all homeomorphisms) then exactly one of the following possibilities holds:

• either |fωn ◦ · · · ◦ fω1(x)− fωn ◦ · · · ◦ fω1(y)| → 0 for P almost every ω,

• or the system is topologically conjugated to a system of rotations,

• or there exists a circle homeomorphism θ commuting with all homeomorphisms in the circle.

In the last case the identification of the orbits of θ gives another topological space, which is again
the circle. The system of homeomorphisms factorizes to a new, synchronizing system. In all cases
stationary measure is unique.

Antonov result remained unknown to western mathematicians. It has been rediscovered latter
in [DKN07]. Unique ergodicity for systems with infinite number of circle homeomorphisms has
been proven recently by Łuczyńska [Łuc21]. The central limit theorem for such systems has been
also recently proven by Łuczyńska and Szarek.

6Every invariant subset either is of measure zero or its complement is of measure zero.
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Chapter 3

Ergodic properties of systems of
diffeomorphisms

3.1 The formulation of the main theorem
In Chapter 2 it has been proven that the processes under consideration possess stationary distri-
butions provided Λ0, Λ1 > 0. Usually after establishing basic properties of a stationary process
the questions concerning classical limit theorems arise. Among these the central limit theorem, the
law of the iterated logarithm and the functional central limit theorem are. Chapter 3 is devoted
to this issue.

Take ϕ to be a measurable real function defined on [0, 1]. If (Xn) is a stationary Markov
process, then the process of the form

ϕ(X1) + · · ·+ ϕ(Xn)

is called an additive functional of the process (Xn).
In the classical setting limit theorems hold for partial sums of a sequence of identically distrib-

uted independent random variables. Although the process of the form (ϕ(Xn)) is stationary, the
classical limit theorems are not applicable due to the lack of independence. Nevertheless, Markov
processes are memoryless, which implies, intuitively, that X1 and Xn tend to be independent as n
is growing (the process loses the information on the starting position). It should not be surprising
that criteria establishing limit theorems rely on proving that the larger |i − j| is, the smaller (in
some sense) dependence between ϕ(Xi) and ϕ(Xj) becomes.

To give the strict meaning to this observe that for two independent zero mean random variables
Y and Z we have E(Z|Y = y) = EZ = 0. Thus, given ϕ with

∫
ϕdµ = 0, the L2(µ)-norm of

E(ϕ(Xn)|X1 = x) gives a sort of measure of the independence. If Xn and X0 are close to be
independent, then the norm should be small. Recall that E(ϕ(Xn)|X1 = x) = Unϕ(x) (see Section
2.5). The main result of this chapter is:

Theorem 3.1. Let f1, . . . , fm be interval orientation preserving C2 diffeomorphisms with (A1)
and (A2). If (p1, . . . , pm) is such that Λ0, Λ1 > 0, ϕ is a Lipschitz function with

∫
ϕdµ = 0, then

‖Unϕ‖L2(µ) ≤ Cqn

for some q < 1.
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The essential part of the proof of Theorem 3.1 is the following result, whose demonstration
constitutes the most part of Chapter 3. In the sequel Theorem 3.1 will be used to deduce the
central limit theorem, the law of the iterated logarithm and the functional central limit theorems
for additive functional of the Markov processes under consideration.

Theorem 3.2. If f1, . . . , fm are C2 diffeomorphisms satisfying (A1) and (A2), (p1, . . . , pm) is
such that Λ0,Λ1 > 0 and a ∈ (0, 1/2), then there exist constants C̄3 ≥ 1 and q̄3 < 1 such that

E|Zan − Z1−a
n | ≤ C̄3q̄3

n

for n ≥ 1.

3.2 Auxillary results
First of all, we shall consider the specific model defined already in Section 2.7. Let Ω = {1, . . . ,m}N,
F denote the standard product σ-algebra on Ω, and let P be the product measure of the probability
vector (p1, . . . , pm). The sequence of random variables Zxn(ω) := fωn ◦ · · · fω1(x) indexed by n,
where x ∈ (0, 1) and ω = (ω1, ω2, . . .), is then a Markov process with transition probabilities
(∗) and starting from x. Sometimes we shall use also notation more common for skew products:
fnω (x) := fωn ◦ · · · ◦ fω1

(x) for ω = (ω1, ω2, . . .). Observe that in this particular model we have

|Unϕ(x)− Unϕ(y)| = |E
(
ϕ(Zxn)− ϕ(Zyn))

∣∣ ≤ Lip(ϕ)E
∣∣Zxn − Zyn∣∣, (3.1)

hence the rate of convergence of |Unϕ(x)−Unϕ(y)| to zero may be assessed using synchronization
(note that Lip(ϕ) denotes the Lipschitz constant of ϕ).

In this section we shall use frequently two facts. The first is Proposition 2.3. We have proven
there that (since Λ0 > 0) there exists α ∈ (0, 1) and c < 1 such that for every a > 0 sufficiently
small

P
( n⋂
k=1

{Zxk < a}
)
≤ aα/xαcn (3.2)

for x < a. Since Λ1 > 0, we can also assume α and c to satisfy the analogous property in the
neighbourhood of 1, which takes the form

P
( n⋂
k=1

{Z1−x
k > 1− a}

)
≤ aα/xαcn, (3.3)

for x < a. The number α may be chosen so close to zero to satisfy also another property. Let us
define

PM,α =
{
µ ∈M

(
(0, 1)

)
: ∀x∈(0,1)µ

(
(0, x]

)
≤Mxα and µ

(
[1− x, 1)

)
≤Mxα

}
.

Proposition 3.1 (Gharaei-Homburg, Szarek-Zdunik). Let f1, . . . , fm be a system of homeomorph-
isms with (A1) and (A2). If (p1, . . . , pm) is a probability vector such that Λ0 > 0 and Λ1 > 0, then
there exists α ∈ (0, 1) such that (3.2) and (3.3) are satisfied and, moreover, such that for every
a > 0 sufficiently small there exists M ≥ 1 such that the class PM,α is invariant under the action
of the corresponding Markov operator P and every measure supported on [a, 1− a] belongs to this
class.

Proof. Let us consider the system of inverse functions f−1
1 , . . . , f−1

m with the same probability
vector. This system has negative average Lyapunov exponents at 0 and 1. As in the beginning of
the proof of Proposition 2.1 and 2.2 we can find numbers a1, . . . , am, b1, . . . , bm and ζ > 0 with
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1.
∑m
i=1 pi log ai < 0 and

∑m
i=1 pi log bi < 0

2. f−1
i (x) ≤ aix and f−1

i (1− x) ≤ 1− bix for i = 1, . . . ,m and x ≤ ζ.

Using the Taylor formula applied to the function α 7−→ aα similarly as in the proof of Proposition
2.1 and 2.2, we find α > 0 and c < 1 with

m∑
i=1

pia
α
i < c and

m∑
i=1

pib
α
i < c.

Additionally α should satisfy (3.2) and (3.3). Let a be an arbitrary positive number less than ζ.
Take M such that Maα = 1, and take arbitrary x ∈ (0, 1). If x ≥ a, then Mxα ≥Maα = 1, hence
Pµ((0, x]) ≤Mxα for every µ ∈M. If x < a and µ ∈ PM,α, then

Pµ((0, x]) =

m∑
i=1

piµ((0, f−1
i (x)]) ≤

m∑
i=1

piµ((0, aix])

≤
m∑
i=1

piMaαi x
α < Mxα,

by the choice of α. The analogous computation for Pµ([1− x, 1)) proves the proposition.

Corollary 3.1. Under the assumptions of Proposition 3.1, if µ is the unique stationary distribu-
tion, a ∈ (0, 1/2), M and α are the numbers in the assertion, then µ ∈ PM,α.

Proof. First observe that the class PM,α is weakly-∗ compact. Indeed, if νn ∈ PM,α and νn → ν in
the weak-∗ topology, then lim infn→∞ νn

(
(0, z)

)
≥ ν

(
(0, z)

)
for all z ∈ (0, 1) by the Portmanteau

Theorem (Theorem 2.1 in [Bil99]). Hence ν
(
(0, x]

)
≤ ν

(
(0, x + ε)

)
≤ lim infn→∞ νn

(
(0, x + ε)

)
≤

M(x + ε)α for every ε > 0, which easily implies the claim. It is immediate to see that PM,α is
convex.

Define νn := 1
n

(
Pn−1δ1/2 + · · · + δ1/2

)
. Since δ1/2 ∈ PM,α and this class is P -invariant and

weakly-∗ compact, the sequence (νn) has an accumulation point ν, which must be a stationary
distribution by the standard Krylov-Bogoliubov technique: if ψ is an arbitrary continuous function,
then ∫

(0,1)

ψdPνk =

∫
(0,1)

ψdνk +
1

nk

(∫
(0,1)

ψdPnkδ1/2 −
∫

(0,1)

ψdδ1/2

)
.

The modulus of the second summand tends to zero hence limk→∞
∫
ψdPνk = limk→∞

∫
ψdνk.

On the other hand P is a Feller operator therefore Uψ is continuous. From the definition of the
weak-∗ convergence limk→∞

∫
ψdPνk = limk→∞

∫
Uψdνk =

∫
Uψdν =

∫
ψdPν. This proves that

Pν = ν. Thus µ = ν by the uniqueness of a stationary distribution and µ ∈ PM,α.

The following proposition is crucial in the proof of Theorem 3.2. It relies on a technical lemma,
whose proof is postponed to Section 3.3.

Proposition 3.2. Let f1, . . . , fm be increasing homeomorphisms satisfying (A1), (A2). Let p1,. . .,
pm be such that Λ0,Λ1 > 0. If a > 0 is sufficiently small and T a(x, y) is the minimum number k
with a ≤ Zxk < Zyk ≤ 1− a, x < y, then there exist γ > 0 and C̄1 ≥ 1 such that for every x < y we
have

EeγT
a(x,y) ≤ C̄1 max

{(
a/z
)α
, 1

}
,

where z = min{x, 1− y}.
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Proof. Let us take a > 0 sufficiently small to satisfy Proposition 3.1. We insist also that the
transition from (0, a) to (1− a, 1) is impossible in one step (this implies that if x < a and Zxk > a
for some k, then also Zxk′ ∈ [a, 1−a] for some k′ ≤ k). Eventually let a satisfy the following lemma.

Lemma 3.1. Let f1, . . . , fm be increasing homeomorphisms satisfying (A1), (A2). Let p1, . . . , pm
be such that Λ0,Λ1 > 0. Then there exist C̄2 and q̄2 < 0 such that for every a > 0 sufficiently
small and for every x ∈ [a, 1− a] it holds that

P
(

#{i ≤ n : Zxi ∈ [a, 1− a]}
n

≤ 3/4

)
≤ C̄2q̄2

n

for every n.

n/8

n

0 1x a 1− a y

Figure 3.1

Heuristically (cf. Figure 3.1) Proposition 3.1 im-
plies that a vast majority of trajectories visits
[a, 1− a] until n/8 but we do not know whether
it happens at the same moment for x and y. To
solve the problem we apply Lemma 3.1, which
says that from the moment of the first visit in
[a, 1 − a] the trajectory spends at least 3/4 of
time in [a, 1−a] up to the set of measure dimin-
ishing exponentially fast.

By (3.2), (3.3) we know that

P
( bn/8c⋂

k=0

{Zxk < a} ∪
bn/8c⋂
k=0

{Zyk > 1− a}
)
≤ 2aα/zαcbn/8c

for every n, thus we are left with estimating

P
(
T a(x, y) > n

∣∣∣∣ bn/8c⋃
k=0

{Zxk ≥ a} ∩
bn/8c⋃
k=0

{Zyk ≤ 1− a}
)
.

Since the transition from (0, a) to (1− a, 1) and from (1− a, 1) to (0, a) is not possible in one step
the above is equal to

P
(
T a(x, y) > n

∣∣∣∣ bn/8c⋃
k=0

{Zxk ∈ [a, 1− a]} ∩
bn/8c⋃
k=0

{Zyk ∈ [a, 1− a]}
)
.

Fix k ≤ bn/8c. Clearly there is at least b7n/8c numbers between k and n. This combined with
Lemma 3.1 implies that the conditional probability that Zxi ∈ [a, 1− a] for less than 3/4 of indices
i among i = k+ 1, . . . , bn/8c, bn/8c+ 1, . . . , n under the condition that Zxk ∈ [a, 1− a] is less than
C̄2q̄2

b7n/8c. Further, if Zxi ∈ [a, 1− a] for more than 3/4 of indices i, i = k + 1, . . . , bn/8c, bn/8c+
1, . . . , n, then totally Zxi ∈ [a, 1− a] for at least b7n/8c · 3/4 indices i. At most bn/8c of such i’s is
less than k, hence Zxi ∈ [a, 1− a] for at least b7n/8c · 3/4−bn/8c > n/2 of indices i = k+ 1, . . . , n.
The same is true about (Zyn). If Zxi ∈ [a, 1 − a] for more than n/2 indices i between 1 and n
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and Zyi ∈ [a, 1 − a] for more than n/2 indices i between 1 and n then clearly Zxi ∈ [a, 1 − a] and
Zyi ∈ [a, 1− a] for at least one i ∈ [1, n]. Therefore

P
(
T a(x, y) > n

∣∣∣∣ bn/8c⋃
k=0

{Zxk ∈ [a, 1− a]} ∩
bn/8c⋃
k=0

{Zyk ∈ [a, 1− a]}
)
≤ 2C̄2q̄2

b7n/8c

Further,

P(T a(x, y) > n) ≤ P
( bn/8c⋂

k=0

{Zxk < a} ∪
bn/8c⋂
k=0

{Zyk > 1− a}
)

+P
(
T a(x, y) > n

∣∣∣∣ bn/8c⋃
k=0

{Zxk ≥ a} ∩
bn/8c⋃
k=0

{Zyk ≤ 1− a}
)
· P
( bn/8c⋃

k=0

{Zxk ≥ a} ∩
bn/8c⋃
k=0

{Zyk ≤ 1− a}
)

≤ 2aα/zαcn + 2C̄2q̄2
b 78nc,

Take γ > 0. Using the preceding estimation yields

EeγT
a(x,y) ≤

∞∑
n=0

P(T a(x, y) ≥ n)eγn = 1 +

∞∑
n=1

P(T a(x, y) > n− 1)eγn

≤ 1 +

∞∑
n=1

(
2aα/zαcn−1 + 2C̄2q̄2

b 78 (n−1)c)eγn
≤ max

{
aα/zα, 1

}(
1 +

∞∑
n=1

(
2cn−1 + 2C̄2q̄2

b 78 (n−1)c)eγn).
Taking γ sufficiently small makes the series convergent and completes the proof.

3.3 The proof of Lemma 3.1
For a ∈ (0, 1/2) and x ∈ [a, 1 − a] let us define sn to be the moment of the n-th return1 to
(0, a) ∪ (1− a, 1) and tn to be the moment of the n-th return to [a, 1− a]. Clearly s1 < t1 < s2 <
t2 < . . . Further, let τn be the length of the n-th visit in [a, 1 − a], and let σn be the length of
the n-th visit in (0, a) ∪ (1 − a, 1) (Figure 3.2). To avoid confusion, the precise definitions are as
follows:

s1(ω, x) = min{k ≥ 1 : fkω(x) ∈ (0, a) ∪ (1− a, 1)},

t1(ω, x) = min{k ≥ 1 : fkω(x) ∈ [a, 1− a]},

sn(ω, x) = sn−1(ω, x) + s1

(
θsn−1(ω,x)ω, fsn−1(ω,x)

ω (x)

)
for n ≥ 2,

tn(ω, x) = tn−1(ω, x) + t1

(
θtn−1(ω,x)ω, f tn−1(ω,x)

ω (x)

)
for n ≥ 2,

τ1 = s1 − 1, τn = sn − tn−1, σn = tn − sn for n ≥ 2,

where θ denotes the shift to the left in Ω.
1Return means that we insist the existence of j between each pair of consecutive sn’s with Zx

j ∈ [a, 1− a]. The
analogous requirement is made for tn’s.
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Define ρn(ω) = max{k : sk ≤ n}. We start with the observation that

#{i ≤ n : Zxi 6∈ [a, 1− a]}
n

≤ σ1 + · · ·+ σρn
τ1 + σ1 + · · ·+ τρn + σρn

=
#{i ≤ tρn : Zxi 6∈ [a, 1− a]}

tρn
. (3.4)

The equality is a direct consequence of the above definitions (cf. Figure 3.2). To show the inequality
we observe that sρn ≤ n < sρn+1, by the definition of ρn. If n is greater or equal to tρn , then the
trajectory (Zxi )i spends n−tρn more steps in [a, 1−a] up to n in comparison with the same trajectory
up to tρn (cf. Figure 3.2). This implies the inequality. In the remaining case sρn ≤ n < tρn the
trajectory (Zxi )i spends tρn −n more steps outside [a, 1−a] up to tρn in comparison with the same
trajectory up to n, which clearly implies (3.4).

ha 1− ha

0 1a 1− ax

s1

t1

s2

t2

sρn

tρn

sρn+1

τ1

σ1

τ2

σ2

σρn

τρn

Figure 3.2: n is between sρn and sρn+1
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Put
h = min

{
min

i=1,...,m

f ′i(0)

2
, min
i=1,...,m

f ′i(1)

2

}
.

Since Zxsk−1 ∈ [a, 1− a], it cannot happen that Zxsk is too close to zero. More precisely, using the
definition of the derivative at 0 and 1 we can write that if a is sufficiently small, then (see Figure
3.2)

Zxsk ≥ ha and Zxsk ≤ 1− ha

for every k. Therefore using Proposition 3.1 we can write

P(σk > n) ≤ P
( n⋂
i=1

{Zhai < a}
)
≤ aα

(ha)α
cn = h−αcn.

Note this inequality is independent of a as long as a is chosen sufficiently small. In view of these
remarks, if γ1 is chosen so that eγ1c < 1, then by the strong Markov property

E
(
eγ1σk | Fsk

)
≤
∞∑
n=0

eγ1nP(σk > n) ≤
∞∑
n=0

eγ1ncn ≤ eL1 a.s.

for some L1 and every k. Therefore

Eeγ1(σ1+···+σk) = EE
(
eγ1(σ1+···+σk)

∣∣ Fsk) = E
(
eγ1(σ1+···+σk−1)E

(
eγ1σk

∣∣ Fsk))
≤ eL1Eeγ1(σ1+···+σk−1) ≤ . . . ≤ eL1k (3.5)

and by Chebyshev’s inequality

P
(
σ1 + · · ·+ σk >

2kL1

γ1

)
≤ e−γ1

2kL1
γ1 Eeγ1(σ1+···+σk) ≤ e−2L1k+L1k =

(
e−L1

)k
. (3.6)

Put L2 := 2L1

γ1
and q̄4 := e−L1 . With this notation (3.6) may be rewritten as

P(σ1 + · · ·+ σk > kL2) ≤ q̄4
k (3.7)

for every k. Let us stress once again, this inequality is independent of a as long as it was sufficiently
small.

This gives us an upper bound on the time that a trajectory spends outside [a, 1 − a]. One
can guess that the next step is to provide a lower bound on the time that a trajectory spends in
[a, 1− a]. This bound will be of the form

P(τ1 + · · ·+ τk < L3k) ≤M3q̄5
k,

where, which is especially important, the constants L3, M3, q̄5 do not depend on a as long as a is
sufficiently small, similarly to the previous estimation.

One can see here a sort of large deviation type estimation. However, we cannot just apply the
Cramér-Chernoff theorem (Theorem 27.3 in [Kal02]), since (τk) is a sequence of neither stationary
nor independent random variables. The idea is to define (on the same probability space (Ω,F ,P)) a
sequence (Yk) of bounded i.i.d. random variables and satisfying 0 ≤ Yk(ω) ≤ τk(ω) for every ω ∈ Ω
and every k. What is crucial, the sequence (Yk) must be independent of a since the constants in
the assertion must be independent of a.
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To this end, take b > 0, a1, . . . , am, b1, . . . , bm such that

• fi(x) ≥ aix and fi(1− x) ≤ 1− bix for x < b, and

•
∑m
i=1 pi log ai > 0 and

∑m
i=1 pi log bi > 0.

Let us consider a random walk (Sn) on R starting from 0 with i.i.d. steps, which equal log ai with
probability pi. Random walks are either recurrent or transient (see Theorem 8.1 in [Kal02]). The
strong law of large numbers combined with

∑
pi log ai > 0 gives that Sn → +∞ a.s. and the

random walk is transient. This implies in particular that P(
⋃∞
i=1{Si < 0}) < 1 (this again follows

by Theorem 8.1 in [Kal02]). In other words, there exists η > 0 such that for every A > 0 the
probability that (Sn) enters [A,+∞) before returning to 0 is greater than η. By this there exist
A > 0, r > 0 such that EY > 40L2, where Y := 0 if (Sn) visits (−∞, 0) before the first visit in
[A,+∞), Y := r ∧ min{n ≥ 1 : Sn ≥ A} otherwise (recall that L2 = 2L1

γ1
; the definition is just

before (3.7)). Moreover, A and r should also satisfy the analogous property for the random walk
defined by pi and log bi with the same constant L2.

−∞ 0 A

0 a aeA b

log
(
x
a

)

Figure 3.3

Eventually let us fix a < b satisfying so far listed conditions and such that eAa < b (Figure
3.3). Define gi(x) = aix, i = 1, . . . ,m. Fix k, put (i1, i2, . . .) = (ωtk−1

, ωtk−1+1, . . .). Let us define
Yk := 0 if (gin ◦ · · · ◦ gi1(a))n visits (0, a) before the first visit in (aeA, 1) and Yk := r∧min{n ≥ 1 :
gin ◦ · · · ◦ gi1(a) > aeA}. Observe that the distribution of Yk is the same as of Y (on Figure 3.3 one
can see the correspondence between the random walks). Moreover (Yk) are independent, bounded
by r and satisfy Yk ≤ τk provided Zxtk−1

< a. By the Cramér-Chernoff theorem (Theorem 27.3 in
[Kal02])

P(Y1 + · · ·+ Yk < 16kL2) ≤M3q̄5
k (3.8)

for all k’s and someM3 ≥ 1, q̄5 ∈ (0, 1). Among k returns to [a, 1−a] there are at least k/4 returns
from (0, a) (denote this event by Hk) or at least k/4 returns from (1− a, 1) (denote by Gk). If the
first case holds, Yi1 + · · ·+ Yidk/4e ≤ τ1 + · · ·+ τk for some i1 < . . . < idk/4e ≤ k. Hence

P
(
τ1 + · · ·+ τk <

k

4
· 16L2

∣∣∣∣Hk

)
≤M3q̄5

k/4

for k ≥ 1. An analogous computation in the neighbourhood of 1 gives

P
(
τ1 + · · ·+ τk <

k

4
· 16L2

∣∣∣∣Gk) ≤M3q̄5
k/4

for all k as well (after possible amendment of M3 and q̄5). Both combined yields

P
(
τ1 + · · ·+ τk <

k

4
· 16L2

)
≤ 2M3q̄5

k/4 (3.9)

for every positive integer k.
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If σ1 + · · ·+ σρn ≤ ρnL2 (cf. (3.7)) and τ1 + · · ·+ τρn ≥ 16L2ρn/4 = 4L2ρn (cf. (3.9)), then by
(3.4)

#{i ≤ n : Zxi 6∈ [a, 1− a]}
n

≤ σ1 + · · ·+ σρn
τ1 + · · ·+ τρn + σ1 + · · ·+ σρn

≤ L2ρn/(4L2ρn) = 1/4. (3.10)

The probability of the remaining part will be estimated using (3.7) and (3.9). Since we are aimed
at proving its exponential decay, we need some further information on the growth of ρn. Fix
λ ∈ (0, 1). In a moment we shall need it satisfying

L1λ < γ1/4. (3.11)

Let us observe that by (3.10), (3.7) and (3.9) the probability of the event{
#{i ≤ n : Zxi ∈ [a, 1− a]}

n
< 3/4

}
∩
{
ρn > bλnc

}
diminishes exponentially fast, and we are left with estimating the probability of{

#{i ≤ n : Zxi ∈ [a, 1− a]}
n

< 3/4

}
∩
{
ρn ≤ bλnc

}
.

To this end we observe that

{σ1 + · · ·+ σρn > n/4} ∩ {ρn ≤ bλnc} =

bλnc⋃
i=0

{ρn = i} ∩ {σ1 + · · ·+ σi > n/4}

⊆
bλnc⋃
i=0

{σ1 + · · ·+ σi > n/4}.

Therefore the probability of the event {σ1 + · · ·+ σρn > n/4} ∩ {ρn ≤ bλnc} is, by the Chebyshev
inequality, (3.5) and the formula for the sum of geometric sequence, bounded by

bλnc∑
i=0

Eeγ1(σ1+···+σi)e−γ1n/4 ≤ e−γ1n/4
bλnc∑
i=0

(eL1)i ≤ e−γ1n/4 (eL1)bλnc+1 − 1

eL1 − 1

≤M4e
L1bλnc · e−γ1n/4 ≤M4e

(L1λ−γ1/4)n,

where M4 is some constant. Thus using (3.11) the probability of

{σ1 + · · ·+ σρn > n/4} ∩ {ρn ≤ bλnc}

diminishes exponentially fast. Since #{i ≤ n : Zxi 6∈ [a, 1 − a]} = σ1 + · · · + σρn , this means that
the probability of {

#{i ≤ n : Zxi ∈ [a, 1− a]}
n

< 3/4

}
∩
{
ρn ≤ bλnc

}
diminishes exponentially fast as n goes to infinity, which is the desired assertion.
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f1

h−1x

hx

a

Figure 3.4

3.4 The proof of Theorem 3.2
Let us recall the statement of Theorem 3.2.

Theorem. If f1, . . . , fm are C2 diffeomorphisms satisfying (A1) and (A2), (p1, . . . , pm) is such
that Λ0,Λ1 > 0, and a ∈ (0, 1/2), then there exist constants C̄3 ≥ 1 and q̄3 < 1 with

E|Zan − Z1−a
n | ≤ C̄3q̄3

n

for n ≥ 1.

Let h > 0 be so small that

h ≤ min

{
min

i=1,...,m

f ′i(0)

2
, min
i=1,...,m

f ′i(1)

2

}
and h−1 ≥ max

{
max

i=1,...,m
2f ′i(0), max

i=1,...,m
2f ′i(1)

}
.

Clearly we can assume a to be as small as we wish. This simplifies the control of the behaviour of
the random walk outside [a, 1− a]. Therefore let us take a > 0 such that

1. Proposition 3.1 and 3.2 are satisfied,

2. the transition from (0, a) to (1− a, 1) and from (1− a, 1) to (0, a) is impossible in one step,

3. for every x < a/h and i = 1, . . . ,m we have fi(x) > hx and fi(1− x) < 1− hx,

4. for every x ≤ a and i = 1, . . . ,m we have fi(x) ≤ h−1x and 1− fi(x) ≤ h−1(1− x),

5. (1 + h−1)a < 1/2 and (1 + h−1)aL′′ < γ, where L′′ is the maximum value of the derivative
of log f ′i on [0, 1], i = 1, . . . ,m, and γ is the constant from Proposition 3.2,

6. µ
(
(0, a)

)
log C̄1

h2+α <
|Λ|
8 and µ

(
(1− a, 1)

)
log C̄1

h2+α <
|Λ|
8 , where C̄1 is the constant in Propos-

ition 3.2 and Λ is the volume Lyapunov exponent

Λ =

m∑
i=1

pi

∫
(0,1)

log f ′i(x)µ(dx),

which is negative by Theorem 2.4.
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The proof is an adaptation of the technique from [LP82] (Theorem 1 therein) elaborated for
random systems on the circle (and hence on a compact space, see also Proposition 4.18 in [GK20]).
The idea here is to define a sequence of stopping times τk such that E|fτkω (x)−fτkω (y)|β < |x−y|kβ
for every k ≥ 1. By design it shall also satisfy fτkω (x), fτkω (y) ∈ [a, 1− a] for k ≥ 1.

To start the proof let us define φ(x) =
∑m
i=1 pi log f ′i(x) on [0, 1].

Lemma 3.2. There exists k such that

1

k + 1
E
(
φ(Zxk ) + · · ·+ φ(Zx0 )

)
< 3Λ/4, (3.12)

for all x ∈ [a, 1− a], and

1

k + 1
E
(
1(0,a)(Z

a
k ) log

C̄1

h2+α
+ · · ·+ 1(0,a)(Z

a
0 ) log

C̄1

h2+α

)
< |Λ|/8, (3.13)

1

k + 1
E
(
1(1−a,1)(Z

1−a
k ) log

C̄1

h2+α
+ · · ·+ 1(1−a,1)(Z

1−a
0 ) log

C̄1

h2+α

)
< |Λ|/8, (3.14)

P(fkω(a), fkω(1− a) ∈ [a, 1− a]) > 0. (3.15)

Proof. The proof follows the lines of the proof of its counterpart version for deterministic dynamical
systems (Proposition 4.1.13 and Corollary 4.1.14 in [KH95]).

Assume contrary to our claim that there exist sequences of points (xk) ⊆ [a, 1−a] and positive
integers n1 < n2 < . . . such that

1

nk
E
(
φ(Zxnk−1

) + · · ·+ φ(Zx0 )
)
≥ 3Λ/4 > Λ (3.16)

for every k ≥ 1 (recall that Λ < 0). Put νk := 1
nk

(Pnk−1δxk +· · ·+δxk) (recall that P is the Markov
operator corresponding to the system). Condition (3.16) may be written as

∫
φdνk ≥ 3Λ/4.

By Proposition 3.1 it holds that νk ∈ PM,α for k ≥ 1. The class PM,α is convex and weak-∗
compact, and thus (νk) possesses an accumulation point ν ∈ PM,α. This measure is stationary due
to the standard Krilov-Bogoliubov argument: if ψ is an arbitrary continuous function, then∫

ψdPνk =

∫
ψdνk +

1

nk

(∫
ψdPnkδxk −

∫
ψdδxk

)
.

The modulus of the second summand tends to zero, hence limk→∞
∫
ψdPνk = limk→∞

∫
ψdνk. On

the other hand, P is a Feller operator, therefore limk→∞
∫
ψdPνk = limk→∞

∫
Uψdνk =

∫
Uψdν =∫

ψdPν. This proves that Pν = ν. Thus ν = µ the unique stationary distribution. But if (3.16)
holds, then

∫
φdνk does not tend to

∫
φdµ. This is a contradiction with the fact that φ is a

continuous observable.
Observe we have proven that there exists k′ such that (3.12) holds for k ≥ k′. The inequalities

(3.13), (3.14) are the consequence of the stability of the processes (Zan) and (Z1−a
n ). Indeed, since

the stationary measure µ is atomless, the Portmanteau theorem (Theorem 2.1 in [Bil99]) implies
the probability that Zan ∈ (0, a) tends to µ((0, a)) and the probability that Z1−a

n ∈ (1− a, 1) tends
to µ((1− a, 1)). The same holds for the Cesàro convergence, which proves (3.13) and (3.14).

To show (3.15) observe that the second assumption made on a implies that there exists a point
z0 ∈ (a, 1−a) belonging to the topological support of µ. Let ε > 0 be such thatB(z0, 2ε) ⊆ (a, 1−a).
Since the process is stable we have

P(fnω (a) ∈ B(z0, ε)) > µ(B(z0, ε))/2 > 0
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for n sufficiently large. By Corollary 2.1 we have

P(|fnω (a)− fnω (1− a)| < ε)→ 1

as n goes to infinity. Combining that gives us

P(fnω (a), fnω (1− a) ∈ [a, 1− a]) ≥ P(fnω (a), fnω (1− a) ∈ B(z0, 2ε)) > 0

for n sufficiently large. This gives (3.15).

A. Two sufficiently close points from [a, 1 − a] are in average contracted after k steps
in some metric of the form |x− y|β.

Let k denote the number from Lemma 3.2. Let r0(ω) denote the number of appearances of the
sequence Za0 (ω), . . . , Zak (ω) in the set (0, a), and let r1(ω) denote the number of appearances of the
sequence Z1−a

0 (ω), . . . , Z1−a
k (ω) in the set (1 − a, 1). The summation of both expressions in the

statement of Lemma 3.2 combined with log(ab) = log(a) + log(b) yields

1

k + 1
E log

(
(fωk ◦ · · · ◦ fω1

)′(x)

(
C̄1

h2+α

)r0(ω)+r1(ω))
< Λ/2 < 0

for all x ∈ [a, 1− a]. By the compactness of [a, 1− a] the supremum of the value of(
log

(
(fωk ◦ · · · ◦ fω1

)′(x)

(
C̄1

h2+α

)r0(ω)+r1(ω)))2(
(fωk ◦ · · · ◦ fω1

)′(x)

(
C̄1

h2+α

)r0(ω)+r1(ω))β′
,

where x ∈ [a, 1 − a], β′ ∈ [0, 1], is bounded by some number M (it is also necessary to observe
that (C̄1/h

2+α)r0(ω)+r1(ω) ≤ (C̄1/h
2+α)2(k+1)). Once again let us apply the Taylor formula to

the function β → aβ , where a > 0, and β ∈ (0, 1) is close to 0. We have aβ = 1 + β log a +
1/2β2(log a)2aβ

′
, where β′ is some number between 0 and β, which implies that β′ ∈ [0, 1]. By

this and the definition of M ,((
fωk ◦ · · · ◦ fω1

)′
(x) ·

(
C̄1

h2+α

)r0(ω)+r1(ω))β

≤ 1 + β log

((
fωk ◦ · · · ◦ fω1

)′
(x) ·

(
C̄1

h2+α

)r0(ω)+r1(ω))
+

1

2
Mβ2

for all x ∈ [a, 1− a] and β > 0 sufficiently close to zero. The expectation of the above is

E
((
fωk ◦ · · · ◦ fω1

)′
(x) ·

(
C̄1

h2+α

)r0(ω)+r1(ω))β

≤ 1 + βE log

((
fωk ◦ · · · ◦ fω1

)′
(x) ·

(
C̄1

h2+α

)r0(ω)+r1(ω))
+

1

2
Mβ2

< 1 + βΛ/2 +Mβ2/2

for all x ∈ [a, 1− a] and β ∈ [0, 1]. Since Λ < 0, we conclude that for some β close to zero, η > 0,
and for all x ∈ [a, 1− a] it holds that

E
((
fωk ◦ · · · ◦ fω1

)′
(x) ·

(
C̄1

h2+α

)r0(ω)+r1(ω))β
≤ 1− η < 1. (3.17)
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Let us also assume that β is so small that e−γ(L′)β < 1, where L′ is the supremum of derivatives
of fi’s and γ is the constant in Proposition 3.2.

a x 1− a

u 1− u

Figure 3.5: All points accessible from [a, 1− a] in k steps are contained in [u, 1− u].

Denote by u a positive number such that fkω(x) ∈ [u, 1− u] for x ∈ [a, 1− a] and ω ∈ Ω (Figure
3.5). Fix n0 so that

∞∑
n=n0+1

C̄1(a/u)α(e−γ(L′)β)n < η/2. (3.18)

This is possible by the convergence of the series, which is implied by e−γ(L′)β < 1 by the definition
of β.

Take a ≤ x < y ≤ 1 − a. By the mean value theorem, for every ω ∈ Ω there exists zω ∈ [x, y]
such that

|fωk ◦ · · · ◦ fω1
(x)− fωk ◦ · · · ◦ fω1

(y)|β =
(
(fωk ◦ · · · ◦ fω1

)′(zω)
)β |x− y|β . (3.19)

But there is only finitely many functions ω 7−→ fωk ◦ · · · ◦ fω1
hence using uniform equicontinuity

we can take any z ∈ [x, y] and write that(
fωk ◦ · · · ◦ fω1

)′(zω)

)β
<

(
fωk ◦ · · · ◦ fω1

)′(z)

)β
+
η

2
· 1

(C̄1/h2+α)2(k+1)
(3.20)

for every ω, provided x, y are sufficiently close to each other, say |x − y| < ε. Let us plug (3.20)
into (3.19). Then take expectation of both sides, use (3.17) and the estimation(

C̄1

h2+α

)r0(ω)+r1(ω)

≤
(

C̄1

h2+α

)2(k+1)

to obtain

E
(
|fωk ◦ · · · ◦ fω1(x)− fωk ◦ · · · ◦ fω1(y)|

(
C̄1

h2+α

)r0(ω)+r1(ω))β
< (1− η/2)|x− y|β (3.21)

for all x, y with |x− y| < ε. We insist also that ε should satisfy

|fnω (x)− fnω (y)| ≤ a for n = 1, 2, . . . , k + n0 (3.22)

provided |x − y| < ε. This means in particular that after k iterates the random walk is locally
(i.e. for |x − y| < ε) contracing in average in the metric |x − y|β . Moreover, for each ω the
distance |fωk ◦ · · · ◦ fω1

(x) − fωk ◦ · · · ◦ fω1
(y)|β can be multiplied by the number (greater than

one) (C̄1/h
2+α)β(r0+r1), and the random walk is still contractive. Now, some part of trajectories
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is outside [a, 1 − a] at the moment k. The upcoming task is to compare how much the distance
between trajectories at the moment of the first common return to [a, 1 − a] is greater than the
distance at the moment k. It turns out that it may be estimated by (C̄1/h

2+α)β(r0+r1). This is
the reason why we have proven the stronger version (3.21) of contractiveness.

B. Estimation of the average distance between trajectories of two sufficiently close
points at the moment of the first return to [a, 1− a].

x y

k

a

w v

Figure 3.6

Fix x, y with |x− y| < ε. Put τ := min{n ≥ k : fnω (x), fnω (y) ∈ [a, 1− a]}. We have

E
|fτω(x)− fτω(y)|β

|x− y|β
= E

(
|fkω(x)− fkω(y)|β

|x− y|β
E
(
|fτω(x)− fτω(y)|β

|fkω(x)− fkω(y)|β

∣∣∣∣Fk)).
We are going to show that

E
(
|fτω(x)− fτω(y)|β

|fkω(x)− fkω(y)|β

∣∣∣∣Fk) ≤ ( C̄1

h2+α

)β(r0(ω)+r1(ω))

(1 + η/2) a.s. (3.23)

for every x, y with |x− y| < ε. By (3.21) this would give that

E|fτω(x)− fτω(y)|β ≤ (1 + η/2)E
(
|fkω(x)− fkω(y)|

(
C̄1

h2+α

)r0(ω)+r1(ω))β
< (1− η/2)(1 + η/2)|x− y|β = (1− η2/4)|x− y|β . (3.24)

Take ω with τ(ω) > k. Put w := fkω(x), v := fkω(y) (Figure 3.6) and observe that w < a or
v > 1 − a as τ > k (let us assume that w < a to simplify the presentation). Then by the strong
Markov property the value of

E
(
|fτω(x)− fτω(y)|β

|fkω(x)− fkω(y)|β

∣∣∣∣Fk)
on ω may be rewritten as

E
|fTω (w)− fTω (v)|β

|w − v|β
,

where T (ω) := min{n ≥ 1 : fnω (w), fnω (v) ∈ [a, 1− a]}.
We have

E
|fTω (w)− fTω (v)|β

|w − v|β
= E1{T≤n0}

|fTω (w)− fTω (v)|β

|w − v|β
+ E1{T>n0}

|fTω (w)− fTω (v)|β

|w − v|β
,
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where n0 was defined to be such that
∑∞
n=n0+1 C̄1(a/u)α(e−γ(L′)β)n < η/2 (see (3.18)).

a (1 + h−1)aξω w ζω v

fTω (ζω)fTω (ξω)

Figure 3.7

To estimate the first integral let us take ω ∈ {T ≤ n0} and write by the mean value theorem

|fTω (w)− fTω (v)| = (fTω )′(ζω)|w − v|

and
fTω (w) = fTω (w)− fTω (0) = (fTω )′(ξω) · w

for some ζω ∈ [w, v] and ξω ∈ [0, w]. Since T ≤ n0, we have |fnω (w) − fnω (v)| ≤ a for n ≤ T (by
the choice of ε, see (3.22)). By the choice of a (see point 5.) it is impossible that fnω (w) < a and
fnω (v) > 1− a for some n ≤ T . Thus T may be regarded as the moment of the first visit of fnω (w)
in [a, 1 − a] (it is crucial we are restricted to the event {T ≤ n0}). Since T is the moment of the
first visit in [a, 1−a] the value of fTω (w) cannot be greater than h−1a (cf. the definition of h at the
beginning of the section and point 4. in assumptions on a). Therefore fTω (w)/w ≤ h−1a/w and

|fTω (w)− fTω (v)|β

|w − v|β
=
(
(fTω )′(ζω)

)β
=

(
(fTω )′(ζω)

(fTω )′(ξω)

)β(
fTω (w)

w

)β

≤
(
h−1a

w

)β
· exp

(
β
(

log(fTω )′(ζω)− log(fTω )′(ξω)
))
.

Using T ≤ n0 again we have |fnω (ξω)−fnω (ζω)| < (1+h−1)a for n ≤ T . Indeed, we have just shown
that fnω (w) ≤ h−1a for n ≤ T , hence this follows from (3.22) (see Figure 3.7). By the chain rule,
the fact that L′′ is a supremum of the derivative of log f ′i on [0, 1] for all i = 1, . . . ,m we obtain

| log(fTω )′(ζω)− log(fTω )′(ξω)| ≤ TL′′(1 + h−1)a,

hence
|fTω (w)− fTω (v)|β

|w − v|β
≤
(
h−1a

w

)β
· exp(TL′′(1 + h−1)aβ)

for ω such that T ≤ n0.
If T > n0, then

|fTω (w)− fTω (v)|β

|w − v|β
≤ (L′)βT

since L′ is the supremum of derivatives of fi for all i = 1, . . . ,m. Therefore

E1{T>nn}
|fTω (w)− fTω (v)|β

|w − v|β
≤

∞∑
n=n0+1

P(T ≥ n)(L′)βn ≤
∞∑

n=n0+1

C̄1

(
a

w

)α
(L′)βne−γn,
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where in the last inequality we used the Chebyshev inequality and the fact that EeγT ≤ C̄1

(
a
w

)α
(which is the statement of Proposition 3.2). Now, recall that u was chosen so that w, v ∈ [u, 1− u]
whatever ω is, and thus 1

wα ≤
1
uα . Henceforth

E1{T>nn}
|fTω (w)− fTω (v)|β

|w − v|β
≤

∞∑
n=n0+1

C̄1

(
a

w

)α
(L′)βne−γn ≤ η/2

by (3.18). Combining these two estimations with the application of the Jensen inequality to the
function t 7−→ tβ yields

E
|fTω (w)− fTω (v)|β

|w − v|β
= E1{T≤nn}

|fTω (w)− fTω (v)|β

|w − v|β
+ E1{T>nn}

|fTω (w)− fTω (v)|β

|w − v|β

≤
(
h−1a

w

)β
E exp(TL′′(1 + h−1)aβ) + η/2 ≤

(
h−1a

w

)β(
E exp(TL′′(1 + h−1)a)

)β
+ η/2 (3.25)

Recall that (point 5. in the assumptions on a) that L′′(1 + h−1)a < γ, where γ is the constant in
Proposition 3.2. Using this proposition yields

E exp(TL′′(1 + h−1)a) ≤ E exp(Tγ) ≤ C̄1

(
a

w

)α
.

Plugging that into (3.25) gives

E
|fTω (w)− fTω (v)|β

|w − v|β
≤
(
h−1a1+α

w1+α
C̄1

)β
+ η/2.

Since the expression in parenthesis is greater
than one (the choice of h easily implies h < 1)
we can write

E
|fTω (w)− fTω (v)|β

|w − v|β
≤
((

a

w

)1+α
C̄1

h

)β
(1+η/2).

x

k − r′

k

a

w

ah

ahr
′

Figure 3.8

Going back to x and y, observe that the distance of w to zero may be estimated using r0(ω).
Namely w = fkω(x) ≥ fkω(a) ≥ hr

′
a, where r′ is the maximum integer n such that fkω(a) < a,

fk−1
ω (a) < a, . . ., fk−n(a) < a (it follows from the definition of h, see Figure 3.8). Hence

a

w
≤ 1

hr′
≤ 1

hr0

and thus

E
|fTω (w)− fTω (v)|β

|w − v|β
≤
(

C̄1

h2+α

)r0β
(1 + η/2) ≤

(
C̄1

h2+α

)(r0+r1)β

(1 + η/2),

which is the desired assertion. Note that if ω was such that fkω(y) > 1− a, then r1 would be used
instead of r0. Now (3.24) follows. In fact we proved more. Namely

E|fτ∧nω (x)− fτ∧nω (y)|β < (1− η2/4)|x− y|β (3.26)

for an arbitrary integer n ≥ k and x, y with |x− y| < ε.
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C. The definition of τ for all pairs of points in [a, 1− a].
Fix a ≤ x < y ≤ 1− a with |x− y| < ε. The random variable τ has already been defined as the

minimum n ≥ k with a ≤ fnω (x) < fnω (y) ≤ 1 − a. We are going to extend this definition to the
case when a ≤ x < y ≤ 1− a and |x− y| ≥ ε. To this end recall that the system is synchronizing
by Corollary 2.1, which implies that |fnω (a) − fnω (1 − a)| → 0 as n → ∞ almost surely. Therefore
there exists K such that

P
(
∃n≥K |fnω (a)− fnω (1− a)|β ≥ 1

2
(1− η2/4)εβ

)
≤ 1

2
(1− η2/4)εβ . (3.27)

Given x, y ∈ [a, 1 − a] with |x − y| ≥ ε, set τ = τ(x, y) = min{n ≥ K : fnω (x), fnω (y) ∈ [a, 1 − a]}.
By (3.27) it holds that

E|fτ∧nω (x)− fτ∧nω (y)|β ≤ (1− η2/4)|x− y|β (3.28)

and fτω(x), fτω(y) ∈ [a, 1 − a] provided n ≥ K and x, y ∈ [a, 1 − a] satisfy |x − y| ≥ ε. Moreover,
using exactly the same argument as in the proof of (3.15) in Lemma 3.2 (i.e. combining stability
with synchronization) we can assume that K is chosen so that

P(fKω (a), fKω (1− a) ∈ [a, 1− a]) > 0. (3.29)

D. Some exponential moment of τ is finite.

Lemma 3.3. There exists C̄4 such that Eeγτ(x,y) ≤ C̄4 for all x, y in [a, 1 − a], where γ is the
constant in Proposition 3.2.

Proof. There are two cases: if the distance between x and y is less than ε, then τ is equal to the
moment of the first visit T of (fkω(x), fkω(y)) in [a, 1−a]× [a, 1−a] along the trajectory θkω. Since
we know that u ≤ fkω(x) < fkω(y) ≤ 1− u for some u > 0, we can use Proposition 3.2 to show that

Eeγτ(x,y) ≤ eγkEeγT ≤ eγkC̄1

(
a

u

)α
,

which is independent of x and y (T has been defined in part B).
In the case when the distance between x and y is greater or equal to ε the proof is very similar

to above. The only changes are that k is replaced by K and u is possibly smaller.

E. The definition of (τn)
Let us define the sequence τ1, τ2 . . . of random moments inductively in the following way. Let

τ1 := τ . If w = fτω(x) and v = fτω(y), then w, v ∈ [a, 1− a] hence we can put

τ2(x, y)(ω) = τ1(x, y)(ω) + τ(w, v)(θτ1ω).

If τn(x, y) is already defined, then put w = fτnω (x), v = fτnω (y), and define

τn+1(x, y)(ω) = τn(x, y)(ω) + τ(w, v)(θτnω).

Given x, y ∈ [a, 1− a] and integer n define

Aj = {ω ∈ Ω : |fτjω (x)− fτjω (y)| < ε and n− τj ≥ k}
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∪{ω ∈ Ω : |fτjω (x)− fτjω (y)| ≥ ε and n− τj ≥ K}

and set Bj to be the complement of Aj (note we do not include the dependence of n and x, y; it
will be clear from the context). Combining (3.26) with (3.28) yields that for ω ∈ Aj−1 we have

E
(
|fτj∧nω (x)− fτj∧nω (y)|β

∣∣∣∣Fτj−1

)
(ω) < (1− η2/4)|fτj−1

ω (x)− fτj−1
ω (y)|β . (3.30)

By the same reason

E
(
|fτjω (x)− fτjω (y)|β

∣∣∣∣Fτj−1

)
< (1− η2/4)|fτj−1

ω (x)− fτj−1
ω (y)|β a.s. (3.31)

Recall that L′ = maxi=1,...,m,z∈[0,1] f
′
i(z), and put M := (L′)βmax{k,K}, where k and K are the

integers from the construction of τ . If follows from the definition of Bj−1 that, given n, x, y, we
have

|fnω (x)− fnω (y)|β ≤M |fτj−1
ω (x)− fτj−1

ω (y)|β for ω ∈ Bj−1. (3.32)

F. The sequence τn is proportional to n up to an event of probability diminishing
exponentially fast.

To finish the proof we need one more random variable. Let ρn(ω) := max{j ≥ 0 : τj ≤ n}.

Lemma 3.4. Let γ be the constant in Proposition 3.2, and let C̄4 be the constant given by Lemma
3.3. If λ = γ/(2 log(C̄4)), then P(ρn < λn) decays exponentially fast as n goes to infinity.

Proof. Let us observe that Lemma 3.3 gives that Eeγτn ≤ C̄4
n for every n (this kind of proofs has

already appeared several times). Indeed, we have

Eeγτn = E
(
eγτn

∣∣Fτn−1

)
= Eeγτn−1E

(
eγτ(f

τn−1
ω (x),f

τn−1
ω (y)(θτn−1ω)

∣∣Fτn−1

)
.

Lemma 3.3 and the strong Markov property imply that the conditional expectation above does
not exceed C̄4. Proceeding in this manner gives that Eeγτn ≤ C̄4

n for every n. Therefore the
Chebyshev inequality yields

P(ρn < λn) ≤ P(τbλnc > n) ≤ e−γnEeγτbλnc ≤ eλn log C̄4−γn = e−γ/2n,

which decays exponentially fast.

G. The end of the proof.
To simplify the notation put xn = xn(ω) := fnω (x) and yn = yn(ω) := fnω (y). Fix n, and

put l := max{ρn : τρn ≤ n}. Recall that M has been defined just after (3.31) and is equal to
(L′)βmax{k,K}.

Lemma 3.5. It holds that

|xn − yn|β < M |xτl − yτl |β a.s. on {τl ≤ n}.

Proof. Let us observe that

P
(
xτl+k, yτl+k ∈ [a, 1− a]|Fτl

)
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is by (3.15) positive a.s. on {ω ∈ Ω : |xτl(ω)−yτl(ω)| < ε}, hence τl+1(ω) = τl(ω)+k with positive
conditional probability on {ω ∈ Ω : |xτl(ω)− yτl(ω)| < ε}. If n− τl(ω) ≥ k, then τl+1(ω) ≤ n with
positive conditional probability on {ω ∈ Ω : |xτl(ω) − yτl(ω)| < ε}, which is a contradiction with
the definition of l provided the event {ω ∈ Ω : |xτl(ω)− yτl(ω)| < ε} is of positive probability. The
analogous statement may be proved in the case when |xτl(ω)−yτl(ω)| ≥ ε (then k is replaced by K
and (3.29) is used instead of (3.15)). Since at least one of the events {ω ∈ Ω : |xτl(ω)−yτl(ω)| < ε}
and {ω ∈ Ω : |xτl(ω)− yτl(ω)| ≥ ε} has positive probability, this completes the proof.

Now we proceed with the final calculations.

E|xn − yn|β =

∫
{τl≤n}

|xn − yn|βdP +

∫
{τl−1≤n}∩Bl−1∩{τl>n}

|xn − yn|βdP

+

∫
{τl−1≤n}∩Al−1∩{τl>n}

|xn − yn|βdP +

∫
{τl−1>n}

|xn − yn|βdP.

The application of Lemma 3.5 to the first term on the right-hand side, (3.32) to the second, and
the multiplication of the third by M ≥ 1 gives

E|xn − yn|β ≤M
∫
{τl≤n}

|xτl − yτl |βdP +M

∫
{τl−1≤n}∩Bl−1∩{τl>n}

|xτl−1
− yτl−1

|βdP

+M

∫
{τl−1≤n}∩Al−1∩{τl>n}

|xn − yn|βdP +

∫
{τl−1>n}

|xn − yn|βdP.

The first and third term on the right-hand side may be replaced by one integral as follows:

E|xn − yn|β ≤M
∫
{τl−1≤n}∩Al−1

|xτl∧n − yτl∧n|βdP

+M

∫
{τl−1≤n}∩Bl−1∩{τl>n}

|xτl−1
− yτl−1

|βdP +

∫
{τl−1>n}

|xn − yn|βdP.

Since {τl−1 ≤ n} ∩Al−1 is Fτl−1
-measurable we can apply (3.30) to it and obtain

E|xn − yn|β ≤M
∫
{τl−1≤n}∩Al−1

|xτl−1
− yτl−1

|βdP

+M

∫
{τl−1≤n}∩Bl−1∩{τl>n}

|xτl−1
− yτl−1

|βdP +

∫
{τl−1>n}

|xn − yn|βdP

≤M
∫
{τl−1≤n}

|xτl−1
− yτl−1

|βdP +

∫
{τl−1>n}

|xn − yn|βdP.

We can repeat this reasoning all over again but this time omitting the first step, in which Lemma
3.5 has been used. This leads us finally to the inequality

E|xn − yn|β ≤M
∫
{τbλnc≤n}

|xτbλnc − yτbλnc |
βdP +MP(τbλnc > n).

The second summand, by Lemma 3.4, decays exponentially fast. For the first summand we have,
by (3.31),∫

{τbλnc≤n}
|xτbλnc − yτbλnc |

βdP ≤
∫

Ω

|xτbλnc − yτbλnc |
βdP ≤ (1− η2/2)bλnc|x− y|β .

The assertion follows.

49



3.5 The proof of Theorem 3.1
We have

‖Unϕ‖2L2(µ) =

∫
[0,1]

|Unϕ(x)|2µ(dx) =

∫
[0,1]

∣∣∣∣Unϕ(x)−
∫

[0,1]

ϕ(y)µ(dy)

∣∣∣∣2µ(dx)

=

∫
[0,1]

∣∣∣∣Unϕ(x)−
∫

[0,1]

ϕ(y)Pnµ(dy)

∣∣∣∣2µ(dx) =

∫
[0,1]

∣∣∣∣Unϕ(x)−
∫

[0,1]

Unϕ(y)µ(dy)

∣∣∣∣2µ(dx)

=

∫
[0,1]

∣∣∣∣ ∫
[0,1]

(
Unϕ(x)− Unϕ(y)

)
µ(dy)

∣∣∣∣2µ(dx) ≤
∫

[0,1]

∫
[0,1]

∣∣Unϕ(x)− Unϕ(y)
∣∣2µ(dy)µ(dx),

where the last inequality is the Jensen inequality.

ξn 1− ξn

1− ξn

ξn

Figure 3.9: The set Rn. It may be covered by the sets (0, ξn) ∪ (1 − ξn, 1) × [0, 1] and [0, 1] ×
(0, ξn)∪ (1− ξn, 1). Each of these sets has measure at most 2Mξαn as µ ∈ PM,α (see Corollary 3.1).

To continue the estimation we take the sequence ξn := e−γn/2, where γ is given in Proposition
3.2, and decompose [0, 1]× [0, 1] as the sum of Kn = [ξn, 1−ξn]× [ξn, 1−ξn] and the remainder Rn.
By Corollary 3.1 it is easy to see (cf. Figure 3.9) that µ⊗µ(Rn) ≤ 2µ((0, ξn)∪(1−ξn, 1)) ≤ 4Mξαn ,
since µ ∈ PM,α. Then

‖Unϕ‖2L2(µ) ≤
∫

[0,1]

∫
[0,1]

∣∣Unϕ(x)− Unϕ(y)
∣∣2µ(dy)µ(dx)

≤
∫ ∫

Kn

(
Lip(ϕ)E

∣∣Zxn − Zyn∣∣)2

µ(dy)µ(dx) +

∫ ∫
Rn

∣∣Unϕ(x)− Unϕ(y)
∣∣2µ(dy)µ(dx)

≤
(
Lip(ϕ)E

∣∣Zξnn − Z1−ξn
n

∣∣)2

+

∫ ∫
Rn

4‖ϕ‖2∞µ(dy)µ(dx)

≤
(
Lip(ϕ)E

∣∣Zξnn − Z1−ξn
n

∣∣)2

+ 16Mξαn‖ϕ‖2∞,

where in the one but last inequality we used the fact that ‖Unϕ‖∞ ≤ ‖ϕ‖∞ and the triangle
inequality.
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Since ξαn = e−αγn/2 shrinks exponentially fast, we are left to estimate the first summand. Let
us fix n and write for short T = T a(ξn, 1− ξn), w = ZξnT and v = Z1−ξn

T (the definition of T a is in
the statement of Proposition 3.2). We have

E
∣∣Zξnn − Z1−ξn

n

∣∣ = E1{T≤n/2}
∣∣Zξnn − Z1−ξn

n

∣∣+ E1{T>n/2}
∣∣Zξnn − Z1−ξn

n

∣∣
≤ E1{T≤n/2}E

(∣∣Zξnn − Z1−ξn
n

∣∣ ∣∣∣∣ FT)+ P(T > n/2)

= E1{T≤n/2}E
∣∣Zwn−T − Zvn−T ∣∣+ P(T > n/2)

≤ E1{T≤n/2}E
∣∣Zan−T − Z1−a

n−T
∣∣+ P(T > n/2).

Now, n − T > n/2 on {T ≤ n/2} and P(T > n/2) = P(eγT > eγn/2) ≤ e−γn/2EeγT by the
Chebyshev inequality. Combining this with Proposition 3.2 and Theorem 3.2 yields

E
∣∣Zξnn−T − Z1−ξn

n−T
∣∣ ≤ E

∣∣Zan/2 − Z1−a
n/2

∣∣+ e−γn/2C̄1(a/ξn)α ≤ C̄3q̄3
n/2 + C̄1a

αe−γn/2ξ−αn

≤ C̄3q̄3
n/2 + C̄1a

αe−γn/2eαγn/2 = C̄3q̄3
n/2 + C̄1a

αeγn/2(α−1).

This completes the proof as α− 1 < 0.

3.6 The central limit theorem
Limit theorems for additive functionals of Markov processes are usually proven by decomposing a
process into the sum of a martingale and some rest Rn, which divided by the square root of n tends
to zero almost surely. This method has been invented by Gordin and Lifšic [GL78]. Let f1, . . . , fm
be C2 orientation preserving interval diffeomorphisms satisfying (A1) and (A2). Let p1, . . . , pm be
a probability vector such that Λ0 and Λ1 are positive. Finally, let ϕ be a Lipschitz function with∫
ϕdµ = 0, where µ is the unique stationary distribution. The equation

ϕ = Uψ − ψ

is called the Poisson equation. Here it has a solution in L2(µ) due to Theorem 3.1. Indeed, let

ψ :=

∞∑
n=0

Unϕ,

where the convergence is in L2(µ) norm. Then

Uψ =

∞∑
n=0

Un+1ϕ =

∞∑
n=0

Unϕ− ϕ = ψ − ϕ,

thus ψ is a solution of the Poisson equation. Observe that Uψ(Xn) − ψ(Xn+1) are stationary,
ergodic increments of a martingale. Two first properties are trivial (since (Xn) has these properties),
while the third one is due to the simple observation E(Uψ(Xn) − ψ(Xn+1)|Xn) = Uψ(Xn) −
Uψ(Xn) = 0.

Using the Poisson equation ϕ = Uψ − ψ we can decompose

ϕ(X1) + · · ·+ ϕ(Xn) =
(
Uψ(X1)− ψ(X2) + · · ·+ Uψ(Xn−1)− ψ(Xn)

)
+ Uψ(Xn)− ψ(X1),
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where the part in the parenthesis, denoted by Mn, is the sum of square integrable, ergodic, sta-
tionary martingale increments with respect to the filtration generated by (Xn). The rest, denoted
by Rn, has the property that Rn/

√
n→ 0 almost surely.

The martingale (Mn) satisfies the central limit theorem for martingales proved in [Bro71] (ac-
tually a version of the central limit theorem for martingales sufficient for our needs has been proven
previously by Billingsley [Bil61]).

Corollary 3.2. Let f1, . . . , fm be a system of C2 diffeomorphisms satisfying (A1) and (A2). Let
(p1, . . . , pm) be such that Λ0,Λ1 > 0. Let (Xn) be the unique stationary Markov process corres-
ponding to the system. If ϕ is a Lipschitz real function on (0, 1) with

∫
ϕdµ = 0, then the additive

functional (ϕ(X1) + · · ·+ ϕ(Xn)) satisfies the central limit theorem, i.e.

P
(
ϕ(X1) + · · ·+ ϕ(Xn)√

n
∈ [a, b]

)
→ 1√

2πσ2

∫ b

a

e−
x2

2σ2 dx

as n→∞, where σ2 = ‖ψ‖2L2(µ) − ‖Uψ‖
2
L2(µ).

The martingale satisfies also the law of the iterated logarithm (see Theorem 4.7 in [HH80]).

Corollary 3.3. Let f1, . . . , fm be a system of C2 diffeomorphisms satisfying (A1) and (A2). Let
(p1, . . . , pm) be such that Λ0,Λ1 > 0. Let (Xn) be the unique stationary Markov process corres-
ponding to the system. If ϕ is a Lipschitz real function on (0, 1) with

∫
ϕdµ = 0, then the additive

functional (ϕ(X1) + · · ·+ ϕ(Xn)) satisfies the law of the iterated logarithm, i.e.

lim sup
n→∞

ϕ(X1) + · · ·+ ϕ(Xn)√
2nσ2 log logn

= 1 a.s.,

where σ2 = ‖ψ‖2L(µ) − ‖Uψ‖
2
L(µ).

Note that −ϕ is mean zero and Lipschitz as well, hence in the above theorem we can change the
superior limit to the inferior and 1 to −1. Actually, much more may be deduced but it requires
introducing more definitions.
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x

xn

1/2− 1/n

1/4− 1/n

1/4

3/4 + 1/n

3/4

Figure 3.10: The sequence (xn) as well as x are piecewise constant.

3.7 The space of trajectories. The Skorohod J1 topology and
invariance principles

Let us denote by D[0, 1] the space of functions g : [0, 1] → R that are right-continuous with left
limits. It is somehow natural to think of equipping D[0, 1] with the topology induced by the
supremum norm, however, this topology is too strong. Indeed, the sequence (xn) depicted in
Figure 3.10 is not convergent to x in sense of this topology.

The idea is to slightly modify this topology. For this purpose let us define a time change λ as
an increasing bijection of [0, 1] onto itself (this in particular implies the continuity, λ(0) = 0 and
λ(1) = 1). Let us define a topology in D[0, 1] with the property that d(xn, x) → 0 if and only if
there exists a sequence of time-changes (λn) such that

‖λn(s)− s‖∞ + ‖xn ◦ λn − x‖∞ → 0

for n→∞. The proof of the existence of this topology, called Skorohod J1 topology, may be found
in section 3.5 in [EK86]. Moreover, in this topology the Borel σ-algebra is equivalent to the σ-field
generated by the projections πt, where t is from some arbitrary dense subset T of [0, 1].

Now, the Wiener process W is a random variable with values in D[0, 1]. Similarly the process
t 7−→ Yn(t) :=

∑
k≤nt ϕ(Xk), t ∈ [0, 1]. Since the space D[0, 1] is equipped with a topology, the

weak-∗ convergence and the convergence in distribution may be defined on it. The invariance
principle or the functional central limit theorem states that Yn/

√
n converge in distribution to W .

The functional central limit theorem for the sums of i.i.d. random variables Yn has been
proven by Donsker [Don51] and by McLeish [McL74] for martingales with stationary ergodic square
integrable increments (version for continuous paths had been proven by Brown [Bro71]). Since our
process may be decomposed

Yn(t)/
√
n = Mn(t)/

√
n+Rn(t)/

√
n
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and Rn(t)/
√
n tends to zero almost surely (in the space D[0, 1]), we conclude the invariance

principle for additive functional of Markov processes under consideration.

Corollary 3.4. Let f1, . . . , fm be a system of C2 diffeomorphisms satisfying (A1) and (A2). Let
(p1, . . . , pm) be such that Λ0,Λ1 > 0. Let (Xn) be the unique stationary Markov process corres-
ponding to the system. If ϕ is a Lipschitz real function on (0, 1) with

∫
ϕdµ = 0, then the sequence

of random variables
Yn(t) :=

∑
k≤nt

ϕ(Xk)

with values in D[0, 1] converge in distribution to σW (t) in D[0, 1] with Skorohod J1-topology.

3.8 Comments
Using the functional central limit theorem one can show the arcsine law (see Theorem 12.11 in
[Kal02]). The law of the iterated logarithm may be stated in much more general form of Strassen’s
invariance principle. To my best knowledge there are no techniques which can be applied to prove
large deviations for the processes under consideration. Hopefully, Theorems 2.1 and 2.2 may turn
out to be helpful in achieving this goal.

It is worth to mention that by Corollary 2.1 the law of the iterated logarithm holds for processes
starting from an arbitrary distribution. The same holds for the central limit theorem but the proof
requires estimating the difference between characteristic functions of suitable processes. This will
be done in Section 4.4 under much weaker assumptions.

As I have mentioned in Section 1.4 all theorems here are towards proving chaotic properties of
Kan’s diffeomorphisms defined in Section 1.3. It is now interesting task to formulate and prove
analogous version of Theorem 3.1 and 3.2 along with Theorems in Sections 3.6, 3.7. Mixing
properties of porcupine-like horseshoes ([DG12]) for some special choice of invariant measure may
be another direction of further research.

54



Chapter 4

Ergodic properties of systems of
homeomorphisms

4.1 Introduction
We have proven already that when f1, . . . , fm are C2 diffeomorphisms and the system has positive
Lyapunov exponents, then ‖Unϕ‖L2(µ) decays exponentially fast for any Lipschitz function ϕ with∫
ϕdµ = 0. This implies the central limit theorem, the functional central limit theorem and the law

of the iterated logarithm. It is unknown whether arbitrary system of homeomorphisms satisfying
(A1), (A2) with positive Lyapunov exponent is exponentially mixing in that sense. Despite of that
we are still able to prove the classical limit theorems.

A key ingredient of the proof of the exponential mixing was the Baxendale theorem (stated
here as Theorem 2.4), which says that the volume Lyapunov exponents of the system are negative
provided that f1, . . . , fm are C2 diffeomorphisms. In 2014 Dominique Malicet published paper
[Mal17], in which he proves some exponential contraction result without any smoothness assump-
tion. It has already been invoked (Theorem 2.5), but since this is a stem of this chapter we state
it here once again. To this end we define once again Ω to be {1, . . . ,m}N, F to be the standard
product σ-algebra and P to be the product measure of the probability vector (p1, . . . , pm). Recall
that Zxn(ω) = fnω (x) = fωn ◦ · · · ◦ f1(x) for ω = (ω1, ω2, . . .). This notation is kept in the whole
chapter.

Let us recall Corollary 2.1 from Section 2.7.

Corollary (cf. Corollary 2.13 in [Mal17]). If f1, . . . , fm are interval homeomorphisms and (p1, . . . , pm)
are such that

• there exists no nontrivial subinterval of (0, 1) which is invariant by all fi’s, and

• there exists a measure µ with µ((0, 1)) = 1 which is stationary for the random walk,

then there exist q < 1 such that for every x ∈ S1 and for almost every ω ∈ Ω there exits an open
neighbourhood I of x such that

|fnω (I)| ≤ qn for every n ≥ 1.

Note that both assumptions are satisfied when Λ0,Λ1 are positive (the first condition is avtually
a consequence of (A1)). This theorem allowed Tomasz Szarek and Anna Zdunik to prove the
central limit theorem (see [SZ21]) and the law of the iterated logarithm ([SZ20]) for systems of
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homeomorphisms of the circle. Later the same has been proven in the case of interval systems by,
respectively, myself and Tomasz Szarek [CS20b] and by myself, Hanna Wojewódka-Ściążko and
Tomasz Szarek [CWSS20]. Although the general concept of the proof was the same as in the case
of systems of the circle (i.e. to determine the rate of convergence of |Unϕ(x) − Unϕ(y)| to zero
using the Malicet theorem), in the case of interval systems it is necessary to deal with the lack of
compactness, which is a substantial obstacle.

The main theorem of the present section is to show the central limit theorem and the law of
the iterated logarithm for arbitrary system of homeomorphisms with (A1), (A2) and Λ0,Λ1 > 0.
In the proof we shall use the Maxwell-Woodroofe criterion (Theorem 1 in [MW00]), which in our
setting takes the form

∞∑
n=1

n−
3
2

∥∥∥∥ n∑
k=1

Ukϕ

∥∥∥∥
L2(µ)

<∞, (4.1)

where ϕ is a Lipschitz function with
∫
ϕdµ = 0. If this condition is satisfied and (Xn) is ergodic,

then the additive functional ϕ(X1) + · · ·+ ϕ(Xn) satisfies the central limit theorem.

Theorem 4.1. Let f1, . . . , fm be a system of increasing interval homeomorphisms satisfying (A1)
and (A2). Let (p1, . . . , pm) be such that Λ0,Λ1 > 0. If ϕ is a Lipschitz real function with

∫
ϕdµ = 0,

then ∥∥∥∥ n∑
k=1

Ukϕ

∥∥∥∥
L2(µ)

≤ Cn3/8

for some constant C > 0.

Corollary 4.1. Let f1, . . . , fm be a system of increasing interval homeomorphisms satisfying (A1)
and (A2). Let (p1, . . . , pm) be such that Λ0,Λ1 > 0. Let (Xn) be the unique stationary process
corresponding to the system. If ϕ is a Lipschitz real function with

∫
ϕdµ = 0, then the additive

functional (ϕ(X1) + · · · + ϕ(Xn)) satisfies the central limit theorem, i.e. there exists σ ≥ 0 such
that

P
(
ϕ(X1) + · · ·+ ϕ(Xn)√

n
∈ [a, b]

)
→ 1√

2πσ2

∫ b

a

e−
x2

2σ2 dx

as n→∞.

After proving the central limit theorem for additive functionals of Markov processes under the
Maxwell-Woodroofe condition it was natural to ask about other limit theorems. The law of the
iterated logarithm was proved in at least two papers roughly at the same time [MY08], [ZW08].
In the second one (Corollary 1 therein) the condition takes the form

∞∑
n=1

(
log(n)

n

)− 3
2
∥∥∥∥ n∑
k=1

Ukϕ

∥∥∥∥
L2(µ)

<∞.

Thus we can conclude the following corollary.

Corollary 4.2. Let f1, . . . , fm be a system of increasing interval homeomorphisms satisfying (A1)
and (A2). Let (p1, . . . , pm) be such that Λ0,Λ1 > 0. Let (Xn) be the unique stationary process
corresponding to the system. If ϕ is a Lipschitz real function with

∫
ϕdµ = 0, then the additive

functional (ϕ(X1) + · · ·+ ϕ(Xn)) satisfies the law of the iterated logarithm

lim sup
n→∞

ϕ(X1) + · · ·+ ϕ(Xn)√
2nσ2 log logn

= 1 a.s.,

where σ2 = limn→∞ E(ϕ(X1) + · · ·+ ϕ(Xn))2.
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It has been proven in [CWSS20] that the process in the statement may be in fact taken with
arbitrary initial distribution. Here it clearly follows from Corollary 2.1.

The invariance principle under the Maxwell-Woodroofe condition has been proven in [PU05].
Therefore we obtain.

Corollary 4.3. Let f1, . . . , fm be a system of homeomorphisms satisfying (A1) and (A2). Let
(p1, . . . , pm) be such that Λ0,Λ1 > 0. Let (Xn) be the unique stationary process corresponding to
the system. If ϕ is a Lipschitz real function with

∫
ϕdµ = 0, then the sequence of random variables

Yn(t) :=
∑
k≤nt

ϕ(Xk)

with values in D[0, 1] converge in distribution to σW (t) in D[0, 1] with Skorohod J1-topology, where
σ2 = limn→∞ E(ϕ(X1) + · · ·+ ϕ(Xn))2.

4.2 The proof of Theorem 4.1
The estimation proceeds in the same way as in the proof of Theorem 3.1. Recall here that Pro-
position 3.1 says that there exist α ∈ (0, 1) and c < 1 such that for every a > 0 sufficiently
small

P
( n⋂
k=1

{Zxk < a}
)
≤ aα/xαcn and P

( n⋂
k=1

{Z1−x
k > 1− a}

)
≤ aα/xαcn (4.2)

for x < a. Take a > 0 such that µ([a, 1−a]) > 4/5 and such that transition from (0, a) to (1−a, 1)
as well as from (1 − a, 1) to (0, a) is impossible in one step. Let M , α be the constants given in
Proposition 3.1. Define ξn := cb

4
√
nc/2, Kn := [ξn, 1 − ξn] × [ξn, 1 − ξn], Rn := [0, 1] × [0, 1] \Kn.

By Corollary 3.1 if holds that µ⊗ µ(Rn) ≤ 4Mξαn .
With this constants we can reproduce the estimations from the proof of exponential decay of

correlations:

∥∥∥∥ n∑
k=1

Ukϕ

∥∥∥∥2

L2(µ)

=

∫
[0,1]

∣∣∣∣ n∑
k=1

Ukϕ(x)

∣∣∣∣2µ(dx) =

∫
[0,1]

∣∣∣∣ n∑
k=1

(
Ukϕ(x)−

∫
[0,1]

ϕ(y)µ(dy)

)∣∣∣∣2µ(dx)

=

∫
[0,1]

∣∣∣∣ n∑
k=1

(
Ukϕ(x)−

∫
[0,1]

ϕ(y)P kµ(dy)

)∣∣∣∣2µ(dx)

=

∫
[0,1]

∣∣∣∣ n∑
k=1

(
Ukϕ(x)−

∫
[0,1]

Ukϕ(y)µ(dy)

)∣∣∣∣2µ(dx)

=

∫
[0,1]

∣∣∣∣ ∫
[0,1]

( n∑
k=1

Ukϕ(x)− Ukϕ(y)

)
µ(dy)

∣∣∣∣2µ(dx)

≤
∫

[0,1]

∫
[0,1]

( n∑
k=1

∣∣Ukϕ(x)− Ukϕ(y)
∣∣)2

µ(dy)µ(dx)

≤
∫ ∫

Kn

( n∑
k=1

Lip(ϕ)E
∣∣Zxk − Zyk ∣∣)2

µ(dy)µ(dx)
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+

∫ ∫
Rn

( n∑
k=1

∣∣Ukϕ(x)− Ukϕ(y)
∣∣)2

µ(dy)µ(dx)

≤
( n∑
k=1

Lip(ϕ)E
∣∣Zξnk − Z1−ξn

k

∣∣)2

+

∫ ∫
Rn

4n2‖ϕ‖2∞µ(dy)µ(dx)

≤
( n∑
k=1

Lip(ϕ)E
∣∣Zξnk − Z1−ξn

k

∣∣)2

+ 16Mξαn‖ϕ‖2∞n2,

We are left to estimate

E|Zξnk − Z
1−ξn
k | =

∫
Ω

n∑
k=1

|fkω(ξn)− fkω(1− ξn)|dP.

The idea is to divide, for n fixed, Ω into three parts Dn, En, Hn. The probability of the events
Dn and En shall diminish sufficiently fast as n increases, while on Hn some bound may be found
for the value of

∑n
k=1 |fkω(ξn)− fkω(1− ξn)|.

Let
Dn := {ω ∈ Ω : ∃k≥b 4

√
ncf

k
ω(ξn) < ξn or fkω(1− ξn) > 1− ξn}.

Lemma 4.1. There exists a constant C1 such that P(Dn) ≤ C1nc
b 4
√
nc/2.

Proof. Let τ be the moment of the first visit of (Zξnj )j in [a, 1− a]. Recall that M was chosen so
that ν ∈ PM,α for every measure ν supported on [a, 1− a]. This means that if x ∈ [a, 1− a], then
Pnδx((0, ξn) ∪ (1− ξn, 1)) ≤ 2Mξαn . Thus by the strong Markov property

P
(
{Zξnk 6∈ [ξn, 1− ξn]} ∩ {τ ≤ b 4

√
nc}

∣∣∣∣ Fτ) ≤ 2Mξαn a.s.

for k ≥ b 4
√
nc. Therefore, by (4.2),

P
( n⋃
k=b 4
√
nc

{Zξnk 6∈ [ξn, 1− ξn]}
)
≤

n∑
k=b 4
√
nc

EP
(
{Zξnk 6∈ [ξn, 1− ξn]} ∩ {τ ≤ b 4

√
nc}

∣∣∣∣ Fτ)

+P(τ > b 4
√
nc) ≤ 2nMξαn + cb

4
√
ncaα/ξαn = 2nMcb

4
√
nc/2 + aαcb

4
√
ncc−b

4
√
nc/2 ≤ C1nc

b 4
√
nc/2

for some constant C1. What is left is to proceed with the analogous computation for 1 − ξn and
possibly amend the choice of C1.

The task of defining the sets En, Hn will be preceded with the construction of a measurable
set B ⊆ Ω (dependent of n) of positive P-measure (with a positive lower bound independent of n)
and a constant C2 (also independent of n) such that

n∑
j=1

|fj([ξn, 1− ξn])| ≤ b 4
√
nc+ C

for every ω ∈ B and n sufficiently large.
To this end we fix x0 ∈ supp(µ), interval I containing x0 and a measurable subset B′′′ ⊆ Ω

such that P(B′′′) > 1/2 and |fnω (I)| ≤ qn for every n ≥ 1 and ω ∈ B′′′ (the existence follows from
Corollary 2.1 recalled in Section 4.1). Now we shall briefly show that there exist r1 and β > 0 such
that

P(fr1ω ([a, 1− a]) ⊆ I) ≥ β.
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Indeed, we know that the distribution of ω → xω is µ (the definition in Section 2.7). Since
x0 ∈ supp(µ), we can find Ĩ whose closure is contained in I and µ(Ĩ) > 0. Taking ε > 0 sufficiently
small we know that

P(fr1ω ([a, 1− a]) ⊆ I) ≥ P(xω ∈ Ĩ and |fr1ω ([a, 1− a])| < ε) > β > 0.

Denote B′′ := {ω ∈ {1, . . . ,m}r1 : fr1ω ([a, 1− a]) ⊆ I} (hence B′′ is a set of finite sequences).
We have defined the set B′′′ of infinite sequences and the set B′′ of finite sequences of length

r1 (independent of n). Now we are going to define a set of finite sequences of length depending on
n, which we shall denote by B′. Take an integer r2 such that

P(f iω(x) ∈ [a, 1− a]) >
4

5
(4.3)

for every x ∈ [a, 1− a] and i ≥ r2. This is a consequence of the stability of the process (Theorem
2.2), Portmanteau theorem (Theorem 2.1 in [Bil99]) and the fact that µ([a, 1 − a]) > 4/5. By
inequalities (4.2) we have

P
( b 4
√
nc/2⋂
k=1

{fkω(ξn) < a}
)
≤ aα/ξαncb

4
√
nc/2 = aα

(
c(1−α)/2

)b 4
√
nc and

P
( b 4
√
nc/2⋂
k=1

{fkω(1− ξn) > 1− a}
)
≤ aα

(
c(1−α)/2

)b 4
√
nc

for every n. If n was sufficiently large, then

• the probability of each of the above sets is less than 1/4 and

• b 4
√
nc/2 > r2.

By this and (4.3) the probability of {fb
4
√
nc

ω (ξn) ∈ [a, 1−a]} is grater than 4/5·3/4 = 3/5. Similarly
the probability of {fb

4
√
nc

ω (1 − ξn) ∈ [a, 1 − a]} is greater than 3/5, therefore the probability of
B′ := {fb

4
√
nc

ω (ξn) ∈ [a, 1 − a] and fb
4
√
nc

ω (1 − ξn) ∈ [a, 1 − a]} ⊆ {1, . . . ,m}b 4
√
nc} is greater than

1/5 (Figure 4.1). The set B := B′ × B′′ × B′′′ ⊆ Ω has measure P(B) = P(B′) · P(B′′) · P(B′′′) ≥
1/5 · β · 1/2 = β/10 > 01. Moreover, for ω ∈ B we have

n∑
j=0

|f jω([ξn, 1− ξn])| ≤ b 4
√
nc+ r, (4.4)

where r is independent of n.
Fix n sufficiently large. By abuse of notation the projection of a subset of Ω to Ωn :=

{1, . . . ,m}n will be denoted by the same letter as the subset (this rule will be applied espe-
cially to B). In the same way we shall denote by P the product measure of (p1, . . . , pm) on Ωn.
Define A0 := Ωn and B1 := B. The set A1 := Ωn \ B1 is a sum of disjoint cylinders, hence there
exists a set F1 ⊆ Ω∗ =

⋃∞
j=1 Ωj of finite sequences such that A1 =

⋃
(i1,...,ik)∈F1

C(i1,...,ik), where
C(i1,...,ik) = {ω ∈ Ω : ω1 = i1, . . . , ωk = ik}. This representation is generally not unique, but if we
insist F1 to have the smallest possible cardinality, then it becomes unique. Let

B2 :=
⋃

(i1,...,ik)∈F1

{(i1, . . . , ik)} ×B ⊆ Ωn.

1By abuse of notation we write P to denote the product measure of (p1, . . . , pm) on a finite product of {1, . . . ,m}.
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ξn 1− ξna 1− a

I

b 4
√
nc

2

b 4
√
nc

b 4
√
nc+ r1

B′

B′′

Figure 4.1

and A2 := Ωn \ (B1∪B2). Continue this procedure. For every l the set Al := Ω\ (B1∪ . . .∪Bl) is a
sum of some cylinders C(i1,...,ik), (i1, . . . , ik) ∈ Fl. Then define Bl+1 :=

⋃
(i1,...,ik)∈Fl C(i1,...,ik)×B.

Proceed until l = b 8
√
nc.

We have already observed that

n∑
j=0

|f jω([ξn, 1− ξn])| ≤ b 4
√
nc+ r,

where r is independent of n and ω ∈ B1. We are going to show that

n∑
j=0

|f jω([ξn, 1− ξn])| ≤ l(b 4
√
nc+ r) + l,

where ω ∈ Bl \Dn (recall that r is independent of n).
If ω ∈ B2 \ Dn, then ω 6∈ B1 and we can find (i1, . . . , ik) ∈ F1 such that ω ∈ Ci1,...,ik . This

means that ω1 = i1, . . . , ωk = ik and (i1 . . . , ik−1) ∈ B (by which we mean that (i1, . . . , ik−1)
agrees with certain sequence from B on the first k − 1 coordinates). The fact that ω ∈ B2 implies
(ωk+1, . . . , ωn) ∈ B thus the application of (4.4) to (ω1, . . . , ωk−1) and (ωk+1, ωk+2, . . .) gives

n∑
j=1

|f jω([ξn, 1− ξn])| ≤ b 4
√
nc+ r + 1 + b 4

√
nc+ r ≤ 2(b 4

√
nc+ r + 2),

which completes the proof for l = 2.

ω1 ω2

. . .

ωk1−1

B

ωk1ωk1+1

. . .

ωk2−1

B

ωk2ωk2+1

. . .

ωk3−1ωk3ωk3+1

B

. . .

ωkl−1 ωkl ωkl+1

. . .

ωn

B

Figure 4.2: The decomposition of ω.

60



If ω ∈ B3 \Dn, then ω 6∈ B2, and we can find (i1, . . . , ik) ∈ F2 such that ω ∈ C. This means
that ω1 = i1, . . . , ωk = ik and there exists k′ with (ω1, . . . , ωk′−1) ∈ B and (ωk′+1, . . . , ωk−1) ∈ B.
Since ω ∈ B3, we know that (ωk+1, . . . , ωn) ∈ B. Concluding,

n∑
j=1

|f jω([ξn, 1− ξn])| ≤ 3(b 4
√
nc+ r + 3),

which completes the proof for l = 3. We continue in this fashion. For every l a sequence ω ∈ Bl
may be decomposed into l sequences (possibly one or more empty) from B with one step break
between each neighbouring pair (see Figure 4.2). Therefore

n∑
j=1

|f jω([ξn, 1− ξn])| ≤ l(b 4
√
nc+ r + l),

for every l = 1, . . . , b 8
√
nc (in fact one could replace the l in parenthesis by l − 1). Eventually we

have proved that
n∑
j=1

|f jω([ξn, 1− ξn])| ≤ b 8
√
nc(b 4
√
nc+ r + b 8

√
nc) (4.5)

for ω ∈ B1 ∪ · · · ∪Bb 8
√
nc \Dn.

Put Hn := B1 ∪ · · · ∪Bb 8
√
nc \Dn and En := Ab 8

√
nc.

Lemma 4.2. We have
P(En) ≤ (1− P(B))b

8
√
nc.

Proof. Recall we identify P with its projection on the first n coordinates. Therefore

P
(
Ab 8
√
nc
)

= P
(
Ab 8
√
nc−1 ∩ (Ω \Bb 8

√
nc)
)

= P
(
Ω \Bb 8

√
nc
∣∣ Ab 8

√
nc−1

)
P(Ab 8

√
nc−1)

≤ (1− P(B))P(Ab 8
√
nc−1) ≤ . . . ≤ (1− P(B))b

8
√
nc.

We are in position to complete the proof. We have∫
Ω

n∑
k=1

|fkω(ξn)− fkω(1− ξn)|dP ≤
∫
Dn

n∑
k=1

|fkω(ξn)− fkω(1− ξn)|dP+

∫
Hn

n∑
k=1

|fkω(ξn)− fkω(1− ξn)|dP

+

∫
En

n∑
k=1

|fkω(ξn)− fkω(1− ξn)|dP ≤ nP(Dn) + nP(En) + b 8
√
nc(b 4
√
nc+ r + b 8

√
nc).

By Lemmas 4.1 and 4.2 two first sequences are bounded. Therefore taking n sufficiently large, say
n ≥ n0, yields ∫

Ω

n∑
k=1

|fkω(ξn)− fkω(1− ξn)|dP ≤ Cn3/8 (4.6)

for some constant C (independent of n). Finally∥∥∥∥ n∑
k=1

Ukϕ

∥∥∥∥2

L2(µ)

≤
(
Lip(ϕ)Cn3/8

)2
+ 16Mξαn‖ϕ‖2∞n2

61



for n ≥ n0. The second term is again bounded, hence possibly changing n0 and C we have∥∥∥∥ n∑
k=1

Ukϕ

∥∥∥∥2

L2(µ)

≤
(
Cn3/8

)2
,

which proves the assertion (notice that the norm above is squared).

4.3 The value of σ
The approximation method by Maxwell and Woodroofe does not provide any information about
the value of σ. In general it is known only that

σ2 = lim
n→∞

E(ϕ(X1) + · · ·+ ϕ(Xn))2

(it is proven in [MW00] that the limit exists) and σ <∞. The exact value is not so much important,
however it should be determined whether it is positive or not. If not, then

lim
n→∞

E(ϕ(X1) + · · ·+ ϕ(Xn))2 = 0,

and in fact the central limit theorem does not hold. Here we are not able to show in general that
σ is positive but there are situations in which the problem is possible to handle with.

Figure 4.3: The plot of ϕ (red)
and of Unϕ (blue) for n large.

Let f1, f2 be a system satisfying assump-
tions of Theorem 2.5 with probability vector
(1/2, 1/2). Let us assume also that it is sym-
metric, thus f1(x) = 1− f2(1− x). Let ϕ be in-
creasing, Lipschitz and symmetric with respect
to the point (1/2, 0) (see Figure 4.2) (this im-
plies that the mean value is zero as for such sys-
tem the stationary measure µ must be symmet-
ric as well). Observe that for such observable
Uϕ is increasing too. Indeed, fi’s are increasing
hence if x1 < x2, then Uϕ(x1) = Eϕ(fω(x1)) ≤
Eϕ(fω(x2)) = Uϕ(x2). Moreover, Uϕ(1/2) = 0
from the symmetry of the system. Both these
facts combined yields that Uϕ(x) < 0 for x <
1/2 and Uϕ(x) > 0 for x > 1/2.

Clearly it holds also for all iterates Unϕ. If (Xn) is the stationary process corresponding to the
system defined on some probability space (Ω,F ,P), then

1

n
E(ϕ(X1)+· · ·+ϕ(Xn))2 =

1

n

(
Eϕ(X1)2+· · ·+Eϕ(Xn)2

)
+

2

n

n−1∑
i=1

Eϕ(Xi)
(
ϕ(Xi+1)+· · ·+ϕ(Xn)

)

=

∫
[0,1]

ϕ2(x)µ(dx) +
2

n

n−1∑
i=1

E
(
ϕ(Xi)E

(
ϕ(Xi+1) + · · ·+ ϕ(Xn)

∣∣ Xi

))
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=

∫
[0,1]

ϕ2(x)µ(dx) +
2

n

n−1∑
i=1

E
(
ϕ(Xi)

(
Uϕ(Xi) + · · ·+ Un−iϕ(Xi)

))
.

By the considerations we have just made, the function under the integral in the second summand
is positive, thus the same is true for the expectation. We conclude that

1

n
E(ϕ(X1) + · · ·+ ϕ(Xn))2 ≥

∫
[0,1]

ϕ(x)2µ(dx) > 0

provided ϕ is not the constant function equal to zero.

4.4 Non-stationary processes
It is much more difficult to show that the central limit theorem holds for processes starting from a
point. Although it has been proven that a condition slightly stronger than the Maxwell-Woodroofe
condition implies the central limit theorem for the process (Zxn) starting from the point x for µ-
almost every x (see [DL03]), our estimations give even that the central limit theorem holds for a
process starting from completely arbitrary distribution.

Fix x ∈ (0, 1). The idea is to show that the characteristic functions of the random variables

1√
n

(
ϕ(X1) + · · ·+ ϕ(Xn)

)
and

1√
n

(
ϕ(Zx1 ) + · · ·+ ϕ(Zxn)

)
converge pointwise to each other. Since the characteristic function of the first tends pointwise to
exp(−t

2σ2

2 ) this would give the assertion2.
We have ∣∣∣∣ ∫

[0,1]

∫
Ω

exp

(
it
ϕ(y) + · · ·+ ϕ(fn−1

ω (y))√
n

)
P(dω)µ(dy)

−
∫

Ω

exp

(
it
ϕ(x) + · · ·+ ϕ(fn−1

ω (y))√
n

P(dω)

)∣∣∣∣
≤
∫

[0,1]

∫
Ω

∣∣∣∣ exp

(
it
ϕ(y) + · · ·+ ϕ(fn−1

ω (y))√
n

)
− exp

(
it
ϕ(x) + · · ·+ ϕ(fn−1

ω (y))√
n

)∣∣∣∣P(dω)µ(dy)

≤ |t|√
n

∫
[0,1]

∫
Ω

∣∣∣∣ n−1∑
i=0

ϕ(f iω(y))− ϕ(f iω(x))

∣∣∣∣P(dω)µ(dy)

by the inequality |eitx1 − eitx2 | ≤ |t||x1 − x2|. It does not exceed

Lip(ϕ)|t|√
n

∫
[0,1]

∫
Ω

n−1∑
i=0

∣∣∣∣f iω(y)− f iω(x)

∣∣∣∣P(dω)µ(dy).

2Recall a standard theorem that the sequence of measures is weak-∗ convergent to some limit measure if and
only if the characteristic functions of this measures converge pointwise to the characteristic function of the limit
measure.
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Similarly as in Section 4.2 the integral may be decomposed into two, one bounded from above
by Lip(ϕ)|t|√

n
µ((0, ξn) ∪ (1 − ξn, 1)) · n ≤ 2Lip(ϕ)|t|

√
nMξαn , which decays to zero, and the second

bounded by
Lip(ϕ)|t|√

n

∫
Ω

n∑
k=1

|fkω(ξn)− fkω(1− ξn)|dP.

By (4.6) we know that this is growing not faster than Lip(ϕ)|t|√
n

Cn3/8, which also tends to 0 as n
goes to infinity. This completes the proof.

4.5 Comments
It is doubtful that Corollary 4.3 cannot be extended to processes with an arbitrary initial distri-
bution. However, the proof would require two facts. The first that if (Xn) starts from some point
x ∈ (0, 1), then (Yn(t)) is a tight family in D[0, 1]. The second is that the finite-dimensional dis-
tributions of Yn tend to the corresponding finite dimensional distributions of the Wiener process.
The second is an adaptation of our method in Section 4.4, but the first seems to be troublesome.
Nevertheless I still conjecture the statement is true.

Apparently any consequence of the exponential decay of correlations in Chapter 3 has been
proven for much general class of systems of homeomorphisms with the rate of convergence much
weaker than exponential. The question arise whether it is worth to establish the exponential rate
of convergence. I hope it may help to show some large deviations results, however to my best
knowledge there is no literature and new methods should be elaborated. It seems interesting to
find some large deviation results under the Maxwell-Woodroofe type conditions.
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Chapter 5

Ergodic properties of systems with
place-dependent probabilities

5.1 The main theorems and notation
Systems of homeomorphisms with place-dependent probabilities arise when some specific g-measures
of Kan’s diffeomorphisms are considered. Usually one wish to know whether g-measure is unique.
In this chapter we give a partial answer to that question. Due to huge difficulties the uniqueness
is proved for a very specific choice of transformations.

Let f1, . . . , fm be arbitrary increasing interval homeomorphisms, and let p1, . . . , pm be real
positive functions on [0, 1] with

∑m
i=1 pi(x) = 1 for x ∈ [0, 1] (one can think of continuous functions).

One can define an analogous process to the processes defined in Chapter 2 with the only difference
that the distribution according to which a homeomorphism is chosen depends now on the position
in the interval and is given by (p1(x), . . . , pm(x)) provided the current position is x.

The process is a Markov process with transition probabilities

p(x, ·) =

m∑
i=1

pi(x)δfi(x). (5.1)

Its Markov and dual operators P and U are given by

Pµ(A) =

m∑
i=1

∫
f−1
i (A)

pi(x)µ(dx),

where µ ∈M (the space of Borel probability measures), A is a Borel set, and

Uϕ(x) =

m∑
i=1

pi(x)ϕ(fi(x)),

where ϕ is an arbitrary bounded Borel measurable real function. The operator P is Feller provided
pi’s are continuous (we have assumed that fi’s are homeomorphisms). The notions of ergodicity
and stability applies here as well.

Now let us turn to the very specific system. Fix a < b < 1/2. Let f2 be an interval homeo-
morphism mapping (0, a] linearly onto (0, b] and [a, 1) onto [b, 1]. Its graph consists of two straight
lines, the first one connecting (0, 0) with the point (a, b) and the second one connecting (a, b) with
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1− aa

1− b

b

f1

f2

Figure 5.1: An example of Alsedà-Misiurewicz sys-
tem. The interior of the hatched area is the set of
points (a, b) satisfying assumption (A1).

(1, 1). Next, let f1 be the interval homeomorphism defined by f1(x) = 1− f2(1−x), x ∈ [0, 1] (see
Figure 5.1). Setting a2 = b

a and a1 = 1−b
1−a , we can write

f2(x) :=

{
a2x if x ≤ a
a1(x− 1) + 1 if x > a

and f1(x) := 1− f2(1− x). (5.2)

In [BS21] these systems were called the Alsedà-Misiurewicz systems (with the difference that the
only restriction for (a, b) ∈ (0, 1) × (0, 1) is that it should be above diagonal). Further, fix two
positive real functions p1, p2 on [0, 1] with p1(x) + p2(x) = 1 for every x ∈ [0, 1]. It defines
an iterated function system with probabilities and, together with some initial distribution µ, a
Markov process.

In the previous chapters the notion of the average Lyapunov exponents appeared. In this setting
it is defined by

Λ0 := p1(0) log(a1) + p2(0) log(a2),

Λ1 := p1(1) log(a2) + p2(1) log(a1).
(5.3)

It is not hard to adapt the proofs in Sections 2.2, 2.3 to show an analogous results for the
system above provided p1, p2 do not vanish. Actually, it may be proven for arbitrary systems with
arbitrary finite number of homeomorphisms assuming only that the probabilities do not vanish and
conditions (A1), (A2) are satisfied. However, dealing with the case Λ0,Λ1 > 0 is nontrivial. Even
uniqueness of a stationary distribution of a system is hard to prove, therefore the considerations
are restricted to the specific system above. Moreover, we need the following assumptions:

(B1) 0 < a < 1/2 and a < b < 1/2, (see Figure 5.1)

(B2) p1, p2 are Dini continuous (see the definition below),

(B3) 0 < pi(x) < 1 for x ∈ [0, 1] and i = 1, 2,

(B4) Λ0,Λ1 > 0.
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The functions p1, p2 are Dini continuous if for every C ≥ 0 and t < 1 we have
∑
n β(Ctn) < ∞

where β denotes the modulus of continuity of p1, p2, i.e.

β(t) := max
i=1,2

sup
x∈(0,1),|h|≤t

|pi(x)− pi(x+ h)|.

Our main results is the following theorem.

Theorem 5.1. Let f1, f2 be given by (5.2), and let p1, p2 be arbitrary positive continuous functions
with p1(x) + p2(x) = 1, x ∈ (0, 1). If (B1)-(B4) hold, then there exists a unique Borel probability
measure µ ∈M such that the Markov process (Xµ

n ) with the family of transition probabilities (5.1)
and the initial distribution µ is stationary. Moreover, the process (Xν

n) starting from an arbitrary
measure ν with the family of transition probabilities (5.1) is asymptotically stable (i.e. the law of
Xν
n converges in the weak-∗ topology to µ).

It may be proven also that if x ∈ (0, 1) and ϕ ∈ C
(
(0, 1)

)
, then

ϕ(Xx
1 ) + · · ·+ ϕ(Xx

n)

n
→
∫
ϕdµ a.s.,

where (Xx
n) denotes the process starting from the point x. This holds under the assumptions of

Theorem 5.1, and the proof may be found in [Czu20] (Theorem 3 therein).

5.2 Auxiliary results and the existence of a stationary distri-
bution

Recall that

PM,α =
{
µ ∈M

(
(0, 1)

)
: ∀x∈(0,1)µ

(
(0, x]

)
≤Mxα and µ

(
[1− x, 1)

)
≤Mxα

}
.

We shall prove the existence of parameters M and α for which the class PM,α is P invariant
provided Λ0, Λ1 are positive. This easily implies the existence of a stationary distribution as
presented in Proposition 3.1. Recall the idea is to apply the Krylov-Bogoliubov technique, i.e.
define νn = 1

n (δ1/2 + · · ·+Pn−1δ1/2). Obviously δ1/2 ∈ PM,α, thus by the P -invariance of PM,α all
νn’s are in PM,α, and by weak-∗ compactness of PM,α there exists an accumulation point µ ∈ PM,α

of this sequence, which is a stationary measure. We omit the details.
Now we show the invariance of PM,α for suitably chosen parameters. By the continuity of p1, p2

and (B4) one can find ξ ∈ (0, a) such that

max
t≤a−1

1 ξ
p1(t) log a1 + max

t≤a−1
1 ξ

p2(t) log a2 >
Λ0

2
,

max
t≤a−1

1 ξ
p1(1− t) log a2 + max

t≤a−1
1 ξ

p2(1− t) log a1 >
Λ1

2
.

(5.4)

Writing the Taylor formula of the function α 7−→ a−α at 0 we obtain a−α = 1 − α log a + o(α),
where a is a fixed positive number. By this formula one can find α ∈ (0, 1) and c ∈ (0, 1) with

max
t≤a−1

1 ξ
p1(t)a−α1 + max

t≤a−1
1 ξ

p2(t)a−α2 < c,

max
t≤a−1

1 ξ
p1(1− t)a−α2 + max

t≤a−1
1 ξ

p2(1− t)a−α1 < c.
(5.5)
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Eventually, take M so that Mξα = 1 (this implies that ν ∈ PM,α for ν supported on [ξ, 1− ξ]).
Take µ ∈ PM,α and x ∈ (0, 1). If x ≥ ξ, then Mxα ≥ Mξα = 1, hence the condition

Pµ((0, x]) ≤Mxα is trivially satisfied. If x < ξ, then also x < a and (note that a−1
2 x ≤ x ≤ a−1

1 x)

Pµ((0, x)) =

∫
(0,a−1

1 x]

p1(t)µ(dt) +

∫
(0,a−1

2 x]

p2(t)µ(dt) ≤ max
t≤a−1

1 ξ
p1(t)µ((0, a−1

1 x])

+ max
t≤a−1

2 ξ
p2(t)µ((0, a−1

2 x]) ≤ max
t≤a−1

1 ξ
p1(t)Ma−α1 xα + max

t≤a−1
1 ξ

p2(t)Ma−α2 xα = Mxαc < Mxα,

where in the last line we used (5.5). Therefore Pµ((0, x]) ≤Mxα. The proof that Pµ([1−x, 1)) ≤
Mxα is analogous, hence the invariance of PM,α is established.

Proposition 5.1. Let f1, f2 be given by (5.2), and let p1, p2 be arbitrary positive continuous
functions with p1(x) + p2(x) = 1, x ∈ (0, 1). If (B1)-(B4) hold, then there exists α ∈ (0, 1)
such that for every ξ > 0 sufficiently small there exist M such that PM,α is P invariant and every
measure supported on [ξ, 1−ξ] belongs to this class. If (Xn) is a Markov process on some probability
space (Ω,F ,P) starting from x and with transition probabilities (5.1) for the specific system above,
then

P
( n⋂
i=0

{Xi < ξ}
)
≤ (ξ/x)αcn

for all n ≥ 0 and x < ξ, and

P
( n⋂
i=0

{Xi > 1− ξ}
)
≤ ξα/(1− x)αcn

for all n ≥ 0 and x > 1− ξ.

Proof. The first part has already been proven. We present the proof of the first inequality. For
positive integer n put

Cn := {X0 < ξ} ∩ · · · ∩ {Xn < ξ}.
For every n and almost every ω ∈ Cn let us define a random variable An measurable with respect
to σ(X1, . . . , Xn) by An = a1 if Xn(ω) = f1(Xn−1(ω)) and An = a2 if Xn(ω) = f2(Xn−1(ω)).
Clearly (0, ξ] ⊆ (0, a], and on the latter interval the transformations f1, f2 are linear thus

Cn−1 ⊆ {Xn = An · · ·A1X0},

thus

Cn ⊆ {ξ > An · · ·A1X0} ∩Cn−1 = {ξ > An · · ·A1x} ∩Cn−1 = {(An · · ·A1)−1 > (ξ/x)−1} ∩Cn−1.

By the Chebyshev inequality

P(Cn) ≤
(
ξ/x
)αE1Cn−1(An · · ·A1)−α.

It remains to estimate the last expression. The application of (5.5) gives∫
Cn−1

A−αn · · ·A−α1 dP =

∫
Cn−1

E
(
A−αn |Xn−1, . . . , X0

)
A−αn−1 · · ·A

−α
1 dP

=

∫
Cn−1

(
p1(Xn−1)a−α1 + p2(Xn−1)a−α2

)
A−αn−1 · · ·A

−α
1 dP < c

∫
Cn−2

A−αn−1 · · ·A
−α
1 dP.

It was crucial that the set over which the integral was taken was Cn−1 as otherwise we cannot use
(5.5). Proceeding in this fashion completes the proof.
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5.3 The proof of uniqueness and stability
There are two fundamental papers dealing with the uniqueness and stability of Markov processes
arising from a general class of iterated function systems with place-dependent probabilities. The
first of these is [BDEG88]. For our purpose it is advantageous to know the proof there falls naturally
into to parts, where in the first one it is shown that two Markov processes starting from two close
points have similar distribution (this may be formally expressed as the equicontinuity of the family
(Unϕ) for an arbitrary continuous function ϕ; it is sometimes called the e-property), and in the
second part it is shown that for two independent Markov processes (Xn) and (Yn) starting from
arbitrary two points the "coupling time" T (i.e. the minimum integer n for which (Xn) and (Yn)
are close to each other in the sense from the first part) is finite almost surely. Then, given n, the
space may be decomposed into {T ≤ n} and {T > n}. The probability of the second event tends
to zero, and the distribution of Xn and Yn provided T ≤ n are close to each other1. It should be
mentioned that the first part contained a mistake. The amendment was published two years later
in erratum [BDEG89].

The second of the mentioned two papers is [LY94] in which the theorem from [BDEG88] was
generalized to a wide class of Markov processes, going beyond these arising from iterated function
system. The sketch is roughly the same. A reader more familiar with the literature probably find
it interesting that the first part was replaced by the concept of nonexpansiveness, and the second
by the lower bound technique. The sketch of our proof of Theorem 5.1 is the same as in [BDEG88],
however each part is proven in a new way not being an adaptation of previous results or techniques.

Proposition 5.2. Let f1, f2 be given by (5.2), and let p1, p2 be arbitrary positive continuous
functions with p1(x) + p2(x) = 1, x ∈ (0, 1). Let us assume that (B1)-(B4) hold. If (Xn), (Yn) are
Markov processes on some probability space (Ω,F ,P) starting from x and y, respectively, and with
transition probabilities (5.1), then for an arbitrary continuous function ϕ and ε > 0 there exists
δ > 0 such that ∣∣Eϕ(Xn)− Eϕ(Yn)

∣∣ < ε

provided x, y ∈ [a, 1− a] and |x− y| < δ.

Proposition 5.3. Let f1, f2 be given by (5.2), and let p1, p2 be arbitrary positive continuous
functions with p1(x) + p2(x) = 1, x ∈ (0, 1). Let us assume that (B1)-(B4) hold. If (Xn), (Yn)
are independent Markov processes on some probability space (Ω,F ,P) starting from x and y > x,
respectively, and with transition probabilities (5.1), then for an arbitrary δ > 0 "the coupling time"

T = min{n ≥ 0 : |Xn − Yn| < δ and a ≤ Xn < Yn ≤ 1− a}

is finite almost surely.

Now we show the proof of Theorem 5.1. The proofs of Propositions 5.2 and 5.3 are postponed to
the next sections.

The proof of Theorem 5.1. Let (Xn) be a stationary Markov process from the hypothesis (existence
has already been established). Let (Yn) be a Markov process with the same transition probabilities
and an arbitrary initial distribution. Take ϕ continuous and ε > 0, and let δ > 0 be the constant
given in Proposition 5.2. Set

T = min{n ≥ 0 : |Xn − Yn| < δ and Xn, Yn ∈ [a, 1− a]}.
1One can notice the resemblance to the proof of stability of Markov chains on a countable state space. In a

moment the proof will be presented in our setting with all details.
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By Proposition 5.3 the stopping time T is finite almost surely, thus P(T > n) → 0 as n → ∞.
Therefore

|Eϕ(Xn)− Eϕ(Yn)| ≤
∣∣∣∣E1{T≤n}(ϕ(Xn)− ϕ(Yn)

)∣∣∣∣+

∣∣∣∣E1{T>n}(ϕ(Xn)− ϕ(Yn)
)∣∣∣∣

≤
∣∣∣∣E1{T≤n}E(ϕ(Xn)− ϕ(Yn)

∣∣ FT )∣∣∣∣+ E1{T>n}
∣∣ϕ(Xn)− ϕ(Yn)

∣∣
By the triangle inequality the second summand does not exceed 2‖ϕ‖∞P(T > n), and by the strong
Markov property and Proposition 5.2 the conditional expectation

E
(
ϕ(Xn)− ϕ(Yn)

∣∣ FT )
is less than ε almost surely on {T ≤ n}. Therefore

|Eϕ(Xn)− Eϕ(Yn)| ≤ εP(T ≤ n) + 2‖ϕ‖∞P(T > n)→ ε

as n goes to infinity. But Eϕ(Xn) is independent of n by the stationarity of the process, and
is equal to

∫
(0,1)

ϕ(x)µ(dx). Since ϕ is an arbitrary Lipschitz function and every continuous real
function on [0, 1] may be approximated by a Lipschitz functions in the supremum norm, this proves
the weak-∗ convergence of the distribution of Yn to µ. Since the initial distribution of (Yn) was
arbitrary, this completes the proof of stability.

5.4 The proof of Proposition 5.2
Similarly to the proofs in Chapters 3 and 4 we find it useful to consider a specific model on which
the random variables (Xn), (Yn) are defined. Let Ω = {1, 2}N, and let F be the standard product
σ-algebra. The family of measures Px, x ∈ (0, 1), is defined on Ω. The measure Px on a cylinder
Ci1,...,ik , obtained by fixing k first coordinates to be (i1, . . . , ik), takes value

Px(Ci1,...,ik) = pi1
(
x
)
pi2
(
fi1(x)

)
· · · pik

(
fik−1

◦ · · · ◦ fi1(x)
)
.

It is a standard argument (see for example Theorem 3.1 in [Bil95]) that the measure defined on
cylinders may be extended to the σ-algebra generated by cylinders, which here is identical to F .
For x fixed, the sequence of functions ω 7−→ fωn ◦ · · · ◦ fω1

(x), n ≥ 0 and ω = (ω1, ω2, . . .), defined
on (Ω,F ,Px) is the Markov process with transition probabilities (5.1) and starting from x. The
expectation with respect to Px is denoted by Ex.

The first part is the following claim whose proof consists of several lemmas. To simplify the
notation put xn = xn(ω) := fωn ◦ · · · ◦ fω1(x), yn = yn(ω) := fωn ◦ · · · ◦ fω1(y), n ≥ 0 and
ω = (ω1, ω2, . . .), x, y ∈ (0, 1).

Claim 1. There exist η > 0, C ≥ 1 and q < 1 such that Ex|xn − yn| ≤ Cqn for n ≥ 1,
x, y ∈ [a, 1− a], |x− y| < η.

Fix x, y ∈ [a, 1− a], x < y. If a ≤ xi < yi ≤ 1− a for i ≤ n, then |xn − yn| ≤ an1 |x− y| as both
f1 and f2 restricted to [a, 1− a] are contractions with the slope a1 < 1. If it is not the case, then
either (xi) visits (0, a) before (yi) visits (1− a, 1), or it is the other way around. In the first case
denote the time of the first visit of (xi) in (0, a) by τ0, and define the stopping times (see Figure
5.2)

τ1 := min{i ≥ τ0 : xi > 1/2}
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τ2 := min{i ≥ τ1 : yi < 1/2}

and, generally,
τk+1 := min{i ≥ τk : xi > 1/2}

if k is even and
τk+1 := min{i ≥ τk : yi < 1/2}

if odd. It is clear how τi’s should be defined in the second case.

τ0

τ1

τ2

a 1− a

Figure 5.2: The definition of τ .

Lemma 5.1. If n ≤ τ1 − 1, then |xn − yn| ≤ b/a|x− y| for every ω ∈ Ω.

Before starting the proof let us briefly present the idea behind it. Define g1(x) = a1x and
g2(x) = a2x for x > 0. Take arbitrary positive u and v with u < v and, using the same notation
as for x and y, notice that the proportion of |un − vn| to |u − v| is equal to the proportion of un
to u (Figure 5.3; this is just a consequence of the linearity of g1, g2). For such system the length
of |un − vn| may be controlled using just the information about the position of un with respect to
the starting point (Figure 5.4). It will be helpful to keep that in mind in the sequel (note f1 and
f2 are linear on (0, a]).

0 un vn u v

Figure 5.3: Here un = 1/3u, hence |un − vn| = 1/3|u− v|
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0 u v un C vn

Figure 5.4: Here un < C, hence un/u < C/u and |un − vn| ≤ C/u|u− v|

Proof. Fix ω ∈ Ω and n ≤ τ1 − 1. Assume for now that ω has the property that xi > a implies
xi+1 = f1(xi) for i < n. In other words ω is chosen in such a way that the trajectory of (xi(ω)) in
the system f1, f2 corresponding to ω is the same as it would be in the system g1, g2. This implies
in particular xi ≤ b for i ≤ n. Indeed, xi > b means that necessarily xj > a and xj+1 = f2(xj) for
some j < i (Figure 5.5; recall that f2(a) = b).

0
a bxj xj+1

f2

f2

Figure 5.5: If xj+1 > b and xj ≤ b, then xj ≥ a.

s1
a 1− ab

t1

s1

t2

Figure 5.6: The definition of t1, s3, t2.

Denote by (x′i(ω)), (y′i(ω)) the trajectories of
x and y corresponding to ω in the system gener-
ated by g1, g2. By what has just been assumed,
(xi(ω)) is equal to (x′i(ω)) for i ∈ [0, n]. Note the
analogous fact for y is not true anymore. By the
reasoning before the proof, |x′i− y′i| ≤ b/x|x− y|
for i ≤ n. Since x ∈ [a, 1− a], clearly |x′i− y′i| ≤
b
a |x − y| for i ≤ n. To deduce the information
about the |xi−yi| observe just that f2(u) ≤ a2u
for u ∈ (0, 1). Therefore [xi, yi] ⊆ [x′i, y

′
i] for

i ≤ n and the conclusion follows.
To give the proof in the general case the tra-

jectory must be decomposed into smaller pieces.
The first piece is from 0 to the first moment s1

such that xs1+1 < b and xs1 ≥ b if x ≥ b (Figure
5.6) or s1 := 0 if x < b. Both f1 and f2 are
contracting on [a, 1− a] hence |xi− yi| ≤ |x− y|
for i ≤ s1.

Let t1 > s1 be the first index such that
xt1+1 > b. By the first part of the proof
|xi − yi| ≤ b/xs1 |xs1 − ys1 | for i ∈ [s1, t1], and
consequently |xi− yi| ≤ b/a|x− y| for i ∈ [s1, t1]
(note a ≤ xs1 . Obviously |xt1+1 − yt1+1| ≤
|xt1 − yt1 | since both f1 and f2 are contractions
on [a, 1 − a]. Thus |xi − yi| ≤ b/a|x − y| for
i ∈ [0, t1 + 1], and xt1+1 > b.

After the moment t1 + 1, the interval [xi, yi]
is contained in [b, 1 − a] for some time (let us
recall here that we assumed n ≤ τ1 − 1, hence
xi < 1/2 for i ≤ n). So it happens till the first
moment s2 ≥ t1 +1 when xs2 > b and xs2+1 ≤ b.
It is worth to stress that possibly s2 = t1 + 1.
Since both f1, f2 are contractions on [a, 1 − a],
|xi − yi| ≤ |xt1+1 − yt1+1| for i ∈ [t1 + 1, s2] and
therefore using the fact proven in the previous
paragraph |xi − yi| ≤ b/a|x− y| for i ∈ [0, s2].

Then we repeat the whole procedure with respect to x′ := xs2 and y′ := ys2 and construct t2
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and s3. The same argument as previously gives that |xi − yi| ≤ b/xs2 |xs2 − ys2 | for i ∈ [s2, t2].
This time, however, the initial point xs2 is greater or equal to b, hence |xi − yi| ≤ |xs2 − ys2 | for
i ∈ [s2, t2] and |xi − yi| ≤ |xs2 − ys2 | ≤ b/a|x − y| for i ∈ [0, t2]. Between t2 and s3 the interval
[xi, yi] is contained in [b, 1− a] again, on which f1 and f2 are both contracting. Proceeding in this
fashion completes the proof.

Lemma 5.2. There exist η > 0 and q1 < 1 such that if |x− y| < η, then

|xn − yn| ≤ q1|xτk−1−1 − yτk−1−1|

for some n ∈ [τk, τk+1 − 1].

Proof. Let d := 1/2−b and q1 := max{ 1/2−d
1/2−d/2 ,

1−b
1−a}. Put η := ad/2b and take x, y with |x−y| < η.

The situation is as follows: xτ1−1 ≤ 1/2 by the definition of τ1 (recall we have assumed the first
"excursion" to be in the left part of the interval (0, 1)), |xτ1−1− yτ1−1| ≤ b/a|x− y| < ηb/a = d/2,
hence yτ1−1 ≤ 1/2 + d/2 (since τ1 is the first moment when xτ1 > 1/2). The presentation is more
clear in the symmetric case, thus we change coordinates x 7−→ 1 − x and interchange x and y.
After that, yτ1−1 ≥ 1/2, xτ1−1 ≥ 1/2− d/2 (Figure 5.7).

0 1a b 1/2

1/2− d/2

xτ1−1 yτ1−1

Figure 5.7: Points xτ1−1, yτ1−1.

Then either xτ1 > b or xτ1 ≤ b. In the first case |xτ1 − yτ1 | ≤ 1−b
1−a |xτ1−1 − yτ1−1| and the

previous lemma (actually the reasoning in its proof) applied to x′ := xτ1 and y′ := yτ1 yields
|xi − yi| ≤ b/x′|x′ − y′| for i ∈ [τ1, τ2 − 1]. Since x′ ≥ b it follows that |xi − yi| ≤ |x′ − y′| ≤
q1|xτ1−1 − yτ1−1| for i ∈ [τ1, τ2 − 1].

In the second case let t1 be the first moment after τ1 with xt1 ≤ b and xt1+1 > b. Then
|xt1+1 − yt1+1| ≤ |xt1 − yt1 | since both f1 and f2 are contracting on [a, 1− a]. The trajectory (xi)
for i ∈ [τ1 − 1, t1] is the same as it would be in the linear system g1, g2. Therefore the proportion
of |xi − yi| to |xτ1−1 − yτ1−1| is the same as the proportion of xi to xτ1−1, i ∈ [τ1 − 1, t1]. Since
xt1 ≤ b and xτ1−1 ≥ 1/2− d/2 we have by this

|xi− yi| ≤ b/(1/2− d/2)|xτ1−1− yτ1−1| = (1/2− d)/(1/2− d/2)|xτ1−1− yτ1−1| ≤ q1|xτ1−1− yτ1−1|

for i ∈ [τ1 − 1, t1].
It remains to deal with the case i ∈ [t1 + 1, τ2 − 1], but since xt1+1 ≥ b we can easily apply

the reasoning in Lemma 5.1 to obtain the assertion. Obviously this reasoning is applicable to
i ∈ [τ2 − 1, τ3] since |xτ2−1 − yτ2−1| ≤ |xτ1−1 − yτ1−1| ≤ η < d/2. The induction argument
completes the proof.

Let ρn(ω) denote the maximal k with τk(ω) ≤ n. Our goal now is to show that Px(ρn < λn)
decays exponentially fast for some λ ∈ (0, 1). By the Chebyshev inequality

Px(ρn < λn) = Px(τbλnc > n) ≤ e−γnExeγτbλnc

provided the expectation is finite for some γ ∈ (0, 1).
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Lemma 5.3. There exists γ ∈ (0, 1) and C > 0 such that Exeγτ1 ≤ C for all x ∈ [a, 1− a].

Proof. Let ξ > 0 be a number sufficiently small to satisfy Proposition 5.1. Let τ̂n denote the length
of the n-th visit of (xn) in (0, ξ). Proposition 5.1 implies the existence of constants Ĉ and γ̂ such
that Exeγ̂τ̂n ≤ Ĉ for all x ∈ [a, 1− a] and all n’s. Then

Exeγ̂(τ̂1+···+τ̂n) = Exeγ̂(τ̂1+···+τ̂n−1)Ex
(
eγ̂τ̂n |Fτ̂n−1

)
The conditional expectation is, by the strong Markov property, bounded by Ĉ thus induction yields

Exeγ̂(τ̂1+···+τ̂n) ≤ Ĉn

for all natural n and x ∈ [a, 1− a].
By the compactness of [ξ, 1/2] and the assumption (B3) there exists β > 0 such that for every

z ∈ [ξ, 1/2] the probability that the Markov process starting from z visits (1/2, 1) before the first
visit in (0, ξ) is grater than β. It is evident that Px(τ1 ≥ τ̂1 + · · ·+ τ̂k) ≤ (1− β)k. Now

Px(τ1 > n) = Px({τ1 > n} ∩ {τ̂1 + · · ·+ τ̂k ≤ n}) + Px({τ1 > n} ∩ {τ̂1 + · · ·+ τ̂k > n})

≤ Px(τ1 > σk) + Px(τ̂1 + · · ·+ τ̂k > n) ≤ (1− β)k + e−γ̂nĈk = (1− β)k + e−γ̂n+k log Ĉ .

Put k = λ′n for some λ′ such that λ′ log Ĉ − γ̂ < 0. Then Px(τ1 > n) decays exponentially fast,
thus there exists γ such that Exeγτ1 ≤ C <∞. Note C and γ are independent of x.

Clearly Exeγτn ≤ Cn by the same argument the one as used for τ̂1 + · · ·+ τ̂n. Hence, continuing

the reasoning started before Lemma 5.3, e−γnExeγτbλnc ≤ e−γnCbλnc =

(
e−γCλ

)n
. This decays

exponentially fast if λ is small enough.
Now we are in position to complete the proof of Claim 1. We have

Ex|xn − yn| = Ex1{ρn<λn}|xn − yn|+ Ex1{ρn≥λn}|xn − yn| ≤ Px(ρn < λn) + b/aqλn1 |x− y|,

where two first lemmas were used. Third lemma implies that the first summand tends to 0 expo-
nentially fast as described above. Hence the claim follows.

We are going to show that (Unϕ) is equicontinuous at any point of [a, 1−a], which is equivalent
to the statement of Proposition 5.2. Let β denote2 the common modulus of continuity of p1 and
p2. Take x ∈ [a, 1 − a] and ε > 0. Take n0 such that

∑∞
n=n0

2β(Cqn) < ε
6‖ϕ‖∞ (the convergence

of the series comes from the Dini continuity of p1 and p2) and Cqn ≤ ε
3Lip(ϕ) for n ≥ n0, where

Lip(ϕ) denotes the Lipschitz constant of ϕ. By Theorem 8 on the page 45 in [Lor66] there exists
a concave function β∗ with β(t) ≤ β∗(t) ≤ 2β(t). Thus we have

∑∞
n=n0

β∗(Cqn) < ε
3‖ϕ‖∞ .

Given a sequence (i1, . . . , in) denote

pi1,...,in(x) := pi1
(
x
)
pi2
(
fi1(x)

)
· · · pin

(
fin−1

◦ · · · ◦ fi1(x)
)
.

Take y such that |x− y| < η and such that∑∣∣∣∣pi1,...,in0
(x)− pi1,...,in0

(y)

∣∣∣∣ < ε

3‖ϕ‖∞
, (5.6)

2Sometimes β denotes a small constant and sometimes a modulus of continuity. However it is always clear from
the context which of these holds.
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where the summation is over all finite sequences (i1, . . . , in0) ∈ {0, 1}n0 . It is satisfied provided
that |x− y| is less than, say, δ ∈ (0, η). Then for n ≥ n0 we have

|Unϕ(x)− Unϕ(y)|

≤
∑

pi1,...,in(x)

∣∣∣∣ϕ(fin ◦ · · · ◦ fi1(x))− ϕ(fin ◦ · · · ◦ fi1(y))

∣∣∣∣
+

∣∣∣∣pi1,...,in(x)− pi1,...,in(y)

∣∣∣∣‖ϕ‖∞,
where the summation is over all finite sequences (i1, . . . , in) ∈ {0, 1}n. The first term is bounded
by Lip(ϕ)Ex|fnω (x)− fnω (y)|. To estimate the second, we have∑

i1,...,in

∣∣∣∣pi1,...,in(x)− pi1,...,in(y)

∣∣∣∣
=

∑
i1,...,in

∣∣∣∣pin(fin−1
◦ · · · ◦ fi1(x))− pin(fin−1

◦ · · · ◦ fi1(y))

∣∣∣∣ · pi1,...,in−1
(x)

+
∑

i1,...,in

pin(fin−1
◦ · · · ◦ fi1(y))

∣∣∣∣pi1,...,in−1
(x)− pi1,...,in−1

(y)

∣∣∣∣
≤ 2Exβ∗(|fnω (x)− fnω (y)|) +

∑
i1,...,in−1

∣∣∣∣pi1,...,in−1(x)− pi1,...,in−1(y)

∣∣∣∣.
The modulus of continuity β∗ is concave, therefore by the Jensen inequality we have∑

i1,...,in

∣∣∣∣pi1,...,in(x)− pi1,...,in(y)

∣∣∣∣ ≤ 2β∗(Cqn) +
∑

i1,...,in−1

∣∣∣∣pi1,...,in−1
(x)− pi1,...,in−1

(y)

∣∣∣∣.
Continuing this procedure while n > n0 and using (5.6) yields∑

i1,...,in

∣∣∣∣pi1,...,in(x)− pi1,...,in(y)

∣∣∣∣
≤

n∑
i=n0

2β∗(Cqi) +
∑

i1,...,in0

∣∣∣∣pi1,...,in0
(x)− pi1,...,in0

(y)

∣∣∣∣ < ε

3‖ϕ‖∞
+

ε

3‖ϕ‖∞
.

Again by the definition of n0 we have

|Unϕ(x)− Unϕ(y)| < Lip(ϕ)Ex|fnω (x)− fnω (y)|

+‖ϕ‖∞
ε

3‖ϕ‖∞
+ ‖ϕ‖∞

ε

3‖ϕ‖∞
< ε

for all n and y with |x− y| < δ. Therefore (Unϕ) is equicontinuous at any x ∈ [a, 1− a].
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5.5 The proof of Proposition 5.3
Claim 2. Fix δ > 0. There exists β > 0 such that Px ⊗ Py(T < ∞) ≥ β for every x, y ∈ (0, 1),
where T = min{n ≥ 0 : xn, yn ∈ [a, 1− a] and |xn − yn| < δ}.

Let ξ > 0 be so small to satisfy Proposition 5.1. LetM , α be the constants given in Proposition
5.1, and let ζ ∈ (0, ξ) be such that Mζα < 1

8 . By Proposition 5.1, given two points x, y there
exists k1 such that

Px ⊗ Py
( k1⋂
i=0

{xi 6∈ [ξ, 1− ξ]} ∪
k1⋂
i=0

{yi 6∈ [ξ, 1− ξ]}
)
< 1/2. (5.7)

Since δy ∈ PM,α for every y ∈ [ξ, 1− ξ] and Mζα < 1/8 we easily conclude that

Px
(
xk1 6∈ [ζ, 1− ζ]

∣∣∣∣ k1⋃
i=0

{xi ∈ [ξ, 1− ξ]}
)
< 1/8 + 1/8 = 1/4

and

Py
(
yk1 6∈ [ζ, 1− ζ]

∣∣∣∣ k1⋃
i=0

{yi ∈ [ξ, 1− ξ]}
)
< 1/8 + 1/8 = 1/4,

thus

Px ⊗ Py
(
xk1 , yk1 ∈ [ζ, 1− ζ]

∣∣∣∣ k1⋃
i=0

{xi ∈ [ξ, 1− ξ]} ∩
k1⋃
i=0

{yi ∈ [ξ, 1− ξ]}
)
≥ 1/2.

By (5.7) Px ⊗ Py(xk1 , yk1 ∈ [ζ, 1− ζ]) ≥ 1/4.

Lemma 5.4. There exists a point z ∈ (a, 1− a) such that for every ζ > 0 and δ > 0 there exist a
natural number k2 and β′ > 0 such that

Px(xk2 ∈ (z − δ/2, z + δ/2)) > β′

for x ∈ [ζ, 1− ζ].

Proof. Observe that f1(b) = a1b = 1−b
1−ab > a. Indeed, it is equivalent to (1− b)b > (1− a)a, which

is implied by a < b < 1/2 (see Figure 5.8).

0 a b 1

0.25

Figure 5.8: The plot of the func-
tion t 7−→ t(1−t) for t ∈ (0, 1/2).
The function is increasing there.
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Hence f1([b, 1−a]) ⊆ [a, 1− b]. By the symmetry of the system f2([a, 1− b]) ⊆ [b, 1−a]. Hence
the composition f1 ◦f2 restricted to the interval [a, 1− b] is a contraction and acts into the interval
[a, 1/2]. Let z be the unique attractive fixed point for this composition on [a, 1− b]. For any point
x ∈ [a, 1− b] and δ > 0 there exists m′ such that Px(x2m′ ∈ (z − δ/2, z + δ/2)) > 0.

0 1a b 1/2 1− b 1− a

f2

f1

Figure 5.9: f1([b, 1− a]) ⊆ [a, 1− b] and f2([a, 1− b]) ⊆ [b, 1− a]

Choose ζ > 0. To complete the proof it is sufficient to show that for any x ∈ [ζ, 1 − ζ] there
exists a number m′′ and ω such that x2m′′(ω) ∈ [a, 1− b] (it is problematic that the number should
be necessarily even). Then k2 := 2m′ + 2m′′′ will be desired number, where m′′′ is the maximum
of m′′ for x ∈ [ζ, 1− ζ] (recall the probabilities p1, p2 are positive by (B3)).

It is readily seen that there exist m′′′ and a sequence ω such that z1 := xm′′′ ∈ [a, 1 − b].
If m′′′ is even, then put m′′ = m′′′/2. If not, then apply f1 to z1. If f1(z1) ≥ a then m′′ =
(m′′′ + 1)/2 is the desired number. If not, then f1(z1) < a, hence z2 := f2 ◦ f1(z1 ≥ b. Note that
z2 = a2a1z1 = (1−b)b

(1−a)az1 > z0 by the same argument as in the beginning of the proof. We can
repeat this procedure and define zn+1 > zn whenever f1(zn) < a. This procedure, however, must
finish for some n, since zn+1 = (a2a1)nz1 which eventually becomes greater than b for some n,
which means that f1(zn) = f−1

2 (zn+1) > a. If n is the minimal number with f1(zn) ≥ a. Then
2m′′ = m′′′ + 2n+ 1 has the desired property.

Put β := 1/2
(
β′
)2. Lemma 5.4 clearly implies Claim 2.

We are ready to finish the proof of Proposition 5.2. Assume contrary that Px ⊗ Py measure
of F := {T = ∞} is positive for some points x and y. Note F is the complement of an open
set and thus it is closed. By the regularity of Px ⊗ Py there exists an open G containing F with
Px ⊗ Py(F |G) > 1 − β. The open set G is a sum of cylinders (Gi) and the sum may be assumed
to be finite (by the compactness of F ). Moreover,∑

i

Px ⊗ Py(Gi)

Px ⊗ Py(G)
Px ⊗ Py(F |Gi) = Px ⊗ Py(F |G) > 1− β

hence Px ⊗ Py(F |Gi) > 1 − β for at least one of Gi’s. The cylinder Gi is of the form {(ω, ω′) ∈
Ω × Ω : ω1 = i1, · · · , ωk = ik and ω′1 = j1, · · · , ω′k = jk} for some sequences (i1, . . . , ik) and
(j1, . . . , jk). Put u = fik ◦ · · · ◦ fi1(x) and v = fjk ◦ · · · ◦ fj1(y), and Tu,v to be defined as T but
with x and y replaced by u and v. Then

Pu ⊗ Pv(Tu,v =∞) = Px ⊗ Py(F |Gi) > 1− β,

which contradicts Claim 2.
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5.6 Comments
We use the expression "Alsedà-Misiurewicz systems" after [BS21]. The authors were interested
in invariant Cantor sets and absolute continuity of stationary distributions of Alsedà-Misiurewicz
systems with constant probabilities.

Assumptions (B2), (B3), (B4) are rather essential in the proof. It remains a question to what
extent assumption (B1) may be relaxed. In [Czu20] the proof includes also the boundary case
when a = 1/2. However, the reasoning is a bit more technical. The problem is that Lemmas
5.1 and 5.2 generally do not hold beyond systems (5.2) with (B1). The mentioned boundary case
is an exception. One can formulate more general conditions implying Lemmas 5.1 and 5.2, but
these appear to be rather artificial. It would be interesting thus to see a proof which does not rely
on Lemmas 5.1 and 5.2. Then the expansion should be somehow controlled, which seems to be
difficult (or even impossible) if no assumptions on pi’s are imposed.

It remains also an open problem to establish the rate of convergence and show the central limit
theorem. Plausibly it would be helpful to prove that if V is small interval contained in [a, 1 − a]
and T is defined to be the moment of the first common visit in V of two independent stationary
processes X and Y , then EeγT <∞ for some γ > 0 sufficiently small. If V is sufficiently small, then
|fnω (x)− fnω (y)| ≤ Cqn|x− y| for some q ∈ (0, 1) and ω from some set of positive Px⊗Py-measure.
Thus coupling techniques introduced in [Hai02] probably can be applied (see also [Ś11]).
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Appendix A

The proof of the Baxendale theorem

Theorem (Lemma 4.1 in [GH17]). Let f1, . . . , fm be C2 orientation preserving diffeomorphisms
of [0, 1] satisfying (A1) and (A2). If (p1, . . . , pm) is such that Λ0, Λ1 are positive, then the volume
Lyapunov exponent (with respect to the unique stationary distribution µ)

m∑
i=1

pi

∫
[0,1]

log f ′i(x)µ(dx)

is negative.

The proof is based on the notion of relative entropy. If ν1, ν2 are probability measures, then
the relative entropy of ν1 with respect to ν2 is defined as

h(ν1|ν2) := sup
ψ∈C[0,1]

ln

(∫
[0,1]

eψ(x)ν1(dx)

)
−
∫

[0,1]

ψ(x)ν2(dx).

In [DV75] (see Lemma 2.1 therein) it is shown that

• 0 ≤ h(ν1|ν2) ≤ ∞,

• h(ν1|ν2) = 0 if and only if ν1 = ν2,

• h(ν1|ν2) is finite if and only if ν1 is absolutely continuous with respect to ν2 and the density
satisfies

∫
[0,1]

dν1
dν2

log dν1
dν2

dν2 <∞. Moreover, in that case

h(ν1|ν2) =

∫
[0,1]

dν1

dν2
log

dν1

dν2
dν2 =

∫
[0,1]

log
dν1

dν2
dν1.

When µ is absolutely continuous with respect to the Lebesgue measure and the density is
positive and bounded, then one can check that

∑m
i=1 pih((fi)∗µ|µ) = −Λ (we shall do this later).

Therefore the following lemma would give the assertion for µ absolutely continuous with respect
to the Lebesgue measure having a bounded positive density.

Lemma A.1. If f1, . . . , fm is a system satisfying (A1) and (A2), p1, . . . , pm is such that the
Lyapunov exponents at 0 and 1 are positive, then

∑m
i=1 pih((fi)∗µ|µ) > 0.

Proof. Since (A1) holds, there exists i and ξ > 0 such that fi(x) < x for x ≤ ξ. The same
assumption implies µ((0, ξ)) =: r > 0. If h((fi)∗µ|µ) = 0, then (fni )∗µ = µ and thus µ((0, fni (ξ))) =
µ((0, ξ)) = r > 0 for every n, which implies that µ({∅}) ≥ r, which is a contradiction. Therefore
h((fi)∗µ|µ) > 0 and the average entropy is positive as well.
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Unfortunately, it is hard to deduce whether a system has a stationary distribution absolutely
continuous with respect to the Lebesgue measure. Actually the results in [CS20a] (Theorem 10),
[BS21] (Theorem 2.16) and [BR21] (Theorem 5.1) say that one should expect the measure to be
rather singular than absolutely continuous1. Therefore the presented sketch of reasoning is far from
being sufficiently general. The idea is to perturb the system to obtain other Markov process with
an absolutely continuous stationary distribution µε with sufficiently regular density. For perturbed
system one can show the relation Eh((fω)∗µε|µε) = −Λε. Relative entropy is upper semicontinuous
(as the supremum of continuous functionals), thus lim supEh((fω)∗µε|µε) ≥ Eh((fω)∗µ|µ) > 0 by
Lemma A.1. The volume Lyapunov exponent is a continuous functional therefore the passage to
the limit gives Λε → Λ. Therefore −Λ ≥ Eh((fω)∗µ|µ) > 0. Details are provided in the sequel.

0.25 0.75
−1

0

1

Figure A.1: The graph of ψ.

Let ψ be a nonincreasing smooth function such that ψ(x) = 1 for x ≤ 1/4, ψ(x) = 0 for x ≥ 3/4
(Figure A.1). Given ε > 0, u ∈ [0, 1] and i = 1, . . . ,m define fi,u,ε(x) := fi(x) + ε(ψ(x)− 1) + εu,
and let us consider a Markov process in which, at every step, a function fi,u,ε is chosen, where
i is distributed on {1, . . . ,m} according to the probability vector (p1, . . . , pm), u is uniformly
distributed on [0, 1] and i and u are independent. Observe that the graphs of fi,u,ε, u ∈ [0, 1], are
parallel to each other (see Figure A.2). Note also the process is defined on [0, 1], and the transition
probabilities are of the form

pε(x,A) =

m∑
i=1

pi

∫
A

ki,ε(x, y)dy

for some positive real functions ki,ε, i = 1, . . . ,m (more exactly for x fixed these are characteristic
functions of [fi,0,ε(x), fi,1,ε(x)] normalized to be a density). Finally, the Markov and dual operators
are given by formulae

Pεν(A) =

m∑
i=1

pi

∫
[0,1]

∫
[0,1]

1A(y)ki,ε(x, y)dyν(dx)

for a Borel set A and

Uεϕ(x) =

m∑
i=1

pi

∫
[0,1]

ki,ε(x, y)ϕ(y)dy

1It has been proven in [CS20a] a generic system of homeomorphisms with supremum norm has unique stationary
measure singular with respect to the Lebesgue measure. It would be interesting to prove the same result for
diffeomorphisms in Ck topology.
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for ϕ ∈ B([0, 1]). Clearly, Pε is a Markov-Feller operator.

0.25 0.75
0

1

Figure A.2: The graph of fi (blue), fi,0,ε and fi,0,ε
(red). The graph of fi,ε,u, u ∈ [0, 1], is parallel to
the graphs of fi,0,ε and fi,0,ε.

Lemma A.2. Let a > 0 be such that the transition from [1/4, 1) to (0, a] and from (0, 3/4] to
[1− a, 1) is impossible in one step. If M , α are the constants given by Proposition 3.1 suitable for
a, then PM,α is Pε- invariant for every ε > 0.

Proof. Recall that M , α are such that every measure supported on [a, 1 − a] belongs to PM,α.
Moreover, PM,α is P -invariant. This implies that δa, δ1−a ∈ PM,α, which implies in turn that
1 ≤ Maα (this follows from the definition of PM,α). This means that ν((0, x]) ≤ Mxα for an
arbitrary measure ν and x ≥ a. Similarly, ν([1 − x, 1)) ≤ Mxα for an arbitrary measure ν and
x ≥ a. Therefore showing Pε-invariance of PM,α requires only the proof that Pεν((0, x]) ≤ Mxα

and Pεν([1−x, 1)) ≤Mxα for x < a. The proof will be carried out for the first of these inequalities
while the second is just its simple adaptation.

Take ϕ nonincreasing and t ≤ 1/4. The support of ki,ε(t, ·) is contained in [fi(t), 1) for t ≤ 1/4.
Thus the monotonicity of ϕ yields

∫
[0,1]

ki,ε(t, y)ϕ(y)dy ≤ ϕ(fi(t)) for i = 1, . . . ,m and t ≤ 1/4.
Plugging that into the definition of Uεϕ gives Uεϕ(t) ≤

∑
piϕ(fi(t)) = Uϕ(t) for t ≤ 1/4.

Now observe that the transition from (1/4, 1) to (0, x] is impossible for any x ≤ a, both for the
perturbed and the non-perturbed process. Indeed, for non-perturbed process it follows from the
definition of a. For perturbed system one needs to use again the fact that the support of ki,ε(t, ·)
lies in [fi(t), 1) for t ≤ 1/4, hence the claim for perturbed system follows from the same claim for
the non-perturbed system. In particular, if ϕ is zero on [a, 1), then Uϕ and Uεϕ are equal to zero
on [1/4, 1).

Finally take x < a and put ϕ to be the characteristic function of (0, x]. Using previous
observations yields

Pεν((0, x]) =

∫
[0,1]

Uεϕ(t)ν(dt) =

∫
[0,1/4]

Uεϕ(t)ν(dt)

≤
∫

[0,1/4]

Uϕ(t)ν(dt) =

∫
[0,1]

Uϕ(t)ν(dt) = Pν((0, x]) ≤Mxα,

provided ν ∈ PM,α.
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Lemma A.3 ([HZ07]). For every ε > 0 the Markov operator Pε possess an absolutely continuous
stationary measure µε with a bounded, continuous and positive density ϕε.

Proof. Repeat the reasoning in the proof of the corollary to Proposition 3.1 to show that, given
ε > 0, there exist µε ∈ PM,α invariant under Pε (remember PM,α is Pε- invariant). Observe that
µε is necessarily absolutely continuous with respect to the Lebesgue measure. It is a consequence
of the fact that if A is of the Lebesgue measure zero, then p(x,A) = 0 whatever x is (the transition
probabilities are absolutely continuous with respect to the Lebesgue measure).

The Perron- Frobenius operator L takes the form

Lϕ(x) =

m∑
i=1

pi

∫
[0,1]

ki,ε(y, x)ϕ(y)dy,

where ϕ is a non-negative Borel measurable real function. Indeed, Lϕ ≥ 0 provided ϕ ≥ 0, and L
preserves integrals as the following calculation shows:∫

[0,1]

Lϕ(x)dx =

m∑
i=1

pi

∫
[0,1]

∫
[0,1]

ki,ε(y, x)ϕ(y)dydx =

m∑
i=1

pi

∫
[0,1]

(∫
[0,1]

ki,ε(y, x)dx

)
ϕ(y)dy =

∫
[0,1]

ϕ(y)dy.

Therefore L preserves densities on [0, 1] (note we could use the Fubini theorem as all functions are
non-negative). Finally, if ν(dy) = ϕ(y)dy, then∫

A

Lϕ(x)dx =

∫
[0,1]

∫
[0,1]

( m∑
i=1

piki,ε(y, x)

)
1A(x)ϕ(y)dydx

=

∫
[0,1]

∫
[0,1]

( m∑
i=1

piki,ε(y, x)

)
1A(x)ϕ(y)dxdy =

∫
[0,1]

Uε1A(y)ϕ(y)dy =

∫
[0,1]

Uε1A(y)ν(dy)

=

∫
[0,1]

1A(y)Pεν(dy) = Pεν(A).

Since µε is absolutely continuous with respect to the Lebesgue measure, L possess an invariant
density ϕε. The boundeness and continuity of invariant density is proven by showing that L
transforms integrable functions into bounded continuous functions.

Boundeness is a consequence of the simple computation:

Lϕ(x) ≤
m∑
i=1

pi‖ki,ε‖∞
∫

[0,1]

ϕ(y)dy = ε−1

∫
[0,1]

ϕ(y)dy,

as ‖ki,ε‖ = ε−1 (for x fixed it is a characteristic function of an interval of the length ε).
The density Lϕ is continuous provided ϕ ∈ L1. Indeed,

|Lϕ(x1)− Lϕ(x2)| =
∣∣∣∣ m∑
i=1

pi

∫
[0,1]

ki,ε(y, x1)ϕ(y)dy −
m∑
i=1

pi

∫
[0,1]

ki,ε(y, x1)ϕ(y)dy

∣∣∣∣
≤

m∑
i=1

pi

∫
[0,1]

∣∣ki,ε(y, x1)− ki,ε(y, x2)
∣∣ϕ(y)dy.
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Set Vi = {y ∈ [0, 1] : ki,ε(y, x1) 6= ki,ε(y, x2)}, and observe that |ki,ε(y, x1) − ki,ε(y, x2)| = 1/ε for
y on Vi. Hence

|Lϕ(x1)− Lϕ(x2)| ≤ 1/ε

m∑
i=1

pi

∫
Vi

ϕ(y)dy.

Thus to show continuity we need to show that
∫
Vi
ϕ(y)dy → 0 as x1 → x2.

x1 x2

z1 z2 z3 z4

x1 x2

z1 z2 z3 z4

x1 x2

z1 z2 z3 z4

x1 x2

z1 z2 z3 z4

Figure A.3: The points z1, z2, z3, z4.

To this end let us assume, without loss of generality, that x1 < x2 and define four points (see
Figure A.3 ):

• z1 which is the unique number such that x1 is the right endpoint of the support of ki,ε(z1, ·),

• z2 which is the unique number such that x2 is the right endpoint of the support of ki,ε(z2, ·),

• z3 which is the unique number such that x1 is the left endpoint of the support of ki,ε(z3, ·),

• z4 which is the unique number such that x2 is the left endpoint of the support of ki,ε(z4, ·).

Since the support of ki,ε(z, ·) has always length ε and we consider the situation when x1 and x2

are close to each other we can assume that z1 < z2 < z3 < z4 as depicted in Figure A.3. Note it
may happen that z1 or even z2 is not well-defined when x1, x2 are close to 0. Similarly it may
happen that z4 or even z3 are not well-defined when x4 and x3 are close to 1. In the former case
put z1 = 0 (and z2 = 0 if it is also not well-defined) and in the latter put z4 = 1 (and z3 = 1 if it
is not well-defined).

Observe that Vi ⊆ [z1, z2]∪ [z3, z4]. If all these points are well-defined then z1 = (fi,1,ε)
−1(x1),

z1 = (fi,1,ε)
−1(x2), z1 = (fi,0,ε)

−1(x1), z1 = (fi,0,ε)
−1(x2). Since both fi,0,ε and fi,0,ε are diffeo-

morphisms onto their images this implies that z1, z2, z3, z4 depend continuously on x1 and x2. It
is immediate to see that the continuous dependence remains even if some of z1, z2, z3, z4 appears
to be 0 or 1. Therefore

∫
[z1,z2]∪[z3,z4]

ϕ(y)dy → 0 as x1 → x2 by the integrability of ϕ.
The density ϕε is positive on (0, 1). To explain this observe the transition probabilities Pεδx,

x ∈ (0, 1),
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(i) are absolutely continuous with respect to the Lebesgue measure,

(ii) with the densities which are piecewise continuous (moreover, there are finitely many of pieces
of continuity),

(iii) depending locally continuously on x ∈ (0, 1) in the supremum norm (locally refers to a
neighborhood when the density is continuous),

(iv) positive on some set of the form (fi(x)− δ, fi(x)) or (fi(x), fi(x) + δ) for every i = 1, . . .m.

These are just consequences of the definition of the transition probabilities. All of this may be said
about the family of transition probabilities in n steps Pnε δx, x ∈ (0, 1).

εz0 x0

V

P kδz
c

(x− h/2, x+ h/2)

Figure A.4: The curve represents
the density of P kδz.

y0

VU

ϕε

U ′

Figure A.5

Let us assume, contrary to the claim, that ϕε(x0) = 0 for some x0 ∈ (0, 1). By assumption
(A1) there exists (i1, . . . , ik) and z0 ∈ (0, ε) with fik ◦ · · · ◦ fi1(z0) = x0 (Figure A.4). By what
has been stated previously, especially points (ii) and (iv), P kε δz0 has the density continuous and
positive at x0. By (iii) the same is true for P kε δz, where z is from some open set V whose closure
is contained in (0, ε). Actually, the densities P kε δz, z ∈ V , are uniformly bounded from 0 on some
neighborhood of x0 by, say, c > 0.

Take h > 0 so small that (x0 − h/2, x0 + h/2) is contained in the mentioned neighborhood,
where the densities of P kε δz are positive, z ∈ V . Then the stationarity of µε yields

µε
(
(x0 − h/2, x0 + h/2)

)
=

∫
[0,1]

P kδz
(
(x0 − h/2, x0 + h/2)

)
µε(dz)

≥
∫
V

P kδz
(
(x0 − h/2, x0 + h/2)

)
µε(dz) ≥ c · h · µε(V ).

What remains to show is that V is of positive µε measure, which follows just from the fact that
the closure of V is contained in (0, ε). Indeed, let us take y0 with ϕε(y0) > 0. Again using (A1)
there exists (j1, . . . , jk′) such that fjk′ ◦ · · · ◦ fj1(y0) < inf V , therefore P k

′

ε δy is positive on some
open nonempty set U whose closure is contained in (0, inf V ), where y is from some neighborhood
U ′ of y0. Note that for every z < inf V the density of Pεδz is positive on [z, ε], hence is positive on
V . Again the application of the stationarity of µε and the Chapman-Kolmogorov equations (see
Corollary 8.3 in [Kal02]) yields

µε(V ) =

∫
[0,1]

P k
′+1δy(V )µε(dy) =

∫
[0,1]

∫
[0,1]

Pδz(V )P k
′
δy(dz)µε(dy)

≥
∫
U ′

∫
U

Pδz(V )P k
′
δy(dz)µε(dy) > 0,

which is the conclusion.
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Lemma A.4. It holds that µε → µ in the weak-∗ topology.

Proof. Note that µε ∈ PM,α, which is weak-∗ compact, hence it is sufficient to show that µεk → ν
for some sequence (εk) converging to zero implies ν = µ.

We start with the observation that ‖Uεϕ − Uϕ‖∞ → 0 as ε → 0 for arbitrary continuous
function ϕ on [0, 1]. Indeed, ϕ is uniformly continuous then, hence, for every δ > 0 there exists
ε > 0 such that |ϕ(fi(x)) − ϕ(fi(y))| ≤ δ for i = 1, . . . ,m provided |x − y| < ε. Hence for an
arbitrary δ > 0 and sufficiently small ε > we have

|Uεϕ(x)− Uϕ(x)| ≤
∣∣∣∣ m∑
i=1

pi

∫
[0,1]

ki,ε(x, y)ϕ(y)dy −
m∑
i=1

piϕ(fi(x))

∣∣∣∣
=

∣∣∣∣ m∑
i=1

pi
1

ε

∫ fi,1,ε(x)

fi,0,ε(x)

ϕ(y)dy −
m∑
i=1

pi
1

ε

∫ fi,1,ε(x)

fi,0,ε(x)

ϕ(fi(x)))dy

∣∣∣∣
≤ 1

ε

m∑
i=1

pi

∫ fi,1,ε(x)

fi,0,ε(x)

∣∣ϕ(y)− ϕ(fi(x))
∣∣dy.

But for each i the diameter of the set on which the integral is defined is equal to ε, and fi(x)
belongs to it. Hence |ϕ(y)− ϕ(fi(x))| < δ for all y in this interval. This finally implies

|Uεϕ(x)− Uϕ(x)| ≤
m∑
i=1

piδ = δ,

for every x ∈ [0, 1] and ε sufficiently small, which implies the claim.
Let µεk → ν in the weak-∗ topology for some sequence εk convergent to zero. Take ϕ continuous

on [0, 1]. Then∣∣∣∣ ∫
[0,1]

ϕdPν −
∫

[0,1]

ϕdν

∣∣∣∣ =

∣∣∣∣ ∫
[0,1]

Uϕdν −
∫

[0,1]

ϕdν

∣∣∣∣ =

∣∣∣∣ lim
k→∞

(∫
[0,1]

Uϕdµεk −
∫

[0,1]

ϕdµεk

)∣∣∣∣
=

∣∣∣∣ lim
k→∞

(∫
[0,1]

Uϕdµεk −
∫

[0,1]

Uεkϕdµεk

)∣∣∣∣ ≤ lim
k→∞

∫
[0,1]

‖Uϕ− Uεkϕ‖∞dµεk ,

which tends to zero by the claim in the beginning of the proof. This means ν is stationary, thus
ν = µ by uniqueness.

Let (Ω,F ,P) be a probability space on which a random variable u distributed uniformly on
[0, 1] is defined. Define Λε to be the average volume Lyapunov exponent of the perturbed process,
i.e.

Λε :=

m∑
i=1

piE
∫

[0,1]

log f ′i,u,ε(x)µε(dx).

By the definition of ψ and fi,u,ε it holds that

sup
u∈[0,1]

‖fi,u,ε − fi‖∞ → 0 as ε→ 0 (A.1)

and
sup
u∈[0,1]

‖f ′i,u,ε − f ′i‖∞ → 0 as ε→ 0 (A.2)
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for every i = 1, . . . ,m. Moreover fi,u,ε, fi, f ′i,u,ε, f ′i are uniformly bounded from 0 and infinity
provided ε is sufficiently small.

Take ϕ continuous on [0, 1]. Substitution yields∫
[0,1]

eϕ(x)(fi,u,ε)∗µε(dx) =

∫
[0,1]

eϕ(fi,u,ε(x))µε(dx) and

∫
[0,1]

eϕ(x)(fi)∗µ(dx) =

∫
[0,1]

eϕ(fi(x))µ(dx).

Further, ∣∣∣∣ ∫
[0,1]

eϕ(fi,u,ε(x))µε(dx)−
∫

[0,1]

eϕ(fi(x))µ(dx)

∣∣∣∣
≤
∫

[0,1]

∣∣eϕ(fi,u,ε(x)) − eϕ(fi(x))
∣∣µε(dx)

+

∣∣∣∣ ∫
[0,1]

eϕ(fi(x))µε(dx)−
∫

[0,1]

eϕ(fi(x))µ(dx)

∣∣∣∣ (A.3)

The first summand tends to 0 as ε → 0 by (A.1) and the uniform continuity of ϕ. The second
summand tends to 0 by the weak-∗ convergence of µε to µ. By the same reason the whole expression

ln

∫
[0,1]

eϕ(x)(fi,u,ε)∗µε(dx)−
∫

[0,1]

ϕ(x)µε(dx) (A.4)

tends to
ln

∫
[0,1]

eϕ(x)(fi)∗µ(dx)−
∫

[0,1]

ϕ(x)µ(dx) (A.5)

as ε→ 0.
The entropies h((fi,u,ε)∗µε|µε) and h((fi)∗µ|µ) are the supremum of (A.4) and (A.5), respect-

ively, over all continuous functions ϕ on [0, 1]. Take δ > 0 and continuous ϕ with

h((fi)∗µ|µ)− δ < ln

∫
[0,1]

eϕ(x)(fi,u,ε)∗µ(dx)−
∫

[0,1]

ϕ(x)µ(dx).

We have

lim inf
ε→0

Eh((fi,u,ε)∗µε|µε) ≥ lim inf
ε→0

E ln

∫
[0,1]

eϕ(x)(fi,u,ε)∗µε(dx)−
∫

[0,1]

ϕ(x)µε(dx)

= E ln

∫
[0,1]

eϕ(x)(fi)∗µ(dx)−
∫

[0,1]

ϕ(x)µ(dx) ≥ h((fi)∗µ|µ)− δ,

thus
lim inf
ε→0

Eh((fi,u,ε)∗µε|µε) ≥ h((fi)∗µ|µ).

Much simpler reasoning2 yields Λε → Λ.
We are in position to make the final computation, i.e. to show that

∑m
i=1 piEh(fi,u,ε)∗µε|µε) =

−Λε for every ε > 0. Let us recall that ϕε denotes the density of µε. As we have proven, ϕε is
bounded. For any u ∈ [0, 1] the measure (fi,u,ε)∗µε is absolutely continuous with respect to the
Lebesgue measure with the density

2We just need to use (A.2) and rewrite (A.3)
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0

Figure A.6: The graph of x log x.

ϕε(f
−1
i,u,ε(x))

f ′i,u,ε(f
−1
i,u,ε(x))

(it is just integration by substitution). The measure above is supported on the image of fi,u,ε,
which is a compact subset of (0, 1), and has a bounded density (ϕε is bounded). As we have
proven, ϕε is continuous and positive on (0, 1). These facts combined yield that (fi,u,ε)∗µε is
absolutely continuous with respect to µε and the density

ϕε(f
−1
i,u,ε(x))

ϕε(x)f ′i,u,ε(f
−1
i,u,ε(x))

is bounded. Therefore

ϕε(f
−1
i,u,ε(x))

ϕε(x)f ′i,u,ε(f
−1
i,u,ε(x))

log

(
ϕε(f

−1
i,u,ε(x))

ϕε(x)f ′i,u,ε(f
−1
i,u,ε(x))

)
is bounded (see the plot in Figure A.6) and, as a consequence, integrable with respect to µε. By
what was mentioned in the beginning of the section the relative entropy of (fi,u,ε)∗µε with respect
to µε is given by

h((fi,u,ε)∗µε|µε) =

∫
(0,1)

log
ϕε(f

−1
i,u,ε(x))

ϕε(x)f ′i,u,ε(f
−1
i,u,ε(x))

(fi,u,ε)∗µε(dx)

=

∫
(0,1)

log
ϕε(x)

ϕε(fi,u,ε(x))f ′i,u,ε(x)
µε(dx)

=

∫
(0,1)

(
logϕε(x)− logϕε(fi,u,ε(x))− log f ′i,u,ε(x)

)
µε(dx).

The function is µε integrable. Hence taking the expectation with respect to u and i we can use
the Fubini theorem and write

m∑
i=1

piEh((fi,u,ε)∗µε|µε)
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=

∫
(0,1)

( m∑
i=1

piE logϕε(x)−
m∑
i=1

piE logϕε(fi,u,ε(x))−
m∑
i=1

piE log f ′i,u,ε(x)

)
µε(dx).

Now
m∑
i=1

piE logϕε(x) = logϕε(x),

m∑
i=1

piE logϕε(fi,u,ε(x)) = Uε logϕε(x) and

∫
(0,1)

m∑
i=1

piE log f ′i,u,ε(x)µε(dx) = −Λε.

By the stationarity of µε
m∑
i=1

piEh((fi,u,ε)∗µε|µε) =

∫
(0,1)

logϕε(x)µε(dx)−
∫

(0,1)

Uε logϕε(x)µε(dx)− Λε = −Λε,

which completes the proof.
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